JPS61163536A - Traveling-wave tube - Google Patents

Traveling-wave tube

Info

Publication number
JPS61163536A
JPS61163536A JP387285A JP387285A JPS61163536A JP S61163536 A JPS61163536 A JP S61163536A JP 387285 A JP387285 A JP 387285A JP 387285 A JP387285 A JP 387285A JP S61163536 A JPS61163536 A JP S61163536A
Authority
JP
Japan
Prior art keywords
collector
voltage
high frequency
efficiency
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP387285A
Other languages
Japanese (ja)
Other versions
JPH0435868B2 (en
Inventor
Susumu Maeda
進 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP387285A priority Critical patent/JPS61163536A/en
Publication of JPS61163536A publication Critical patent/JPS61163536A/en
Publication of JPH0435868B2 publication Critical patent/JPH0435868B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)

Abstract

PURPOSE:To acquire a collector voltage operating efficiently, by furnishing an efficiency deciding device and a collector voltage deciding device with computers to calculate converting efficiency from the current through the delay circuit and the collector, and from the amplified high frequency power, to a high frequency wave. CONSTITUTION:An interaction of high frequency waves of electron beams from an electron gun of a traveling-wave tube is carried out in the delay circuit 5, and the electron beams are caught by the collector electrode 6. The current through the circuit 5 is detected by the delay circuit current detector 12, the current to the electrode 6 is detected by the collector current detector 13, and the detected current values are added to the efficiency deciding device 14. The amplified high frequency wave output from the output conductor 9 is also added to the efficiency deciding device 14. The device 14 decides the converting efficiency to a high frequency waves, and feeds the result to the voltage deciding device 15. The resultant collector voltage decided by the device 15 is delivered to the voltage control device 16, which controls the collector power source circuit 11, to output a collector voltage which operates most efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、コレクタ電極の電圧を変化することができ
る進行波管に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a traveling wave tube that can change the voltage of its collector electrode.

〔従来の技術〕[Conventional technology]

一般に、進行波管は広帯域1高増幅度等の特徴を有する
電子管で高周波の増幅に広く用いられている。そして、
電源の小形化や省エネルギー等のために、高周波電力へ
の変換効率を向上させる努力がなされており、例えば第
6図に示すような多段コレクタを用いた例が特開昭56
−86448号公報の従来技術の項で詳しく説明されて
いる。第6図の進行波管の模式図において、電子銃(1
)は電子ビームを形成するためのもので、陰極(2)、
加速電極(3)、ウェネルト電If (4)から成り、
この電子銃(1)で形成された電子ビームと高周波信号
を相互作用させるための遅波回路(5)、この遅波回路
(Is)を通過してきた電子ビームを捕捉するための第
1コレクタ(6)と第2コレクタ(7)、そして高周波
が入力および出力される入力導体(8)および出力導体
(9)から構成されている。
In general, a traveling wave tube is an electron tube that has characteristics such as a wide band and a high amplification degree, and is widely used for amplifying high frequencies. and,
Efforts have been made to improve the conversion efficiency to high-frequency power in order to downsize power supplies and save energy.
This is explained in detail in the prior art section of Japanese Patent No.-86448. In the schematic diagram of the traveling wave tube in Figure 6, the electron gun (1
) is for forming an electron beam, and the cathode (2),
Consists of accelerating electrode (3), Wehnelt electrode If (4),
A slow-wave circuit (5) for interacting the electron beam formed by the electron gun (1) with a high-frequency signal, a first collector (5) for capturing the electron beam that has passed through the slow-wave circuit (Is); 6), a second collector (7), and an input conductor (8) and an output conductor (9) through which high-frequency waves are input and output.

次に動作について説明する。遅波回路(5)は陰極(2
)に対して正の高電位になっているため、電子ビームは
遅波回路(5)の人口では遅波回路+5)と陰極(2)
の間の電位差による速度を有する。そして、高周波との
相互作用により、電子ビーム中の電子が有する運動エネ
μギーが高周波エネμギーへ変換され、高周波の増幅が
進む。この結果、電子ビームを形成する個々の電子の減
速の度合は異なるが、電子ビーム全体としては減速され
る。高周波との相互作用により高周波を増幅したのち、
電子ビームはそれぞれが有する速度に応じて第1コレク
タ(6)と第2コレクタ(7)に配分されて捕集される
。電子の速度は全く0になることはないので第1コレク
タ(6)の電位Vc、と第2コレクタ(7)の電位Vc
、は遅波回路(5)の電位Vaよりも低げて動作させる
ことができる。一般に複数のコレクタを有する進行波管
を使用する場合、遅波回路(5)に近い方のコレクタに
、より高電位が与えられている。
Next, the operation will be explained. The slow wave circuit (5) has a cathode (2
), the electron beam is connected to the slow wave circuit (5) and the cathode (2).
It has a speed due to the potential difference between. Then, due to the interaction with the high frequency, the kinetic energy μ of the electrons in the electron beam is converted into high frequency energy μ, and the amplification of the high frequency proceeds. As a result, although the degree of deceleration of individual electrons forming the electron beam differs, the electron beam as a whole is decelerated. After amplifying the high frequency by interaction with the high frequency,
The electron beams are distributed and collected by the first collector (6) and the second collector (7) according to their respective velocities. Since the velocity of electrons never becomes 0, the potential Vc of the first collector (6) and the potential Vc of the second collector (7)
, can be operated at a potential lower than the potential Va of the slow wave circuit (5). Generally, when a traveling wave tube having multiple collectors is used, a higher potential is applied to the collector closer to the slow wave circuit (5).

前述した様に高周波の増幅に寄与した後の電子ビーム中
の各電子は、各々減速の度合が異なるため速度は広い範
囲に分布しており、速度の速い電子は電位の低い第2コ
レクタ(7)に到達して捕集され、速度の遅い電子は電
位の高い第1コレクタ(6)に捕集される。すなわち、
速度の速い電子は遅波回路(5)、第1コレクタ(6)
、および第2コレクタ(7)の減速電界に抗して第2コ
レクタ(7)に到達するが、遅い電子は第2コレクタ(
7)まで到達できず第1コレクタ(6)に捕集される。
As mentioned above, each electron in the electron beam after contributing to high-frequency amplification has a different degree of deceleration, so the velocity is distributed over a wide range, and the faster electrons move to the second collector (7), which has a lower potential. ) and are collected, and the slow electrons are collected by the first collector (6), which has a high potential. That is,
Fast-moving electrons go to the slow wave circuit (5) and the first collector (6)
, and reach the second collector (7) against the decelerating electric field of the second collector (7), but the slow electrons reach the second collector (7).
7) and is collected by the first collector (6).

従って、第1コレクタ(6)の電位Vc1 は1番遅い
電子が少なくても第1コレクタ(6)に到達できる電位
まで高くする必要がある。
Therefore, the potential Vc1 of the first collector (6) needs to be raised to a potential that allows even the slowest electrons to reach the first collector (6).

一方、コレクタが1つしかない進行波管の場合は、コレ
クタの電位を複数のコレクタを有する場合の1番高いコ
レクタ電位で動作させる必要がある。
On the other hand, in the case of a traveling wave tube having only one collector, it is necessary to operate the collector at the highest collector potential in the case of having a plurality of collectors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の進行波管は以上のように構成されているので、コ
レクタが1つしかない場合は、高周波への変換効率が低
く、また変換効率を向上するために複コレクタにすると
、構成が複雑になるなどの問題点があった。さらに進行
波管の動作条件が変動する場合には最適なコレクタ電圧
を常に保つことは不可能である〇 この発明は上記のような問題点を解消するためになされ
たもので、1個のコレクタを有する進行波管であっても
、その動作条件に追従して、最も低いコレクタ電圧を生
成し、高周波への変換効率の高い進行波管を得ることを
目的としている。
Conventional traveling wave tubes are configured as described above, so if there is only one collector, the conversion efficiency to high frequency is low, and if multiple collectors are used to improve conversion efficiency, the configuration becomes complicated. There were some problems, such as: Furthermore, if the operating conditions of the traveling wave tube change, it is impossible to maintain the optimum collector voltage at all times.This invention was made to solve the above problems. The aim is to follow the operating conditions of the traveling wave tube, generate the lowest collector voltage, and obtain a traveling wave tube with high conversion efficiency to high frequency.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る進行波管は、高周波回路部を流れる電流
を検出する高周波回路電流検出器と、コレクタ電極に流
れる電流を検出するコレクタ電流、検出器と1これらの
電流検出器の検出信号と高周波出力を入力とし、高周波
への変換効率を判定する効率判定手段と、この効率判定
手段の出力に基づいてコレクタ電極に加える電圧を決定
するコレクタ電圧決定手段と、このコレクタ電圧決定手
段の出力に基づいて、前記コレクタ電極の電圧を制御す
る電圧制御手段とを設けたものである。
The traveling wave tube according to the present invention includes a high-frequency circuit current detector that detects a current flowing through a high-frequency circuit section, a collector current detector that detects a current flowing through a collector electrode, and a detection signal of these current detectors and a high-frequency an efficiency determining means that takes an output as an input and determines the conversion efficiency to high frequency; a collector voltage determining means that determines a voltage to be applied to the collector electrode based on the output of the efficiency determining means; and a collector voltage determining means that determines a voltage to be applied to the collector electrode based on the output of the collector voltage determining means. and voltage control means for controlling the voltage of the collector electrode.

〔作用〕[Effect]

この発明においては、高周波出力、遅波回路電流検出器
からの検出信号と加速電圧、コレクタ電流検出器からの
検出信号とコレクタ電圧から高周波への変換効率の良否
を判定し、この判定に従ってコレクタ電圧を制御する。
In this invention, the high frequency output, the detection signal and accelerating voltage from the slow wave circuit current detector, the detection signal from the collector current detector, and the quality of the conversion efficiency from the collector voltage to the high frequency are determined, and according to this determination, the collector voltage control.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明による進行波管の一実施例を示す全体
構成図である。この実施例は第1図から明らかなように
、電子銃(1)は陰41(2)#加速電極(3)。
FIG. 1 is an overall configuration diagram showing an embodiment of a traveling wave tube according to the present invention. In this embodiment, as is clear from FIG. 1, the electron gun (1) has a negative electrode 41 (2) and an accelerating electrode (3).

ウニネット電極(4)から成り生成した電子ビームと高
周波信号を相互作用させる遅波回蜂(5) 、相互作用
を終えたビームを捕集するコレクタ電極(6)、高周波
信号を人力する人力導体(8)、増幅された高周波を出
力する出力導体(9)、前記加速電@ (3)と前記遅
波回路(6)に電位を与える加速電極電源回路a01前
記コレクタ電$1(6)に電位を与えるコレクタ電源回
路Q力、前記遅波回路(6)に流れる電流を検出する遅
波回路電流検出器(2)、前記コレクタ電極(6)に流
れる電流を検出するコレクタ電流検出器(2)、前記遅
波回路電流検出器(2)と前記コレクタ電流検出器(至
)と前記出力導体(9)から出力された高周波電力(検
出器は図示せず。)とから進行波管の高周波電力への変
換効率を計算し1その良否を判定する効率判定手段α尋
、前記効率判定手段α4の出力からコレクタ電圧を決め
るコレクタ電圧決定手段(至)、前記コレクタ電圧決定
手段(至)に基づいて前記コレクタ電源回路onの電圧
を制御する電圧制御手段Qeから構成されている。
It consists of a Uninet electrode (4), a slow wave generator (5) that interacts the generated electron beam with a high-frequency signal, a collector electrode (6) that collects the beam after the interaction, and a human-powered conductor that manually generates the high-frequency signal. (8), an output conductor (9) that outputs an amplified high frequency wave, an accelerating electrode power supply circuit a01 that provides a potential to the accelerating current @ (3) and the slow wave circuit (6), and the collector voltage $1 (6); A collector power supply circuit Q power that provides a potential, a slow wave circuit current detector (2) that detects the current flowing in the slow wave circuit (6), and a collector current detector (2) that detects the current flowing in the collector electrode (6). ), the high frequency power of the traveling wave tube is generated from the slow wave circuit current detector (2), the collector current detector (to), and the high frequency power output from the output conductor (9) (the detector is not shown). Efficiency determining means α for calculating conversion efficiency to electric power and determining its acceptability, collector voltage determining means (to) determining a collector voltage from the output of said efficiency determining means α4, based on said collector voltage determining means (to); The voltage control means Qe controls the voltage of the collector power supply circuit ON.

第2図は第1図の実施例の主要な電気接続を示す回路図
である。図中、マイクロコンピュータ亜はCPU(財)
、メモリaS 、入力回路翰、出力回路(2)から成り
、前記遅波回路電流検出器側および前記コレクタ電流検
出器(2)の検出信号が人力されるアナログマルチプレ
フタ(支)、その出力をディジタμに変換するA/D変
換器(至)そして、その出力を前記入力回路(ホ)に入
力する。また前記出力回路(2)はデータラッチ(財)
、その出力をアナログに変換するD/A変換器(2)、
比較器−,ホトカプラ(財)、抵抗w、121゜サイリ
スタ(7)、ゲート電源Ovから成る前記電圧制御手段
Q・に接続され、昇圧トランス(2)と平滑用インダク
タ(至)からなるコレクタ電源回路(ロ)を制御する構
成である。
FIG. 2 is a circuit diagram showing the main electrical connections of the embodiment of FIG. In the diagram, microcomputer sub is CPU (Foundation)
, a memory aS, an input circuit, and an output circuit (2), and an analog multi-preverter (support) to which the detection signals of the slow-wave circuit current detector side and the collector current detector (2) are manually input; An A/D converter (to) converts it into a digital μ, and its output is input to the input circuit (e). In addition, the output circuit (2) is a data latch
, a D/A converter (2) that converts the output to analog;
A collector power supply consisting of a step-up transformer (2) and a smoothing inductor (to) is connected to the voltage control means Q consisting of a comparator, a photocoupler, a resistor w, a 121° thyristor (7), and a gate power supply Ov. This is a configuration for controlling the circuit (b).

次に上記実施例の動作を第8図と第4図を参照しながら
説明する。第8図はマイクロコンピュータQカのメモリ
Qlに記憶された進行波管の動作プログラムを示すフロ
ーチャートである。第4図はマイクロコンピュータαη
の指令によって生成されたコレクタ電圧の説明図である
Next, the operation of the above embodiment will be explained with reference to FIGS. 8 and 4. FIG. 8 is a flowchart showing the operating program for the traveling wave tube stored in the memory Ql of the microcomputer Q. Figure 4 shows the microcomputer αη
FIG. 2 is an explanatory diagram of a collector voltage generated by a command.

通常の動作によって電子銃(1)から放出された電子ビ
ームは遅波回路(5)の中を通過する間に、入力導体(
8)から導入された高周波信号と相互作用を行ない、電
子ビーム中の電子が有する運動エネルギを高周波エネル
ギーに変換する。すなわち高周波信号は増幅されて出力
導体(9)から出力される。この結果、電子ビームを形
成する電子の減速の度合は異なり速度変調を受けるなか
ら電子ビーム全体としては減速されて、コレクタ電極(
6)に捕集される。
During normal operation, the electron beam emitted from the electron gun (1) passes through the slow wave circuit (5) while passing through the input conductor (
8), and converts the kinetic energy of the electrons in the electron beam into high-frequency energy. That is, the high frequency signal is amplified and output from the output conductor (9). As a result, the degree of deceleration of the electrons forming the electron beam is different and the electron beam as a whole is decelerated because it is not subject to velocity modulation, and the collector electrode (
6) is collected.

従って、進行波管の動作条件が変化しても、その時の遅
波回路電流工aおよびコレクタ電流ICを遅波回路電流
検出器(2)およびコレクタ電流検出器斡で検出し、ア
ナログマルチプレフタ(2)t−aじて交互にへ4)変
換器(至)に入力し、ディジタ〃信号に変換する。ここ
では省略したが高周波出力Prfも同様にディジタμ信
号に変換する。ステップ−ではこれらの情報をマイクロ
コンピュータ(財)内にある入力回路に取り込み、メモ
’J DIに記憶された手順でCPU Qlが以下のス
テップを処理していく。ステップ−では式(1)で効率
を計算する。(但し1陰極(2)を加熱するヒータ電力
は無視した・)η=Prf/(Va・Ia+Vc4c)
  (1)次にステップ−では前回計算した効率η′と
比較しそ、今回の計算した効率ηが大きければステップ
−で前回のコレクタ電圧vC′と今回のコレクタ電圧v
cを比較する。VC)V(’ならばステップ顛で前回の
Vcに所定のΔVcを加え、VC<vC′ならばステッ
プIllで前回のVcから所定のΔVcを減じ、ステッ
プ(ロ)でVCを出力回路(2)から出力する。一方、
ステップ−において、η〈η′のときは、ステップ−で
vc′とVC’に比fllZシs Vc>Vc’ナラハ
ス?ツフ[、V((VC’ならばステップ@幻の処理を
同様に行ない、それぞれ、ステップ142で同じく出力
回路(2)から出力される。そして、ステップ圓で、動
作の終了を判定し、終了でなければ、ステップ−に戻り
同様の処理を繰り返し、終了と判定すればストップする
0以上テマイクロコンピュータaηのCPU(至)によ
る動作説明を終り、次に、出力回路(2)から以後の電
気回路の動作を説明する。データラッチ(2)でディジ
タμデータを保持し、Vム変換器(2)でアナログに変
換する。そして、このアナログ値と図には示してないが
昇圧トランス(至)の−次側に挿入した交流モニタ電圧
と比較して、等しくなればパμスを発生する比較器−と
抵抗(財)を通じてフォトカプラ(2)の入力に入り、
抵抗−とゲート電源0すを通じてサイリスタ員を駆動し
、昇圧トランス(至)と平滑用インダクターで所望のコ
レクタ電圧vcを得る。このコレクタ電圧は第4図に示
すように、サイリスタ(至)の点弧タイミングによって
、制御できる。
Therefore, even if the operating conditions of the traveling wave tube change, the slow wave circuit current a and the collector current IC at that time are detected by the slow wave circuit current detector (2) and the collector current detector (2), and the analog multiplexer ( 2) t - a are alternately input to 4) a converter (to) and converted into a digital signal. Although omitted here, the high frequency output Prf is similarly converted into a digital μ signal. In step -, this information is taken into the input circuit in the microcomputer (incorporated), and the CPU Ql processes the following steps according to the procedure stored in the memo'J DI. In step -, efficiency is calculated using equation (1). (However, the heater power for heating 1 cathode (2) is ignored.) η=Prf/(Va・Ia+Vc4c)
(1) Next, in step -, compare the efficiency η' calculated last time, and if the efficiency η calculated this time is large, in step -, the previous collector voltage vC' and the current collector voltage v
Compare c. VC) V(', then add a predetermined ΔVc to the previous Vc in step Sequence; if VC<vC', subtract a predetermined ΔVc from the previous Vc in step Ill; and in step (B), add VC to the output circuit (2). ).On the other hand,
In step -, when η<η', in step -, the comparison between vc' and VC' is fullZ s Vc>Vc'Narahas? If it is [, V((VC'), step @phantom processing is performed in the same way, and the output is outputted from the output circuit (2) at step 142. Then, in the step circle, the end of the operation is determined and the end is completed. If not, return to step - and repeat the same process, and if it is determined that it is finished, the explanation of the operation by the CPU (to) of the microcomputer aη is completed, and then the subsequent electricity is output from the output circuit (2). The operation of the circuit will be explained.The data latch (2) holds the digital μ data, and the VM converter (2) converts it to analog.Then, this analog value and the step-up transformer (not shown in the figure) are ) is compared with the AC monitor voltage inserted on the next side, and if they are equal, it enters the input of the photocoupler (2) through a comparator that generates a pass μ and a resistor.
A thyristor member is driven through a resistor and a gate power supply, and a desired collector voltage VC is obtained using a step-up transformer and a smoothing inductor. As shown in FIG. 4, this collector voltage can be controlled by the firing timing of the thyristor.

なお、上記実施例では、D/A変換器(2)でアナログ
に変換した直流電圧と、昇圧トランス(至)の−次側を
モニタした交流電圧を比較して1絶対値が等しくなった
ときにサイリスタ(7)を点弧するパルスを発生させる
比較器(至)を使用した例を示したが、データラッチ(
財)、 D/A変換器(イ)、比較器−の代りに、出力
回路(2)からサイリスタ(7)の点弧位相に相当する
ディジタy値をプリセッタブルカウンタ(図示せず)に
プリセットし、基準パルスジェネレータ(図示せず)の
パルスをカウントダウンしてプリセッタブルカウンタの
値がゼロになったときサイリスタ(1)の点弧用パルス
を発生する構成としてもよい。なお、この構成では昇圧
トランス(2)のゼロクロスの信号でプリセッタブルカ
ウンタをリセットしなければならない。
In the above embodiment, when the DC voltage converted into analog by the D/A converter (2) and the AC voltage monitored at the negative side of the step-up transformer (to) are compared, when the absolute values of 1 become equal. An example of using a comparator (to) that generates a pulse to fire the thyristor (7) was shown in Figure 2, but the data latch (
Instead of the D/A converter (a) and comparator, a digital y value corresponding to the firing phase of the thyristor (7) is preset from the output circuit (2) to a presettable counter (not shown). However, it may be configured to count down the pulses of a reference pulse generator (not shown) and generate a pulse for firing the thyristor (1) when the value of the presettable counter reaches zero. Note that in this configuration, the presettable counter must be reset by the zero-cross signal of the step-up transformer (2).

また、上記実施例では進行波管の場合について説明した
が、クライストロンやジャイラトロン等のあらゆる電子
ビーム管に利用することができ、上記実施例と同様の効
果を奏する。
Further, in the above embodiment, the case of a traveling wave tube has been described, but it can be used in any electron beam tube such as a klystron or a gyratron, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば遅波回路やコレクタに
流れる電流および増幅された高周波電力などから高周波
への変換効率を計算し、最も効率よく動作するコレクタ
電圧を得るような効率判定手段、コレクタ電圧決定手段
、電圧制御手段を設けたので、コレクタの発熱が少ない
ため冷却が容易でかつN、源容量が小さなものが得られ
る効果がある。
As described above, according to the present invention, efficiency determining means calculates the conversion efficiency to high frequency from the current flowing in the slow wave circuit or the collector, the amplified high frequency power, etc., and obtains the collector voltage that operates most efficiently. Since the collector voltage determining means and the voltage controlling means are provided, the collector generates less heat, so cooling is easy and the source capacity is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による進行波管の一実施例を示す全体
構成図、第2図はその電気接続を示す回路図、第8図は
その動作を示すフローチャート、第4図はその動作説明
用線図、第5図は従来の進行波管を示す全体構成図であ
る。 図において、(1)は電子銃、(5)は遅波回路、(6
)はコレクタ電極、@は遅波回路電流検出器、(2)は
コレクタ電流検出器、α◆は効率判定手段、(II9は
コレクタ電圧決定手段、αQは電圧制御手段、αηはマ
イクロコンピュータである。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is an overall configuration diagram showing an embodiment of a traveling wave tube according to the present invention, Fig. 2 is a circuit diagram showing its electrical connection, Fig. 8 is a flowchart showing its operation, and Fig. 4 is for explanation of its operation. FIG. 5 is an overall configuration diagram showing a conventional traveling wave tube. In the figure, (1) is an electron gun, (5) is a slow wave circuit, and (6) is an electron gun.
) is the collector electrode, @ is the slow wave circuit current detector, (2) is the collector current detector, α◆ is the efficiency determination means, (II9 is the collector voltage determination means, αQ is the voltage control means, and αη is the microcomputer. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)電子ビームを発生する電子銃、高周波の相互作用
が行なわれる遅波回路部、電子ビームを集束するための
磁界集束装置、電子ビームを捕集するためのコレクタ電
極、前記遅波回路部を流れる電流を検出する遅波回路電
流検出器、前記コレクタ電極に流れる電流を検出するコ
レクタ電流検出器、これらの電流検出器の検出信号と高
周波の出力から高周波への変換効率を判定する効率判定
手段、この効率判定手段の出力に基づき、前記コレクタ
電極に加える電圧を決定するコレクタ電圧決定手段、お
よび、このコレクタ電圧決定手段の出力に基づき、前記
コレクタ電極の電圧を制御する電圧制御手段を備えたこ
とを特徴とする進行波管。
(1) An electron gun that generates an electron beam, a slow-wave circuit section in which high-frequency interaction occurs, a magnetic field focusing device for focusing the electron beam, a collector electrode for collecting the electron beam, and the slow-wave circuit section a slow wave circuit current detector that detects the current flowing through the collector electrode, a collector current detector that detects the current flowing through the collector electrode, and an efficiency determination that determines the conversion efficiency from the detection signals of these current detectors and high frequency output to high frequency. means, collector voltage determining means for determining the voltage applied to the collector electrode based on the output of the efficiency determining means, and voltage control means for controlling the voltage of the collector electrode based on the output of the collector voltage determining means. A traveling wave tube characterized by:
(2)効率判定手段およびコレクタ電圧決定手段がマイ
クロ・コンピュータで実現されている特許請求の範囲第
1項記載の進行波管。
(2) The traveling wave tube according to claim 1, wherein the efficiency determining means and the collector voltage determining means are realized by a microcomputer.
JP387285A 1985-01-11 1985-01-11 Traveling-wave tube Granted JPS61163536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP387285A JPS61163536A (en) 1985-01-11 1985-01-11 Traveling-wave tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP387285A JPS61163536A (en) 1985-01-11 1985-01-11 Traveling-wave tube

Publications (2)

Publication Number Publication Date
JPS61163536A true JPS61163536A (en) 1986-07-24
JPH0435868B2 JPH0435868B2 (en) 1992-06-12

Family

ID=11569275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP387285A Granted JPS61163536A (en) 1985-01-11 1985-01-11 Traveling-wave tube

Country Status (1)

Country Link
JP (1) JPS61163536A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006089127A1 (en) * 2005-02-18 2006-08-24 Communication And Power Industries, Inc. Dynamic depressed collector (ddc)
JP2009140673A (en) * 2007-12-05 2009-06-25 Japan Atomic Energy Agency Beam terminating method and beam terminating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066363A (en) * 2016-12-08 2018-06-19 한국기술교육대학교 산학협력단 The vehicle's lateral controls and control methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006089127A1 (en) * 2005-02-18 2006-08-24 Communication And Power Industries, Inc. Dynamic depressed collector (ddc)
US7368874B2 (en) 2005-02-18 2008-05-06 Communications and Power Industries, Inc., Satcom Division Dynamic depressed collector
US7888873B2 (en) 2005-02-18 2011-02-15 Communications And Power Industries, Inc. Dynamic depressed collector
JP2009140673A (en) * 2007-12-05 2009-06-25 Japan Atomic Energy Agency Beam terminating method and beam terminating device

Also Published As

Publication number Publication date
JPH0435868B2 (en) 1992-06-12

Similar Documents

Publication Publication Date Title
JP5588875B2 (en) Phase shift type inverter circuit, X-ray high voltage apparatus, X-ray CT apparatus, and X-ray imaging apparatus using the same
JP3020766U (en) Electron generator for X-ray tube having cathode and electrode device for accelerating electrons emitted from cathode
US5602897A (en) High-voltage power supply for x-ray tubes
US20160126863A1 (en) Inverter device
US4933594A (en) Electron collector for electron tubes
JPS61163536A (en) Traveling-wave tube
Agafonov et al. Plasma heating by high-energy-content microsecond electron beam at the GOL-3-II facility
JP2001045761A (en) High voltage power supply for x-ray source
US20140049152A1 (en) Vacuum electron power tube
JPH0844446A (en) Method and device for tracking and controlling maximum power point of solar battery
JPS6394537A (en) Traveling wave tube device
Kanter et al. Electric field ionization of foil-excited Rydberg states of fast heavy ions
JPH11233298A (en) Power supply device and particle accelerator
JPH10295682A (en) High space resolution, high speed x-ray ct scanner
Dyke Field emission, a newly practical electron source
US3614515A (en) Crossed-field reentrant stream tubes having an improved drift space geometry
JPS6029200B2 (en) linear electron accelerator
JPH0712949A (en) Particle locus detector
JPS62291841A (en) High frequency generation device
JP2938166B2 (en) Neutral particle injector
JP6300312B2 (en) Traveling wave tube system
CN103390532A (en) Method for operating device used for generating microwave radiation
JPH0227773B2 (en) CHOKOSHUHADENSHIKAN
JP3412113B2 (en) Acceleration power supply for gyrotron
US2898508A (en) Charged-particle accelerator