JPS61163299A - Alloy plating device - Google Patents

Alloy plating device

Info

Publication number
JPS61163299A
JPS61163299A JP241985A JP241985A JPS61163299A JP S61163299 A JPS61163299 A JP S61163299A JP 241985 A JP241985 A JP 241985A JP 241985 A JP241985 A JP 241985A JP S61163299 A JPS61163299 A JP S61163299A
Authority
JP
Japan
Prior art keywords
cathode
anode
alloy
plating
plating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP241985A
Other languages
Japanese (ja)
Inventor
Morinobu Kondo
近藤 守信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATOOSEN KK
Chuo Seisakusho KK
Satosen Co Ltd
Original Assignee
SATOOSEN KK
Chuo Seisakusho KK
Satosen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATOOSEN KK, Chuo Seisakusho KK, Satosen Co Ltd filed Critical SATOOSEN KK
Priority to JP241985A priority Critical patent/JPS61163299A/en
Publication of JPS61163299A publication Critical patent/JPS61163299A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title device capable of keeping the composition of a plating bath and of a deposited alloy layer at a fixed value for many hours by connecting each metallic anode corresponding to the composition of the alloy and an insoluble anode respectively to each rectifier, and connecting the terminals of the negative electrodes collectively to the cathode of a material to be plated. CONSTITUTION:A plating bath 2 contg. plural kinds of metallic ions constituting the alloy components is charged into a plating tank 1, and a material 3 to be plated used as the cathode, metallic anodes 4 and 5 consisting of the plural kinds of metals, and an insoluble anode 6 are dipped into the plating bath 2. In such an alloy plating device, the anodes 4, 5, and 6 are connected respec tively to the anodic output terminals of constant current regulation type rectifiers 7, 8, and 9, and the terminals on the cathode side are connected collec tively to the cathode 3. An overall regulator 10 is further provided, and the share rate of the electric current is set by a potentiometer 11. Consequently, the cathode current efficiency to the alloy components is made higher than the anode current efficiency, and the concns. of the alloy components in the plating bath 2 can be kept constant at all times.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複数の金属成分を含有する鍍金浴より、破波金
物表面に合金鍍金層を形成させる電気鍍金装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electroplating apparatus for forming an alloy plating layer on the surface of a broken metal object using a plating bath containing a plurality of metal components.

(従来の技術) 複数の金属成分を含有する鍍金浴に被鍍金物を浸漬し、
電気鍍金法に依で合金鍍金層を形成させる事は既に実用
化されて居る。鍍金に依て得られた合金鍍金層は、合金
を形成する複数の金属成分が常に一定に保たれる事が最
も重要である。其の為には鍍金浴中での該複数の金属成
分の夫々の濃度を常に一定に維持する事が絶対必要な条
件となる。
(Prior art) An object to be plated is immersed in a plating bath containing multiple metal components,
Forming an alloy plating layer by electroplating has already been put into practical use. In the alloy plating layer obtained by plating, it is most important that the plurality of metal components forming the alloy are always kept constant. For this purpose, it is an absolutely necessary condition to always maintain a constant concentration of each of the plurality of metal components in the plating bath.

従来は一つの手段として、合金鍍金層の分析を高頻度で
行い、個々の金属成分の減少分を金属塩の形で補給する
方法が採られて居た。然し乍ら此の方法は分析に多大の
労力を要するのみでなく、補給する形態が金属塩であっ
て純粋金属ではないので、補給する毎に対イオンたる陰
イオンが浴中に蓄積するに到り、浴のPH値、電導度等
を狂はしめる結果鍍金浴としての安定性に影響を及ぼす
と云う欠点が存する。
Conventionally, one method has been to frequently analyze the alloy plating layer and replenish the decrease in individual metal components in the form of metal salts. However, this method not only requires a great deal of labor for analysis, but also because the replenishing form is a metal salt and not a pure metal, anions as counterions accumulate in the bath each time it is replenished. There is a drawback that the stability of the plating bath is affected as a result of disturbing the pH value, electrical conductivity, etc. of the bath.

又他の手段としては、合金を形成する複数の金属夫々の
単体を独立の陽極とし、該独立の陽極に夫々別個の各別
の直流電源の正極を接続し、各々の直流電源の負極は一
括して被鍍金物に接続し、各直流電源の電流を調整して
一定組成の合金層を被鍍金物」二に形成セんとする方法
がある。此の方法に於ては金属成分は陽極から金属イオ
ンの形で補給されるので、浴中に陰イオンが蓄積すると
云う難点はないが、各々の金属の陽極に於る溶出量即ち
陽極電流効率と、陰極に於る析出量即ち陰極電流効率と
が必ずしも一致しないので、やが゛(は浴中の各金属成
分夫々の濃度が許容範囲を逸脱して仕舞い、正常なる鍍
金1梨業に支障を来す結果となる。
Another method is to use each of the plurality of metals forming the alloy as independent anodes, connect the positive electrodes of separate DC power sources to the independent anodes, and connect the negative electrodes of each DC power source together. There is a method in which an alloy layer of a constant composition is formed on the object to be plated by connecting it to the object to be plated and adjusting the current of each DC power source. In this method, the metal components are supplied from the anode in the form of metal ions, so there is no problem with the accumulation of anions in the bath, but the amount of elution of each metal at the anode, that is, the anode current efficiency Since the amount of precipitation at the cathode, that is, the cathode current efficiency, does not necessarily match, the concentration of each metal component in the bath will eventually exceed the allowable range, which will interfere with normal plating operations. This results in

(発明が解決しようとする問題点) 」二連の如〈従来の合金鍍金法に於ては、長時間に亘っ
て鍍金浴の組成を−・定に維持する事が不可能な為、破
波金物十に析出される合金層の成分を長間に亘って−・
定に保持する事が出来ないと云う問題があった。
(Problems to be Solved by the Invention) Two series: In the conventional alloy plating method, it is impossible to maintain the composition of the plating bath constant for a long period of time, resulting in failure. The components of the alloy layer deposited on wave metal products have been examined over a long period of time.
There was a problem that it was not possible to maintain a constant level.

(問題点を解決する為の1段) 本発明は斯る問題点を払拭すべく完成されたものである
(One Step to Solve the Problems) The present invention has been completed in order to eliminate such problems.

本発明は殆どの金属が」1.の電解に際し陽極電流効率
より陰極電流効率の方が低いと云う点に着目してなされ
たもので、鍍金浴中に陰極として被鍍金物を浸漬すると
共に、合金を形成する各成分金属、でなる複数個の陽極
と不溶性陽極とを吊下し、之等陽極の人々に各別の直流
電源装置の正極出力端子を夫々接続し、各別の直流電源
装置の負極出力端子は−・期して」〕記陰極に接続し、
陰極に於て析出する事に依で減少した公文けの金属成分
を夫々の成分の陽極より陽極溶解させる事に依で、浴中
の金属成分の濃度を常に一定に維持せんとするものであ
る。
The present invention is applicable to most metals.1. This method was developed by focusing on the fact that the cathode current efficiency is lower than the anode current efficiency during electrolysis of the plating bath. Suspend a plurality of anodes and an insoluble anode, connect the positive output terminals of each separate DC power supply to the anodes, respectively, and connect the negative output terminal of each separate DC power supply with -. ]Connected to the recording cathode,
The purpose is to maintain the concentration of metal components in the bath at a constant level by dissolving the metal components, which have decreased due to precipitation at the cathode, from the anode of each component. .

(実施例) 次に本発明を図示の実施例に依で詳細に説明する。(Example) The present invention will now be explained in detail with reference to illustrated embodiments.

第1図に於て、(11は鍍金槽、(2)はAイオン及B
イオンの二種の金属成分を含む鍍金浴、(3)は該浴中
に浸漬されA、  B、雨量金属を成分とする合金層を
析出させる被鍍金物、(4)は金属Aで成る陽極、(5
)は金属Bで成る陽極であり、(6)は不溶性材料例え
ば白金、黒鉛等の不溶性陽極である。(7)、(8)、
(9)は何れも可−M整出力の定電流出力の整流器で、
2等整流器の正極出力1瑞子は夫々上記陽極(4)、(
5)、(6)に接続され、負極出力端子は一括されて被
鍍金物(3)に接続されて居る。尚、通常鍍金槽に附属
するj濾過機、熱交換器等は図示を省略しである整流器
(7)の電流即ら金属への陽極(4)の電流をIA、整
流器(8)の電流即ち金属Bの陽極(5)の電流をI8
、整流器(9)の電流即ち不溶性陽極(6)の電流を1
8とすれば、破波金物即ち陰極に流れる電流■は当然の
事乍ら T=IA−量1111−T。
In Figure 1, (11 is the plating tank, (2) is the A ion and B
a plating bath containing two metal components of ions; (3) an object to be plated that is immersed in the bath to deposit an alloy layer containing metals A and B; (4) an anode made of metal A; ,(5
) is an anode made of metal B, and (6) is an insoluble anode made of an insoluble material such as platinum or graphite. (7), (8),
(9) are all constant current output rectifiers with an M rectification output,
The positive electrode output 1 of the secondary rectifier is the anode (4), (
5) and (6), and the negative output terminals are collectively connected to the object to be plated (3). Note that the filter, heat exchanger, etc. normally attached to the plating tank are not shown. The current of the anode (5) of metal B is I8
, the current of the rectifier (9), that is, the current of the insoluble anode (6), is 1
8, the current (2) flowing to the breaking metal, that is, the cathode, is naturally T=IA-quantity 1111-T.

である。It is.

陰極電流Iは被鍍金物(3)の表面積と当該鍍金浴(2
)の適正電流密度より定められるが、前述した様に殆ど
の金属の場合陽極電流効率より陰極電流効率が低いので
、陰極電流1は両溶解陽極電流の和(IA−1’lB)
より大きくなければならない。
The cathode current I depends on the surface area of the object to be plated (3) and the plating bath (2).
), but as mentioned above, for most metals, the cathode current efficiency is lower than the anode current efficiency, so the cathode current 1 is the sum of both dissolving anode currents (IA-1'lB)
Must be bigger.

即ち I>T、+I□ 従て■。〉○となり、不溶性陽極(6)には必ず電流を
流ず必要がある。
That is, I>T, +I□ Therefore ■. 〉○, so no current must be passed through the insoluble anode (6).

所で陰極電流Iに依で被鍍金物(3)上に析出するA、
B夫々の金属の量はIに比例するので、浴(2)内の両
金属夫々のイオン濃度を一定に保つ為には、再陽極(4
)、(5)より陽極溶解させるA、B両金属量もIに比
例させる必要があり T 、−KBT となる。
At this point, A deposits on the object to be plated (3) due to the cathode current I,
Since the amount of each metal B is proportional to I, in order to keep the ion concentration of each metal in the bath (2) constant, it is necessary to re-anode (4).
), (5), it is necessary to make the amounts of both metals A and B dissolved in the anode proportional to I, resulting in T and -KBT.

従ってIH= l  (Ia+rい = (1−KA−KB)T −KNI  (KN= l  KA  KB)となり、
三つの陽極電流は何れも陰極電流■に比例する値となる
Therefore, IH= l (Ia + r = (1-KA-KB)T - KNI (KN= l KA KB),
All three anode currents have values proportional to the cathode current ■.

さて比例常数KA、KBは陽極金属A、Bの種類、浴(
2)の組成より経験的に定まるものである。
Now, the proportional constants KA and KB are the types of anode metals A and B, and the bath (
It is determined empirically from the composition of 2).

従で被鍍金物(3)の表面積に応じた陰極電流■を流す
に当り、整流器(7)、(8)、(9)の電流を夫々K
AI、KBl、KN■に設定すれば、浴(2)内の両金
属A、Bのイオン濃度は鍍金作業の経過に不拘常に一定
に保つ事が出来、被it金物上に析出する合金層内の1
11j金属成分比も常に一定に保持する事が可能とする
When passing the cathode current (■) corresponding to the surface area of the object to be plated (3), the currents of the rectifiers (7), (8), and (9) are adjusted to K, respectively.
By setting AI, KBl, and KN■, the ion concentrations of both metals A and B in the bath (2) can be kept constant regardless of the progress of the plating process, and the ion concentration of the metals A and B in the bath (2) can be kept constant regardless of the progress of the plating process, and the ion concentration of the metals A and B in the bath (2) can be kept constant regardless of the progress of the plating process. 1
11j It is also possible to always keep the metal component ratio constant.

本発明に於′Cは一二台の整流器(7)、(8)、(9
)に共通の総合調整器(10)を設+J、該総合調整器
(10)に属する一つの設定器(11)を操作して、陰
極(3)への導線内に挿入された陰極型/I!iδl 
(+21のlit示値を所望4ff Iに設定すれば、
該総合調斬器00)の機能に依り、王台の出力電流が自
動的に夫々に、、1.に、l、K、1に設定されるもの
である。以下第2図に於て上記総合調整器の一例を説明
する。
In the present invention, 'C' is one or two rectifiers (7), (8), (9).
) A common general regulator (10) is installed in +J, and one setter (11) belonging to the general regulator (10) is operated to set the cathode type / I! iδl
(If you set the lit value of +21 to the desired 4ff I,
Depending on the function of the comprehensive adjustment device 00), the output current of the king dai is automatically adjusted to 1. , l, K, and 1 are set. An example of the above general regulator will be explained below with reference to FIG.

第2図に於ては第1図と均等部分に均等符号を附し、(
I3)は定電圧直流電源、TIOは該定電圧直流電源0
3)に接続されたポテンショメーターであって、第1図
に於る陰極電流■を設定する設定器である。041,0
51、(I6)は何れもポテンショメーターで前記ポテ
ンショメーター(Iυの分圧摺動端子07)とコンモン
端子θ8)との間に並列に接続さ−Uて居る。
In Figure 2, parts equivalent to those in Figure 1 are given equivalent symbols, and (
I3) is a constant voltage DC power supply, TIO is the constant voltage DC power supply 0
3) is a potentiometer connected to 3), which is a setting device for setting the cathode current 2 in FIG. 041,0
51 and (I6) are both potentiometers connected in parallel between the potentiometer (Iυ partial pressure sliding terminal 07) and the common terminal θ8).

之等311Mのポテンショメーター分圧摺動端7−(1
9)、(20)、(21)は、人々定電流整hfE器(
7)、(8)、(9)に対して比例制御アナログ入力端
子に接続されて居る。
311M potentiometer partial pressure sliding end 7-(1
9), (20), and (21) are people's constant current rectifier hfE (
7), (8), and (9) are connected to proportional control analog input terminals.

今ボテンシジメーターθυの出力電圧即ち分圧摺動端子
(17)之−二1ンモン端子(18)との間の電圧をV
sとすわば、定電流整流器(7)、(8)、(9)への
比例制御入力は、ポテンショメーター(141,051
、(16)に依で夫々C8■5、Cl1V1、CIIV
、となる(CAcB、ONは比例常数)。従で整流器(
7)、(8)、(9)の出力電流は 夫々 I n = k CA V 5 1、− k CB V s   (k一定数)IN−k
CNV3 となり、当然 [A−1−11I+IN= 1 であるから 1 、= KAI I n ”’ K B1 1 ++ −K N 1 となる。比例常数I(いKB、、KN、は夫々ポテンシ
ョメーター(14)、(15)、(10の位置に依で任
意の値と!1〜る事が可能な事は云う迄もない。又陰極
電流■はポテンショメーター(II)に依で調整可能な
る事は明らかである。
Now, the output voltage of the potentiometer θυ, that is, the voltage between the partial pressure sliding terminal (17) and the 21mm terminal (18), is V.
s and the proportional control inputs to the constant current rectifiers (7), (8), and (9) are the potentiometers (141,051
, (16), C8■5, Cl1V1, CIIV, respectively.
, (CAcB, ON are proportional constants). Rectifier (
The output currents of 7), (8), and (9) are respectively I n = k CA V 5 1, - k CB V s (k constant number) IN - k
CNV3, and naturally [A-1-11I+IN=1, so 1, = KAI I n ''' K B1 1 ++ - K N 1.The proportionality constant I (KB, KN, respectively, is the potentiometer (14) , (15), (It goes without saying that it is possible to set any value from !1 depending on the position of 10. Also, it is clear that the cathode current ■ can be adjusted depending on the potentiometer (II). be.

総合調整器00)としては第2図構成に限るものでなく
任意に構成し得るものである。
The general regulator 00) is not limited to the configuration shown in FIG. 2, but can be configured as desired.

第3図は総合調整器00)の別の実施例を示すもので、
第1図と均等部分には均等符号を附しである。Qυはマ
イクロプロセッサ、031及びQoは夫々ROM及びR
AMX(251は入カポ−1・、061、(271,、
Q8)はアナログ出力ボートであって、いずれもノ(通
パスラインに接続され、マイクロ:1ンピユータシステ
ムを構成する。I291はキーボード、CI[llは設
定入力信号であって、夫々入力ボート(251に接続さ
れる。ROM(23)にはキーボード(291より入力
された比例定数C9、CB % (”/ llをRA 
Mに書き込み、設定入力信号00)のデータを読込んで
CA、CB、CNを夫々掛は合わせ、アナログ出力ボー
ト(2G+、(2力、い)に出力するプログラムが書き
込んである。アナログ出力ボート(26)、(2η、(
28)の出力は夫々定電流整流器(7)、(8)、(9
)に対して比例制御アナログ入力として供給されている
。従って設定入力信号のデータをV(d) Sとすれば整流器(7)、(8)、(9)の出力電流は
前記と同様夫々 IA=kCAV、 −KAI IH=kC,Vs=KBI IN=kCNVS =KN1 となる。比例定数■(いに6、KNは夫々キーボー F
 I291からの入力により任意の値とすることが可能
なことは言うまでもなく、陰極電流Iが設定入力信号0
0)のデータにより調整可能なことは明らかである。
FIG. 3 shows another embodiment of the general regulator 00).
Parts equivalent to those in FIG. 1 are given equivalent symbols. Qυ is a microprocessor, 031 and Qo are ROM and R, respectively.
AMX (251 is input capo-1, 061, (271,,
Q8) is an analog output port, and both are connected to the pass line and constitute a micro:1 computer system.I291 is a keyboard, CI[ll is a setting input signal, and each input port ( 251.The ROM (23) stores the proportionality constant C9, CB% (”/ll, input from the keyboard (291) in the RA
A program has been written to write to M, read the data of setting input signal 00), multiply CA, CB, and CN respectively, and output to the analog output port (2G+, (2 power, I). 26), (2η, (
The outputs of 28) are connected to constant current rectifiers (7), (8), and (9), respectively.
) is supplied as a proportional control analog input. Therefore, if the data of the setting input signal is V(d)S, the output currents of the rectifiers (7), (8), and (9) are respectively IA=kCAV, -KAI IH=kC, Vs=KBI IN= kCNVS=KN1. Constant of proportionality ■ (Ini 6 and KN are respectively keyboard F
It goes without saying that the cathode current I can be set to any value by inputting it from I291.
It is clear that it can be adjusted by the data of 0).

なお、設定入力信号00)としてデジタルスイッチを使
用すれば、デジタルスイッチの操作により陰極電流Iが
調整できるわけであるが、ここに被鍍金物の表面積に相
当するデータを入力し、演算機能を附加しておくことに
より定電流密度での自動鍍金処理も可能となるものであ
る。
If a digital switch is used as the setting input signal 00), the cathode current I can be adjusted by operating the digital switch, but it is also possible to input data corresponding to the surface area of the object to be coated and add a calculation function. By doing so, automatic plating treatment at constant current density becomes possible.

(効 果) 本発明に依れば合金成分の複数個の金属の陽極に、各別
の定電流調整型整流器を配属せしめると共に、陽極電流
効率と陰極電流効率との差に該当する電流を不溶性陽極
より別個の定電流調整型整流器から供給し、各陽極電流
の分担率を任意に選定する事が出来るので、各金属成分
毎に陰極での析出量と見合う量を陽極から補給する事が
出来るので、浴す1の各金属イオンの濃度を常に一定に
保持し、陰極に析出した合金の組成を常時一定に維持す
る事が出来る。然も各整流器の出力電流の総和即ち陰極
電流は、各陽極電流の分担率を一定に保ちつつ一つの設
定器で關整する事が出来るので、被鍍金物の表面積が異
った場合の電流調整も極めて容易である。
(Effects) According to the present invention, a separate constant current regulating rectifier is assigned to each of the anodes of a plurality of metals of the alloy components, and the current corresponding to the difference between the anode current efficiency and the cathode current efficiency is insoluble. It is supplied from a constant current adjustable rectifier separate from the anode, and the sharing ratio of each anode current can be arbitrarily selected, so it is possible to replenish from the anode an amount commensurate with the amount of precipitation at the cathode for each metal component. Therefore, the concentration of each metal ion in the bath 1 can be kept constant at all times, and the composition of the alloy deposited on the cathode can be kept constant at all times. However, since the sum of the output currents of each rectifier, that is, the cathode current, can be adjusted with a single setting device while keeping the sharing ratio of each anode current constant, the current can be adjusted even when the surface area of the plated object is different. Adjustment is also extremely easy.

尚、以−には二元合金を対象として説明したが、三元以
上の合金に対しても容易に本発明を実施し得る事は明ら
かである。
It should be noted that although the explanation has been given below with reference to binary alloys, it is clear that the present invention can be easily implemented for ternary or higher alloys.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明合金鍍金装置の一実施例を示し、第21
88!I及びm3図は第1図の総合調整器の互いに異る
実施例を夫々示すものである。 1・・・鍍金槽、2・・・浴、3・・・被鍍金物4.5
・・・相互に異る種類の金属陽極、6・・・不溶性陽極 7.8.9・・・定電流調整型整流器 10・・・総合調整器 11・・・ポテンショメーター(陰極電流調整用)13
・・・定電圧直流電源 14.15.16・・・ポテンショメーター(電流分担
率設定用) 22・・・マイクロプロセッサ 25・・・入力ボート 2G、27.2B・・・アナログ出力ボート29・・・
キーボード 箋2図 手続補正書(自発)
FIG. 1 shows an embodiment of the alloy plating apparatus of the present invention.
88! Figures I and M3 show different embodiments of the general regulator of Figure 1, respectively. 1... plating tank, 2... bath, 3... object to be plated 4.5
... Different types of metal anodes, 6... Insoluble anodes 7.8.9... Constant current adjustable rectifier 10... Comprehensive regulator 11... Potentiometer (for adjusting cathode current) 13
...Constant voltage DC power supply 14.15.16...Potentiometer (for setting current sharing ratio) 22...Microprocessor 25...Input boat 2G, 27.2B...Analog output boat 29...
Keyboard paper 2 diagram procedure amendment form (voluntary)

Claims (1)

【特許請求の範囲】[Claims] 合金成分をなす複数種類の金属イオンを含む鍍金浴と、
該浴に浸漬された被鍍金物と、該複数種類の各々の金属
からなる陽極及び不溶性陽極と、正極端子が之等陽極に
夫々接続され負極端子が一括されて前記被鍍金物に接続
される複数台の定電流調整型整流器と、該複数台の整流
器の出力電流の総和値を調整する一個の調整器と、各整
流器の電分担率を設定する各別の調整器とより成る合金
鍍金装置。
a plating bath containing multiple types of metal ions forming alloy components;
The object to be plated is immersed in the bath, the anode and the insoluble anode made of each of the plurality of metals, the positive terminals are connected to the anodes respectively, and the negative terminals are collectively connected to the object to be plated. An alloy plating device comprising a plurality of constant current adjustable rectifiers, one regulator that adjusts the sum of output currents of the plurality of rectifiers, and separate regulators that set the current share of each rectifier. .
JP241985A 1985-01-10 1985-01-10 Alloy plating device Pending JPS61163299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP241985A JPS61163299A (en) 1985-01-10 1985-01-10 Alloy plating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP241985A JPS61163299A (en) 1985-01-10 1985-01-10 Alloy plating device

Publications (1)

Publication Number Publication Date
JPS61163299A true JPS61163299A (en) 1986-07-23

Family

ID=11528727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP241985A Pending JPS61163299A (en) 1985-01-10 1985-01-10 Alloy plating device

Country Status (1)

Country Link
JP (1) JPS61163299A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132799A (en) * 1991-06-25 1993-05-28 Internatl Business Mach Corp <Ibm> Electroplating method and apparatus therefor
KR100516484B1 (en) * 2002-01-17 2005-09-23 주식회사 케이피티 Plating apparatus having a plurality of power supply and plating method using the same
JP2010047792A (en) * 2008-08-20 2010-03-04 Chuo Seisakusho Ltd Plating apparatus with power failure compensation function
JP2012504192A (en) * 2008-09-29 2012-02-16 ウイリアム・ディー.・ハースト Alloy coating apparatus and metal riding method
CN112981515A (en) * 2021-05-06 2021-06-18 四川英创力电子科技股份有限公司 Current regulation and control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132799A (en) * 1991-06-25 1993-05-28 Internatl Business Mach Corp <Ibm> Electroplating method and apparatus therefor
KR100516484B1 (en) * 2002-01-17 2005-09-23 주식회사 케이피티 Plating apparatus having a plurality of power supply and plating method using the same
JP2010047792A (en) * 2008-08-20 2010-03-04 Chuo Seisakusho Ltd Plating apparatus with power failure compensation function
JP2012504192A (en) * 2008-09-29 2012-02-16 ウイリアム・ディー.・ハースト Alloy coating apparatus and metal riding method
CN112981515A (en) * 2021-05-06 2021-06-18 四川英创力电子科技股份有限公司 Current regulation and control method

Similar Documents

Publication Publication Date Title
CA1277370C (en) Method of measuring the effective inhibitor concentration during a deposition of metal from aqueous electrolytes and an apparatus therefor
US4324621A (en) Method and apparatus for controlling the quality of electrolytes
US3317410A (en) Agitation system for electrodeposition of magnetic alloys
US5173170A (en) Process for electroplating metals
US5489368A (en) Insoluble electrode structural material
Ettel et al. Electrowinning copper at high current densities
JPS61163299A (en) Alloy plating device
Glasstone The limiting current density in the electrodeposition of noble metals
KR100558129B1 (en) Method and apparatus for regulating the concentration of substances in electrolytes
GB2041408A (en) Electroforming system including an electrolyzer for maintaining the ionic concentration of metal in the electrolyte
JPS6224520B2 (en)
O'Keefe et al. Calculation of mass transfer coefficients in metal deposition using electrochemical tracer techniques
JPH01100291A (en) Chromium plating method
JPH0625883A (en) Electrode and method for measuring uniformity ratio
Kireev et al. Electrodeposition of nickel coatings from acetate-chloride electrolyte using galvanostatic pulse electrolysis
JPS58171595A (en) Electrolytic treatment installation
JPH05502476A (en) How to recover silver from photographic fixer
CA1174200A (en) Method and apparatus for controlling the quality of zinc sulfate electrolyte
JPH0233800B2 (en) RENZOKUDENKIMETSUKINIOKERUMETSUKIDENRYUSEIGYOHOHO
JPS5881994A (en) Continuous process for electrodepositing alloy on continuous metal material
EP0058506A1 (en) Bipolar refining of lead
JPH0242911B2 (en)
Smith Electrorefining Copper at High Current Densities
JP3267875B2 (en) Continuous electroplating method for steel sheet
JPH02310397A (en) Apparatus for reducing loss of lead and lead alloy electrode in chromium electroplating bath