JPS61163264A - Formation of oxide film of platinum group metal - Google Patents

Formation of oxide film of platinum group metal

Info

Publication number
JPS61163264A
JPS61163264A JP306085A JP306085A JPS61163264A JP S61163264 A JPS61163264 A JP S61163264A JP 306085 A JP306085 A JP 306085A JP 306085 A JP306085 A JP 306085A JP S61163264 A JPS61163264 A JP S61163264A
Authority
JP
Japan
Prior art keywords
ions
platinum group
oxide film
ion
group metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP306085A
Other languages
Japanese (ja)
Inventor
Keiji Tsukada
啓二 塚田
Takuya Maruizumi
丸泉 琢也
Hiroyuki Miyagi
宮城 宏行
Teruaki Kobayashi
映章 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP306085A priority Critical patent/JPS61163264A/en
Priority to DK9886A priority patent/DK9886A/en
Priority to SU864013137A priority patent/SU1581217A3/en
Priority to DE19863600575 priority patent/DE3600575A1/en
Priority to DD28610686A priority patent/DD261786A5/en
Publication of JPS61163264A publication Critical patent/JPS61163264A/en
Priority to SU864028493A priority patent/SU1577697A3/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

PURPOSE:To form the oxide film of the platinum group metal itself with good reproducibility and controllability on the surface layer of said metal by driving oxygen ions by an ion implantation method to the platinum group metal at prescribed acceleration energy to implant the ions to the concn. of a prescribed value or above. CONSTITUTION:O<+> ions are formed by the ionization of O2 by an ion source 1. The ions are passed through an ion lead-out electrode 2, a separating electromagnet 3 and a slit 4 and are thus made into the O<+> ion alone. The ions are then focused by a quadruple lens 6 at the acceleration energy accelerated to several keV-several hundreds keV by an ion acceleration pipe 5. The focused O<+> ions scan, for example, Pt10 of the platinum group metal via a scanning electrode 7 and a deflecting electrode 8 for the uniform implantation of the O<+> ions to the surface of the Pt10. The oxide film having >=10atom% O<+> ion concn. on the surface of the Pt10 is formed. The Pt10 is then taken out into the air and is heat-treated in an electric furnace in which an O2 atmosphere is maintained. The platinum group metal is preferably Ir, Rh, Ru and Pd in addition to Pt.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、白金族金属の酸化膜形成法に関し、特に酸化
しにくい白金族の金属にイオン注入法により、表面層に
酸化膜を形成するのに好適な白金族金属の酸化膜形成法
に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for forming an oxide film on platinum group metals, and in particular, a method for forming an oxide film on the surface layer of platinum group metals that are difficult to oxidize by ion implantation. The present invention relates to a method for forming an oxide film of a platinum group metal suitable for.

〔発明の背景〕[Background of the invention]

従来、白金族の金属に酸化膜を形成する方法として種々
知られているが、例えば、K 、 K 1noshit
a、 M、 J 、 Madou r E lectr
ochemicai Measuerments on
 Pt、 Ir、and Ti 0xides as 
p HProbesJ J 、Electrochem
、 Soc、 vol 131.No5 1984゜P
、 1089〜1094には、白金(Pt )に酸化膜
を形成する方法が記載されている。この方法では、硝酸
ナトリウム(Na N O3)と塩化第二白金ナトリウ
ム(N a 2 P t C1B )の水溶液に材料の
白金(Pt)を浸した後に、500〜550℃の空気雰
囲気中で熱処理を行う、この作業を数回繰り返すことに
より、白金(Pt )金属の表面に酸化膜を形成してい
る。
Conventionally, various methods have been known for forming oxide films on platinum group metals.
a, M, J, Madour E lectr
chemicai Measurements on
Pt, Ir, and Ti oxides as
p H Probes J J , Electrochem
, Soc, vol 131. No5 1984゜P
, 1089-1094 describes a method for forming an oxide film on platinum (Pt). In this method, the material platinum (Pt) is immersed in an aqueous solution of sodium nitrate (NaNO3) and sodium platinum chloride (Na2PtC1B), and then heat treated in an air atmosphere at 500 to 550°C. By repeating this process several times, an oxide film is formed on the surface of the platinum (Pt) metal.

このように、酸化しにくい白金族金属に酸化膜を作るこ
とは、複雑な処理行程が必要であったり、生成する酸化
膜の膜厚を制御しにくいなどの問題があった。
As described above, creating an oxide film on a platinum group metal that is difficult to oxidize has problems such as requiring complicated processing steps and making it difficult to control the thickness of the formed oxide film.

また、U 、 B ernabai 、他r Corr
osion  S ci、 J20.19(1980)
には、金属材料として合金鋼の耐酸化性の研究が記載さ
れている。この研究では、金属表面にイオン注入法によ
って打ち込んだ元素を酸素と強く結合させて、酸化物を
作り、それを金属内部への酸素の拡散を防ぐバリヤーと
して働かせ、金属の耐酸化性を高めている。しかし、作
られた表面層の酸化物は、金属元素の酸化膜そのもので
はなく注入した元素の酸化物であり、白金族の金属自身
の表面を酸化させるものではなり)。
Also, U, Bernabai, et al. Corr.
osion Sci, J20.19 (1980)
describes a study of the oxidation resistance of alloy steel as a metallic material. In this research, elements implanted into the metal surface using ion implantation are strongly combined with oxygen to create an oxide that acts as a barrier to prevent oxygen from diffusing into the metal, increasing the metal's oxidation resistance. There is. However, the oxide in the surface layer that is created is not the oxide film of the metal element itself, but the oxide of the implanted element, and does not oxidize the surface of the platinum group metal itself.

これまでは、元来酸化しにくい安定な物質である白金族
金属には、耐酸化性の改善などは不必要であったが、最
近、白金族金属の酸化物が、電気化学の分野における化
学マイクロセンサのpH電電極材料様機能性物質電気伝
導性の物質表面に結合させた化学修飾電極などに対して
注目されてきた。これにより、表面層に制御性、再現性
良く酸化膜を形成できる方法の実現が強く期待されてい
た。
Until now, platinum group metals, which are stable substances that are difficult to oxidize, did not require improvements in oxidation resistance, but recently platinum group metal oxides have been used in electrochemistry. Functional materials such as pH electrode materials for microsensors Chemically modified electrodes bonded to the surface of electrically conductive materials have been attracting attention. As a result, there were strong expectations for the realization of a method that could form an oxide film on the surface layer with good controllability and reproducibility.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、このような従来の問題を解決し、酸化
しにくい白金族金属の表面層に、金属自身の酸化膜を再
現性および制御性良く形成することのできる白金族金属
の酸化膜形成法を提供することにある。
The purpose of the present invention is to solve such conventional problems and to provide an oxide film of a platinum group metal that can form an oxide film of the metal itself on the surface layer of a platinum group metal that is difficult to oxidize with good reproducibility and controllability. The objective is to provide a formation method.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明の白金族金属の酸化膜
形成法は、イオン源部、イオン加速部を備え、抽出した
元素イオンを加速して材料中に打ち込むイオン注入法に
おいて、上記材料が白金族金属であるとき、上記イオン
源を酸素にし、上記イオン加速部での加速エネルギーを
数K ’e V〜数百KeVにして、金属表面での酸素
イオンの濃度が10M子%以上である酸化膜を形成する
ことに特徴がある。
In order to achieve the above object, the platinum group metal oxide film forming method of the present invention includes an ion source section and an ion accelerating section, and an ion implantation method in which extracted elemental ions are accelerated and implanted into the material. When the metal is a platinum group metal, the ion source is oxygen, the acceleration energy in the ion accelerator is several K'eV to several hundred KeV, and the concentration of oxygen ions on the metal surface is 10M% or more. It is characterized by the formation of an oxide film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す白金(PL)に酸素
イオンを注入するシステム構成図である。
FIG. 1 is a block diagram of a system for implanting oxygen ions into platinum (PL), showing one embodiment of the present invention.

第1図において、1はイオン源、2はイオン引出し電極
、3は分離電磁石、4はスリン1へ、5はイオン加速管
、6は四極レンズ、7は走査電極、8ば偏向電極、9は
サンプルホルダー、10は白金(Pt )である。なお
、図示するシステムは、不純物をイオン化し、静電的に
加速して□、半導体などの固体表面に不純物を注入する
非平衡低温プロセスを用いた半導体製造用のイオン注入
装置の一般的な構成である。また、システム全体を真空
系に構成している。
In Fig. 1, 1 is an ion source, 2 is an ion extraction electrode, 3 is a separation electromagnet, 4 is to Surin 1, 5 is an ion accelerating tube, 6 is a quadrupole lens, 7 is a scanning electrode, 8 is a deflection electrode, and 9 is a deflection electrode. The sample holder 10 is platinum (Pt). The system shown in the diagram is a general configuration of an ion implantation device for semiconductor manufacturing using a nonequilibrium low-temperature process in which impurities are ionized, electrostatically accelerated, and impurities are implanted into the surface of a solid such as a semiconductor. It is. Additionally, the entire system is configured as a vacuum system.

酸素イオン(O+)は、イオン源1による酸素(02)
のイオン化によって生成された後、イオン引出し電極2
によって取出され、分離電磁石3によって他の元素イオ
ンと分離される。
Oxygen ions (O+) are oxygen (02) from ion source 1.
After the ion extraction electrode 2 is generated by ionization of
and separated from other element ions by a separation electromagnet 3.

分離された0+イオンは、スリン1−4によって更にO
+イオンだけにされ、イオン加速管5によって打ち込む
エネルギーを持つまでに加速されて、四極レンズ6によ
って集束される。
The separated 0+ ions are further converted to O by surin 1-4.
Only the positive ions are accelerated by the ion accelerator tube 5 to the point where they have the energy to be implanted, and then focused by the quadrupole lens 6.

集束されたO+イオンは、サンプルホルダー9に固定し
た白金(Pt )10の表面に対して、O+イオンを均
一に注入するために走査電極7によっ=4− て水平・垂直方向に偏向され、偏向電極8によって更に
偏向されて、白金(Pt)1.0を走査する。
The focused O+ ions are deflected horizontally and vertically by the scanning electrode 7 in order to uniformly inject the O+ ions onto the surface of the platinum (Pt) 10 fixed on the sample holder 9. It is further deflected by the deflection electrode 8 to scan platinum (Pt) 1.0.

なお、白金(Pt)10から、01イオンとの衝突で発
生した中性粒子が混入するのを偏向電極8で防止する。
Note that the deflection electrode 8 prevents neutral particles generated from platinum (Pt) 10 from colliding with 01 ions from being mixed in.

上記加速エネルギーを40 K e Vで行ったところ
、白金(Pt)10の表面に約lX1017個/cm2
の酸素イオンが注入できる。その後、白金10を空気中
に取出し電気炉に入れて、酸素雰囲気中、温度500°
C9時間2hの熱処理を行う。
When the above acceleration energy was applied at 40 K e V, approximately 1×1017 particles/cm2 were deposited on the surface of platinum (Pt) 10.
of oxygen ions can be implanted. After that, the platinum 10 was taken out into the air and placed in an electric furnace at a temperature of 50° in an oxygen atmosphere.
Heat treatment is performed for C9 hours and 2 hours.

熱処理を実施した後、二次イオン質量分析法(SIMS
)によって、白金10表面の酸素濃度を調べた結果を第
2図に示す。この結果から白金10の表面付近は、30
原子%程度の酸素濃度である。また、X線光電子分光に
よって白金10の表面を調べたところ、 pto2の六
方晶系の結晶が存在していることから、本発明の方法は
白金自身の酸化膜を形成してる。
After heat treatment, secondary ion mass spectrometry (SIMS)
), the oxygen concentration on the surface of platinum 10 was investigated and the results are shown in FIG. From this result, near the surface of platinum 10, 30
The oxygen concentration is on the order of atomic percent. Further, when the surface of platinum 10 was examined by X-ray photoelectron spectroscopy, it was found that hexagonal crystals of pto2 were present, which indicates that the method of the present invention forms an oxide film of platinum itself.

上記加速エネルギーとそれによる注入量の関係について
調べたところ、加速エネルギーが数KeV程度以下では
、酸素イオンを白金10の表面層に浸入させることがで
きない。一方、200Ke■以上にすると、酸素イオン
の飛程距離が白金IOの表面から100OA以上となっ
て深部に入ってしまい、注入された酸素イオンの広がり
が表面層にまで届かずに酸化物の形成は十分でない。
An investigation of the relationship between the acceleration energy and the resulting implantation amount revealed that oxygen ions cannot penetrate into the surface layer of platinum 10 when the acceleration energy is about several KeV or less. On the other hand, when the concentration is 200 Ke■ or more, the range of oxygen ions becomes more than 100 OA from the surface of platinum IO, and the implanted oxygen ions do not spread to the surface layer, forming oxides. is not enough.

このことから、酸化膜形成に適する加速エネルギーは1
0〜200KeVの範囲である。酸化膜としては表面層
において最低でも10原子%以上の酸素濃度が必要であ
る。0+イオンの生成量を同じにして加速エネルギーを
高めると表面での濃度は低下するので、表面層に十分な
酸化膜を形成するための一例は、1OKeV程度の加速
エネルギーで1×101B個/cm2以上に酸素イオン
を打ち込む。上記加速エネルギーを高めるときには0+
イオンの生成量も増す必要がある。
From this, the acceleration energy suitable for oxide film formation is 1
It is in the range of 0 to 200 KeV. The oxide film requires an oxygen concentration of at least 10 atomic % or more in the surface layer. If the amount of 0+ ions produced is the same and the acceleration energy is increased, the concentration at the surface will decrease, so one example for forming a sufficient oxide film on the surface layer is 1 x 101 B/cm2 at an acceleration energy of about 1 OKeV. Inject oxygen ions above. 0+ when increasing the above acceleration energy
It is also necessary to increase the amount of ions produced.

本発明にイオン加速管を採用したが、金属表面に酸化膜
を形成する別方法としての熱酸化は、酸化種(02また
はH2O)が表面で反応するが酸化膜に吸着した後、吸
着した02またはH2Oが酸化膜中を拡散して、金属と
の界面に到達して反応し、酸化膜が形成されると考えら
れている。このように熱酸化においては酸化種および金
属原子の拡散が重要となるが、白金族の金属はその拡散
が起りにくいこと。また、例えば、1000℃以上の酸
素雰囲気中においては白金の Pし02を生成できるが
、高温が下ってくると揮発しやすいと考えられているこ
となどからである。
Although an ion accelerator tube is used in the present invention, thermal oxidation is another method for forming an oxide film on a metal surface, in which oxidizing species (02 or H2O) react on the surface, but after being adsorbed on the oxide film, the adsorbed 02 Alternatively, it is believed that H2O diffuses through the oxide film, reaches the interface with the metal, reacts, and forms an oxide film. Diffusion of oxidizing species and metal atoms is thus important in thermal oxidation, but platinum group metals are less prone to such diffusion. Another reason is that, for example, platinum (P2) can be produced in an oxygen atmosphere of 1000° C. or higher, but it is thought that it easily evaporates as the high temperature drops.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、元素イオンを金
属に注入するシステムを用い、白金族の金属に対して酸
素イオンを10〜200KeVの加速エネルギーで打ち
込み、10原子%以上の濃度に注入させるので、酸化し
にくい白金族金属の表面層に、再現性および制御性良く
金属自身の酸化膜が形成できる。
As explained above, according to the present invention, oxygen ions are implanted into a platinum group metal at an acceleration energy of 10 to 200 KeV using a system for implanting element ions into metal to a concentration of 10 atomic % or more. As a result, an oxide film of the metal itself can be formed on the surface layer of the platinum group metal, which is difficult to oxidize, with good reproducibility and controllability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す白金に酸素イオンを
注入するためのシステム構成図、第2図は酸素濃度(原
子%)−表面からの深さくnm)の関検図である。 ■=イオン源、2:イオン引出し電極、3:分離電磁石
、4ニスリツト、5:イオン加速管、6:四極レンズ、
7:走査電極、8:偏向電極、9:サンプルホルダー、
1o:白金(Pt )。 第1図 第  2  図 表面からの深さくnrrI) 手続補正書(自発) 昭和60年2月12日 昭和60年特 許 願第3060  号2、発明の名称
 白金族金属の酸化膜形成法3、 補正をする者 事件との関係 特許出願人 4、代理人 氏  名    (7727)  弁理士 磯  村 
 雅  俊5 補正命令の日付 5°1 補正により増加する発明の数  な   しく
1)明細書第8頁第6行〜第8行の[白金のPtO2を
生成できるが、・・・・・・などからである。」を、「
白金のPtO2を生成できるが、このような高温では揮
発しやすいこと。これらにより、白金族の金属は熱酸化
がおこりにくい。Jに補正する。
Fig. 1 is a system configuration diagram for implanting oxygen ions into platinum showing an embodiment of the present invention, and Fig. 2 is a correlation diagram of oxygen concentration (atomic %) - depth from the surface (nm). . ■=Ion source, 2: Ion extraction electrode, 3: Separation electromagnet, 4 Nislit, 5: Ion accelerator tube, 6: Quadrupole lens,
7: scanning electrode, 8: deflection electrode, 9: sample holder,
1o: Platinum (Pt). Figure 1 Figure 2 Depth from the surface of the figure nrrI) Procedural amendment (voluntary) February 12, 1985 Patent Application No. 3060 filed in 1985 2, Title of invention Method for forming oxide film on platinum group metals 3, Relationship with the case of the person making the amendment Patent applicant 4, agent name (7727) Patent attorney Isomura
Masatoshi 5 Date of amendment order 5° 1 Number of inventions increased by amendment No. 1) Page 8 of the specification, lines 6 to 8 [PtO2 of platinum can be produced, but...etc. It is from. "of,"
Platinum (PtO2) can be produced, but it easily evaporates at such high temperatures. Due to these, platinum group metals are less likely to undergo thermal oxidation. Correct to J.

Claims (2)

【特許請求の範囲】[Claims] (1)イオン源部、イオン加速部を備え、抽出した元素
イオンを加速して材料中に打ち込むイオン注入法におい
て、上記材料が白金族金属であるとき、上記イオン源を
酸素にし、上記イオン加速部での加速エネルギーを数K
eV〜数百KeVにして、金属表面での酸素イオンの濃
度が10原子%以上である酸化膜を形成することを特徴
とする白金族金属の酸化膜形成法。
(1) In an ion implantation method that includes an ion source section and an ion acceleration section and accelerates extracted elemental ions and implants them into the material, when the material is a platinum group metal, the ion source is oxygen and the ion acceleration The acceleration energy at
A method for forming an oxide film on a platinum group metal, characterized in that an oxide film is formed at eV to several hundred KeV and the concentration of oxygen ions on the metal surface is 10 atomic % or more.
(2)前記白金族金属は、白金(Pt)、イリジウム(
Ir)、ロジウム(Rh)、ルテニウム(Ru)、パラ
ジウム(Pd)であることを特徴とする特許請求の範囲
第1項記載の白金族金属の酸化膜形成法。
(2) The platinum group metals include platinum (Pt), iridium (
2. The method for forming an oxide film of a platinum group metal according to claim 1, characterized in that the oxide film is formed using the following metals: Ir), rhodium (Rh), ruthenium (Ru), and palladium (Pd).
JP306085A 1985-01-11 1985-01-11 Formation of oxide film of platinum group metal Pending JPS61163264A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP306085A JPS61163264A (en) 1985-01-11 1985-01-11 Formation of oxide film of platinum group metal
DK9886A DK9886A (en) 1985-01-11 1986-01-09 NAPHTHALENDER DERIVATIVES AND MANUFACTURING THEREOF
SU864013137A SU1581217A3 (en) 1985-01-11 1986-01-09 Method of obtaining naphthalene derivatives
DE19863600575 DE3600575A1 (en) 1985-01-11 1986-01-10 Process for forming an oxide film of an element of the platinum group
DD28610686A DD261786A5 (en) 1985-01-11 1986-01-10 PROCESS FOR THE PREPARATION OF NAPHTHALIN DERIVATIVES
SU864028493A SU1577697A3 (en) 1985-01-11 1986-11-13 Method of obtaining lakton of naphthalene-sulfonic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP306085A JPS61163264A (en) 1985-01-11 1985-01-11 Formation of oxide film of platinum group metal

Publications (1)

Publication Number Publication Date
JPS61163264A true JPS61163264A (en) 1986-07-23

Family

ID=11546779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP306085A Pending JPS61163264A (en) 1985-01-11 1985-01-11 Formation of oxide film of platinum group metal

Country Status (5)

Country Link
JP (1) JPS61163264A (en)
DD (1) DD261786A5 (en)
DE (1) DE3600575A1 (en)
DK (1) DK9886A (en)
SU (2) SU1581217A3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19620022C2 (en) * 1995-05-17 2002-09-19 Hyundai Electronics Ind Method for producing a diffusion barrier metal layer in a semiconductor device
JP2009107773A (en) * 2007-10-30 2009-05-21 Mitsubishi Electric Corp Printer device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3855230T2 (en) * 1987-08-28 1996-10-31 Sumitomo Electric Industries Method of manufacturing a superconducting article
RU2551655C1 (en) * 2014-05-15 2015-05-27 Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук (НИОХ СО РАН) Method for producing (3-hydroxypropyl)naphthols

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331971A (en) * 1976-09-06 1978-03-25 Nippon Telegr & Teleph Corp <Ntt> Forming method of metal oxide film or semiconductor oxide film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331971A (en) * 1976-09-06 1978-03-25 Nippon Telegr & Teleph Corp <Ntt> Forming method of metal oxide film or semiconductor oxide film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19620022C2 (en) * 1995-05-17 2002-09-19 Hyundai Electronics Ind Method for producing a diffusion barrier metal layer in a semiconductor device
JP2009107773A (en) * 2007-10-30 2009-05-21 Mitsubishi Electric Corp Printer device

Also Published As

Publication number Publication date
DE3600575C2 (en) 1987-03-19
DE3600575A1 (en) 1986-07-17
DD261786A5 (en) 1988-11-09
SU1577697A3 (en) 1990-07-07
SU1581217A3 (en) 1990-07-23
DK9886A (en) 1986-07-11
DK9886D0 (en) 1986-01-09

Similar Documents

Publication Publication Date Title
Gomer et al. Mobility and adsorption of hydrogen on tungsten
DE102010002734A1 (en) Titanium electrode material and titanium electrode material surface treatment method
US20020155679A1 (en) Method for forming an soi substrate by use of plasma ion irradiation
TW507298B (en) Method of manufacturing semiconductor device having shallow junction
Tsaur et al. Ion‐beam‐induced modification of silicide formation in rare‐earth metals: Er‐Si and Tb‐Si systems
JPS61163264A (en) Formation of oxide film of platinum group metal
JPH08204206A (en) Semiconductor, fabrication thereof and semiconductor device
Grenness et al. Electrocatalytic activation of tungsten and tungstic oxide doped with platinum by means of ion implantation
Van Hassel et al. Microstructure and thermal stability of Fe, Ti, and Ag implanted yttria-stabilized zirconia
Clark et al. The interaction of oxygen and hot gold. Part 2.—Electron-diffraction, X-ray and electrochemical studies
McCabe et al. The Oxidation of Rhodium-Platinum
GB1580879A (en) Method for controlling the migration of an electronegative chemical species within a solid substrate
Medernach et al. Microstructural Properties of Helium Implanted Void Layers in Silicon as Related to Front‐Side Gettering
US3887446A (en) Electrochemical preparation of metallic tellurides
JP3061973B2 (en) Method for making silicon substrate porous and method for forming porous silicon layer
He et al. The effect of ion implantation of Ar on the aqueous corrosion resistance of Zr-4 alloy
JPS6355856B2 (en)
US10861709B2 (en) Method of evaluating impurity gettering capability of epitaxial silicon wafer and epitaxial silicon wafer
RU1800501C (en) Process of manufacture of bipolar transistors
JPS63119527A (en) Manufacture of semiconductor device
JP2001511953A (en) Ion implantation treatment method
Neudeck et al. Reduction in the localized band‐gap states in amorphous silicon by annealing and hydrogen implantation
JP3939383B2 (en) Method for manufacturing semiconductor device
Azzam et al. Lattice location studies in ion implanted vanadium single crystals at various temperatures
Hoummada et al. Analysis of superconducting silicon epilayers by atom probe tomography: composition and evaporation field