JPS61162612A - Method and device of preventing sinking of city due to raising of water level - Google Patents

Method and device of preventing sinking of city due to raising of water level

Info

Publication number
JPS61162612A
JPS61162612A JP60001364A JP136485A JPS61162612A JP S61162612 A JPS61162612 A JP S61162612A JP 60001364 A JP60001364 A JP 60001364A JP 136485 A JP136485 A JP 136485A JP S61162612 A JPS61162612 A JP S61162612A
Authority
JP
Japan
Prior art keywords
reservoir
water
pump
level
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60001364A
Other languages
Japanese (ja)
Inventor
Hitoshi Konno
仁 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60001364A priority Critical patent/JPS61162612A/en
Publication of JPS61162612A publication Critical patent/JPS61162612A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

PURPOSE:To prevent a city from being sunk under water, by a method wherein a bay is separated into a reservoir having a low water level and a bay, connected to the open sea having a raised sea surface, by an undersea dam, and water in the resevoir is drained with the aid of a pump. CONSTITUTION:A bay, being adjacent to a city 3, is separated into a reservoir 7, having a low water level, and a bay 2, connected to the open sea 1 having a raised sea surface, by means of a rock-fill dam 4 and a concrete dam 5. A pump water turbine 20 is installed on the bottom of the concrete dam 5. When a water level in the reservoir 7 is increased to a specified level, water is drained through the running of the pump water turbine 20, and the water level in the reservoir 7 is maintained at a state before raising of the sea surface.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は海中ダムに内蔵された、ポンプ水車による貯
水池の排水と、揚水発電及び潮力発電を組み合わした都
市水没の防止方法とその装置に間する。
[Detailed description of the invention] (a) Industrial application field This invention is a method and device for preventing urban flooding that combines drainage of a reservoir using a pump-turbine built into an underwater dam, pumped storage power generation, and tidal power generation. in between.

(ロ) 従来の技術 20世紀における化石燃料の大量の燃焼が、大気中の二
酸化炭素を増加して、地球を包む温室効果により、地球
の気温を上昇せしめて南極の氷を溶かし、西暦1990
年頃から2040年にかけて約6mの海面上昇を招来す
ることが予想されている(1983年lO月18日、日
本の主要新聞に掲載された、米国戦略環境部の発表)、
その結果膨大な臨海陸地が水没することになる。
(b) Conventional technology The burning of large amounts of fossil fuels in the 20th century increased carbon dioxide in the atmosphere, causing a global greenhouse effect that caused the global temperature to rise and melt the ice in Antarctica.
It is predicted that the sea level will rise by approximately 6 meters from around 2013 to 2040 (announcement by the U.S. Department of Strategic Environment, published in a major Japanese newspaper on October 18, 1983).
As a result, a huge amount of coastal land will be submerged.

従来オランダでは、海面より低い国土を造るために、海
岸に堤防を構築して、陸地に溜った水をポンプで外海へ
排出する方法を採っていた。
Traditionally, in order to create a country that is below sea level, the Netherlands used a method of constructing embankments on the coast and pumping water accumulated on the land to the open sea.

(ハ) 発明が解決しようとする問題点しかし、台風な
どによる集中豪雨のあるll!!海都市では、排水量が
非常に多いために、排水ポンプとして羽根車の直径が5
mないし9mの大型軸流ポンプを多数使用しなければな
らないので、ポンプの設置に水深15mないし30mの
場所を必要とするので、ポンプを上記(ロ)のごとく陸
上に設置することが困難であるから、沖合いに海中ダム
を構築して同都市を外海より隔離し、同ダムの底部に上
記ポンプを設置して、ダム内側の貯水池の水を排水して
、貯水池の水位を任意に制御する。
(c) Problems that the invention aims to solveHowever, there are heavy rains caused by typhoons, etc. ! In sea cities, the amount of water discharged is very large, so the impeller diameter is 5 mm for drainage pumps.
Since it is necessary to use many large axial flow pumps with a diameter of 1 to 9 meters, a location with a water depth of 15 to 30 meters is required for installing the pumps, which makes it difficult to install the pumps on land as described in (b) above. Therefore, an underwater dam will be built offshore to isolate the city from the open sea, and the pump will be installed at the bottom of the dam to drain water from the reservoir inside the dam and control the water level in the reservoir at will.

ポンプの排水能力は、30年に1度の貯水池への最大流
入1 (m3/ s )の約4倍とし、1万年に1回の
洪水でも排水出来る能力を持たせておく。
The drainage capacity of the pump will be approximately four times the maximum inflow 1 (m3/s) into the reservoir that occurs once every 30 years, and will have the capacity to drain even a flood that occurs once every 10,000 years.

しかし平常の天候では、敵方KWないし数百万KWの容
量をもつポンプの大部分を休止しなければならないので
不経済である。 そこで降水量の少い時は、夜間の余剰
電力を利用してポンプの全力運転を行い、貯水池の水位
を下げておいて、昼間のピーク時に外洋と貯水池の間の
落差を利用して発電する、揚水発電所として利用するこ
とにより、海面上昇による都市水没の防止と、それに要
する膨大な設備投資の不経済性を改善、することを目的
とするものである。
However, in normal weather, most of the pumps, which have a capacity of KW to several million KW, must be stopped, which is uneconomical. Therefore, when rainfall is low, the pumps are operated at full capacity using surplus electricity at night to lower the water level in the reservoir, and during peak hours during the day the head difference between the open ocean and the reservoir is used to generate electricity. By using it as a pumped storage power plant, the aim is to prevent cities from being submerged due to rising sea levels and to reduce the uneconomical costs of the enormous capital investment required.

(ニ) 問題点を解決するための手段 この発明を図面にもとづいて説明すると、第1図におい
て、外洋IC1111口する湾2の奥に都市3があり、
外洋lの水位が6m上昇すると、都市3の大部□分が水
没する状況にある、812の両岸9で標高が6m以上の
高地を求めるか、造って、湾2を両高地9を結ぶ海中ダ
ムA、6で二分し、ダムより内側の湾を貯水池7と呼ぶ
、ダム4は、ロックフィルダムで、ダム6はその底部に
、ポンプ水車20を内蔵するコンクリートダムである、
ダム4には、船舶用閘門6を設置する、貯水池7へ流入
する陸水は、主として河川8によるものである。
(d) Means for Solving Problems To explain this invention based on drawings, in FIG.
If the water level of the open ocean 1 rises by 6 m, most of the city 3 will be submerged. Find or build high ground with an altitude of 6 m or more on both banks 9 of 812, and connect the bay 2 to both highlands 9. It is divided into two by underwater dams A and 6, and the bay inside the dam is called reservoir 7. Dam 4 is a rockfill dam, and dam 6 is a concrete dam with a built-in pump turbine 20 at its bottom.
A ship lock 6 is installed in the dam 4, and land water flowing into the reservoir 7 is mainly from a river 8.

貯水池7およびl12の水位は、第2図において、外洋
lの水位が上昇する以前の水深の基準面lOからの高さ
で示される。貯水池7の設定水位15(以後H,W、L
、と称す)は、海面上昇以前の平均潮位に設定し、これ
より貯水池の利用水深だけ低く、低水位16(以後り、
W、L、と称す)を定める。  H,W、L、15と、
L、W、L。
The water levels of the reservoirs 7 and 112 are shown in FIG. 2 as heights from the reference surface 10 of the water depth before the water level of the open ocean 1 rises. Set water level 15 of reservoir 7 (hereinafter referred to as H, W, L)
,) is set to the average tide level before sea level rise, and lower than this by the available water depth of the reservoir, low water level 16 (hereinafter referred to as tidal level) is set to the average tide level before sea level rise.
(referred to as W and L). H, W, L, 15 and
L, W, L.

16の平均水位17を以後M、W、L、と称す。The average water levels 17 of 16 are hereinafter referred to as M, W, and L.

湾2の海面上昇後の水深の基準面1.1は、旧基準面1
0より6m高くとる。1II2の満潮位12と干潮位1
3および平均潮位14の新基準面!1からの高さは、海
面上昇以前の潮せき表の値と同じとする。
Reference surface 1.1 for water depth after sea level rise in Bay 2 is the old reference surface 1.
6m higher than 0. High tide level 12 and low tide level 1 of 1II2
3 and the new standard surface of average tide level 14! The height from 1 is the same as the value of the tide table before sea level rise.

潮差のない海では、貯水池7の基準面ioはHoW、L
、15と一致し、湾2の潮位12.13.14は、基準
面11と一致する。
In a sea with no tidal difference, the reference plane io of reservoir 7 is HoW, L
, 15, and the tide level 12.13.14 of the bay 2 coincides with the reference plane 11.

コンクリートダム6は、都市3から外洋lに向かう湾2
の滞底勾配18.19のうち基準面10からの水深が、
ポンプ水車20の羽根車21の直径の約3倍ないし4倍
の海底18に設置する。
Concrete dam 6 connects bay 2 from city 3 to open ocean l.
Of the bottom gradient 18.19, the water depth from the reference surface 10 is
It is installed on the seabed 18 about three to four times the diameter of the impeller 21 of the pump-turbine 20.

ポンプ水車の羽根車21は直流電動発電機に結合され、
交流電源から交直変換装置を介して可変速の直流運転が
行なわれる。それは海面の上昇が急に起こるのでなく、
1年に十数糎程度の上昇であるから、ポンプ水車据付後
その揚程および落差が広範囲に変化するのに対応させる
必要があるからである。
The impeller 21 of the pump turbine is coupled to a DC motor generator,
Variable speed DC operation is performed from an AC power source via an AC/DC converter. This is not due to sudden sea level rise;
This is because the rise is about 10-odd degrees per year, so it is necessary to accommodate the wide range of changes in head and head after the pump-turbine is installed.

(ホ) 作用 第4図は貯水池7への河川8の流入量がポンプの流量に
対して十分小さいときの、貯水池7と湾2における1日
の水位の変化を示すグラフである。
(E) Effect FIG. 4 is a graph showing changes in the water level in the reservoir 7 and the bay 2 during a day when the inflow of the river 8 into the reservoir 7 is sufficiently small compared to the flow rate of the pump.

横軸XZは時間軸で、縦軸XCは基準面10からの水位
の高さを示す、xzは24時間で、xYおよびYZは夫
々12時間である。Xを21.00時とすると、Yは9
.00時tyzは21.00時である。112の潮位は
CDEFGI(IJKLMで示され、平均潮位14の上
下に撮動する。貯水池7の水位はN0PQRSTで示さ
れ、NoおよびSTはH,W、L、15と一致する。矢
印24はポンプの揚程を示し、矢印26は水車の落差を
示す、ポンプ20はo、o6時にOEの揚程で運転を開
始し、翌朝6.00時にPGの揚程で運転を終わる。そ
の閏6時間の深夜運転で、貯水池7の水位はH,W、L
、15からり、W、L、16まで下る。このとき貯水池
7の水位がり、W、L。
The horizontal axis XZ is a time axis, and the vertical axis XC is the height of the water level from the reference surface 10. xz is 24 hours, and xY and YZ are each 12 hours. If X is 21.00 hours, Y is 9
.. 00 o'clock tyz is 21.00 o'clock. The tide level of 112 is indicated by CDEFGI (IJKLM) and is photographed above and below the mean tide level 14. The water level of reservoir 7 is indicated by N0PQRST, and No and ST correspond to H, W, L, 15. Arrow 24 is the pump The arrow 26 shows the head of the water turbine.The pump 20 starts operation at OE height at 6:00 o'clock the next morning, and ends at PG head at 6:00 o'clock the next morning.During the 6-hour leap night, the pump 20 starts operating at OE head. So, the water level of reservoir 7 is H, W, L.
, 15, go down to W, L, 16. At this time, the water level of reservoir 7 is rising, W, L.

16に達したとき、自動的にポンプが停止するごとくし
ておく、水車20の運転は9.00時から21.00時
の閏の任意の時閃帯において連続運転ができる0例えば
第4図において、12.00時から落差JRで運転を開
始し、ts、oo時に落差LSで終わる。この時貯水池
7の水位がH6W、L、15に達したとき自動的に水車
が停止するごとくしておく、上記ポンプ水車の自動停止
装置を利用して、出水時にH,W、L、15とり。
16, the pump is automatically stopped.The water turbine 20 can be operated continuously at any time between 9:00 and 21:00.For example, as shown in Figure 4. At 12:00, the operation starts with head JR and ends with head LS at ts and oo. At this time, when the water level of the reservoir 7 reaches H6W, L, 15, the water turbine is automatically stopped.Using the automatic stop device of the pump water turbine, .

W、L、1Bを更に低く設定して、都市排水を良くする
方法がとられる。同様にH,W、L、とり。
A method is used to improve urban drainage by setting W, L, and 1B even lower. Similarly, H, W, L, Tori.

W、L、を任意に設定して貯水池の水位を制御する事が
できる。
By setting W and L arbitrarily, the water level of the reservoir can be controlled.

貯水池7の平均水位17における面積Amと利用水ti
Bm(第4図のNO)は、つぎのごとくし″て求める。
Area Am and water usage ti at average water level 17 of reservoir 7
Bm (NO in FIG. 4) is determined as follows.

河川8から貯水池7への30年に1度の最大流入量Q。Maximum inflow Q from river 8 to reservoir 7 once every 30 years.

−/8(以下基準流入量と呼ぶ)が18続いたとき貯水
池7の水位が8m上昇したとすると、1日の全水量はA
xBm3であるから、AXB=%X24X3800  
  [11もしAが指定されると、 B=%X24X3600/A    [2]からBが求
まる。Bの値は一般には環境上2m以下がよい、ポンプ
の基準流量をQpm/sとすると、6時間のポンプ運転
でA X B m3の水を排水するから、 Q=AXB/(6X3600)    [3]  。
-/8 (hereinafter referred to as standard inflow rate) continues for 18 times and the water level in reservoir 7 rises by 8 m, the total water volume per day is A.
Since xBm3, AXB=%X24X3800
[11 If A is specified, B=%X24X3600/A [2] Find B. Generally speaking, the value of B should be 2 m or less for environmental reasons.If the standard flow rate of the pump is Qpm/s, 6 hours of pump operation drains A x B m3 of water, so Q=AXB/(6X3600) [3 ].

となる、ポンプ水車の全動力を求めるために記号へ=ポ
ンプの基準揚程 m (=6+B/2)をつぎのごとく
定める。
In order to find the total power of the pump-turbine, the standard head of the pump, m (=6+B/2), is determined as follows.

L=水ポンプ全動力 MW (= 106Nms−1>
Q=水ポンプ基準全流量 m/s γ=海水の比重量=1.03X9806=10100 
 N/m り=ポンプの基準効率 η、=水車の基準効率 従って り、=へ×%×r/(η、×1♂)[4]水車の全動力
は、兼用機であるからポンプの全動力と同じとする。水
車の全動力時の運転時間は、Q0=0のとき約6Xy、
X41時間となる。これより長い発電時間を得るには、
水車の運転台数を減らして総出力を小さくして行なえば
よい。
L=Water pump total power MW (= 106Nms-1>
Q = water pump standard total flow rate m/s γ = specific weight of seawater = 1.03X9806 = 10100
N/m = standard efficiency of the pump, η, = standard efficiency of the water wheel, = to x % x r/(η, x 1♂) It is assumed to be the same as power. The operating time of the water turbine at full power is approximately 6Xy when Q0 = 0.
It will be 41 hours. To obtain longer power generation time,
It would be better to reduce the total output by reducing the number of water turbines in operation.

貯水池7への流入量が基準流入量に等しいときは、ポン
プは6時間の正常運転を行なうが、水車の運転は行なわ
ない、それ以下の流入量のときは、ポンプの排水量から
流入量を差し引いた水量だけ水車を運転して発電する。
When the inflow to the reservoir 7 is equal to the standard inflow, the pump will operate normally for 6 hours, but the turbine will not operate.If the inflow is less than that, the inflow will be subtracted from the pump displacement. The water turbine is operated to generate electricity based on the amount of water.

流入量が基準流入量より多いときは、水車の運転は全く
行なわないで、ポンプの運転時間を増加し、最大限ポン
プの終日運転を行なうことによって基準流入量の約4倍
の排水を行なう事が出来る。
When the inflow rate is higher than the standard inflow rate, the water turbine is not operated at all, the pump operating time is increased, and the pump is operated all day to the maximum, thereby discharging approximately four times the standard inflow rate. I can do it.

つぎにエネルギ効率のよい運転方法として第4図におい
て夜間(X Y)に潮位の負の半サイクルDEFの閏ポ
ンプ運転を行ない、昼間(Y Z)に潮位の正の半サイ
クルH1及びKLMの間水車運転を行なうと、同じ水量
を運ぶのにポンプ揚程は小さく、水車落差は大きくなり
種水発電としての効率を大きくする事が出来る。
Next, as an energy-efficient operation method, in Fig. 4, during the night (XY), the leap pump operation is performed during the negative half cycle of the tide level DEF, and during the daytime (YZ), during the positive half cycle of the tide level H1 and KLM. When operating a water turbine, the pump head is small and the head of the water turbine is large to transport the same amount of water, making it possible to increase the efficiency of seed water power generation.

第5図はダム4の1部又は全部に人工島26または人工
半島27を付加することにより、地震や波浪に対するダ
ム4の強度を大にするばかりでなく、海上都市、空港、
$1!湾および原子力発電所等の用地として利用するこ
とが出来る。またダム4゜5の頂部に自動車道路28を
設(すて、湾岸バイパス道路として交通の便をはかる。
FIG. 5 shows that by adding an artificial island 26 or an artificial peninsula 27 to part or all of the dam 4, it is possible to not only increase the strength of the dam 4 against earthquakes and waves, but also to increase the
$1! It can be used as a bay and land for nuclear power plants, etc. In addition, the motorway 28 will be built at the top of the dam 4.5, and will be used as a bayside bypass road to facilitate transportation.

また1!2がなくて直線海岸29をもつ都市3において
は、ダム4を海岸までU字形に曲げるか又は人工半島3
0.31を造成して人工湾を造り、同様の目的を達成せ
しめる事ができる。
In addition, in cities 3 that do not have 1!2 and have a straight coast 29, the dam 4 should be bent into a U-shape to the coast, or the artificial peninsula 3
0.31 can be created to create an artificial bay to achieve the same purpose.

(へ) 実施例 東京都は6mの海面上昇で殆ど水没する状態にあるので
、これを避けるために東京湾のほぼ中央部の川崎布−木
更津市北郊を結ぶ現在の海上部15Kmの線をダム4.
6で締め切る。このとき貯水池7の面積はA = 56
0 k m2  で、ダムの位置における最大水深は3
0m、基準流入量は%=10000m/sである。貯水
池の利用水深は式[2]より。
(F) Example Tokyo is in a state where most of it will be submerged due to a 6m sea level rise, so in order to avoid this, a line of 15km above the current sea level connecting Kawasakifu in the center of Tokyo Bay and the northern suburbs of Kisarazu City will be constructed. Dam 4.
Closes at 6. At this time, the area of reservoir 7 is A = 56
0 km2 and the maximum water depth at the dam location is 3
0m, and the standard inflow rate is %=10000m/s. The available water depth of the reservoir is based on formula [2].

B= 10X24X3600/ (560X I 0)
=1.54m<2m  かえられるので、ここではB=
1.6mとする。
B= 10X24X3600/ (560X I 0)
=1.54m<2m Since it can be changed, here B=
The length shall be 1.6m.

ポンプの基準流量は式[3]より =41480m/s となる、ポンプの全動力は、ポンプの基準効率を0.8
とすると式[4]より り、=6.8X41480X 10100/ (0゜8
 X 106) =3560MW 水車の全動力Ltはり、と同じである。ダム6には羽根
車の直径が8m、1台26MWの軸流ポンプ水車137
台を設置する。このときダム5の全長こよ約2.5Km
で、ダム屡の全長は約12.5Kmとなる。
The standard flow rate of the pump is 41480 m/s from formula [3].The total power of the pump is 0.8 the standard efficiency of the pump.
Then, from formula [4], = 6.8X41480X 10100/ (0°8
X 106) = 3560MW It is the same as the total power Lt of the water turbine. Dam 6 has 137 axial flow pump turbines each with an impeller diameter of 8 m and a capacity of 26 MW.
Set up a stand. At this time, the total length of Dam 5 is approximately 2.5 km.
The total length of the dam is approximately 12.5km.

従来大潮の満潮時に台風などの高潮が重なると、東京部
内に浸水地帯ができたが、この発明によって貯水池の水
位を任意に下げることが出来るので、その心配が全くな
くなる。
Conventionally, when high tides such as typhoons occur during high tides, flooded areas occur in the Tokyo area, but with this invention, the water level in the reservoir can be lowered at will, so there is no need to worry about this.

東京港は人工島の外洋側へ移し、羽田空港はそのままで
もよいが、人工島上の海上空港として移転することも出
来る。
Tokyo Port could be moved to the open ocean side of the artificial island, and Haneda Airport could remain as is, but it could also be relocated as a sea airport on the artificial island.

(ト)  発明の効果 この発明は以上説明したように、海面上昇により水没が
予想される臨海部市の沖合いに造ったダムで、同都市に
接する貯水池と外洋に分離し、ダムに内蔵したポンプ水
車の排水機能により、貯水池の水位を海面上昇以前の高
潮位以下に制御し、同都市の水没を防止することができ
る。
(g) Effects of the Invention As explained above, this invention is a dam built offshore of a coastal city that is expected to be submerged due to rising sea levels, and a pump built into the dam that separates the reservoir adjacent to the city from the open ocean. The drainage function of the water turbines will keep the water level in the reservoir below the high tide level before sea level rise, preventing the city from being submerged.

、ポンプの排水能力を貯水池への基準流入量の4倍にす
る事によって、如何なる降水量も安全に排水することが
出来る。
By increasing the drainage capacity of the pump to four times the standard inflow into the reservoir, any amount of precipitation can be safely drained.

従って平常の天候においては、排水設備としては十分余
裕があるので、外洋を上池とし、貯水池を下池とする揚
水発電所として利用出来る。
Therefore, in normal weather, there is sufficient drainage equipment, so it can be used as a pumped storage power plant with the open ocean serving as the upper reservoir and the reservoir serving as the lower reservoir.

ダムの一部に人工島を付加して地震、波浪等に対するダ
ムの強度を増大せしめると共に、その上に海上都市、帽
り空港、原子力発電所等を設けることができる。
An artificial island can be added to a part of a dam to increase the strength of the dam against earthquakes, waves, etc., and a floating city, airport, nuclear power plant, etc. can be built on it.

ダムの頂部に自動車道路を設けて海上バイパス道路とす
ることができる。
A motorway can be built on top of the dam to serve as a maritime bypass road.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はダムと外洋、湾、都市および貯水池の   “
関係を示す平面図、第2図はダム両側の水位の間係を示
す同縦断面図、第3図はポンプ水車の側面図、第4図は
1日間のポンプ水車の運転状態とダム両側の水位の変化
を示す水位一時閉曲線図、第6図は人工島を示す平面図
である。 l・・・外洋、 2・・・湾、 3・・、φ都市、4拳
・・ロックフィルダム、 5・・・コンクリートダム、
 7◆・・貯水池、 8・・φ貯水池流入河川、 lO
・φ・水位の基準面、14・・・湾の平均潮位、  1
5・・・貯水池の高水位、 20・・・ポンプ水車、 
26・・串人工島、 30・・・人工半島、
Figure 1 shows the relationship between dams and open oceans, bays, cities and reservoirs.
Figure 2 is a plan view showing the relationship between the water levels on both sides of the dam, Figure 3 is a side view of the pump-turbine, and Figure 4 shows the operational status of the pump-turbine for one day and the relationship between the water levels on both sides of the dam. A temporarily closed water level curve diagram showing changes in water level, and FIG. 6 is a plan view showing an artificial island. l...open ocean, 2...bay, 3...,φ city, 4 fists...rockfill dam, 5...concrete dam,
7◆...reservoir, 8...φ reservoir inflow river, lO
・φ・Water level reference plane, 14... Average tide level of the bay, 1
5... High water level of the reservoir, 20... Pump turbine,
26... Kushi artificial island, 30... artificial peninsula,

Claims (1)

【特許請求の範囲】 1 都市(3)に接する湾を、海中ダム(4)、(5)
によって、低い水位の貯水池(7)と、海面の上昇した
外洋(1)に接続する湾(2)とに分離し、ダム(5)
の底部にポンプ (20)を設置して、貯水池(7)の排水を行い、都市
および貯水池の海水位を海面上昇以前の状態に維持する
ことを特徴とする海面上昇による都市水没の防止方法。 2 ポンプをポンプと水車の兼用機とし、貯水池を下池
、外洋を上池として、夜間ポンプで貯水池の水を外洋へ
揚水し、昼間外洋と貯水池の間の落差を利用して水車で
発電する特許請求の範囲第1項記載の都市水没の防止方
法における揚水発電装置 3 ポンプの運転を外洋の潮位が平均潮位以下のときに
行ない、水車の運転を同じく平均潮位以上のときに行な
う特許請求の範囲第1、第2項記載の都市水没の防止方
法における揚水発電装置の運転方法 4 ポンプ水車の運転中貯水池の水位がL.W.L.(
16)に達したとき、ポンプが自動的に停止し、H.W
.L.(15)に達したとき、水車が自動的に停止する
ごとくして、貯水池のH.W.L.およびL.W.L.
の水位を任意に変更して、貯水池沿岸の水位を制御する
特許請求の範囲第1ないし第3項記載の都市水没の防止
方法における貯水池水位制御方法 5 ダム(4)に人工島(26)または人工半島(27
)を付加して、地震または波浪に対する同ダムの強度を
大にする特許請求の範囲第1項記載の都市水没の防止方
法における海中ダム補強方法 6 天然の湾のない臨海部市に人工半島(30)、(3
1)を造り、その先端部にダム(4)、(5)を結合し
て人工の湾(7)を造る特許請求の範囲第1項記載の都
市水没の防止方法における人工貯水池装置
[Claims] 1. The bay bordering the city (3) is constructed by underwater dams (4) and (5).
dams (5), which are separated into a reservoir (7) with a low water level and a bay (2) connected to the open ocean (1) with rising sea levels.
A method for preventing urban submergence due to sea level rise, characterized in that a pump (20) is installed at the bottom of the water reservoir (7) to drain water from the reservoir (7), thereby maintaining the sea water level of the city and the reservoir at the state before sea level rise. 2. A patent for using a pump as both a pump and a water wheel, using the reservoir as a lower reservoir and the open ocean as an upper reservoir, pumping water from the reservoir to the open ocean at night, and using the head difference between the open ocean and the reservoir during the day to generate electricity with the water turbine. Pumped storage power generation device 3 in the method for preventing urban submergence according to claim 1.Pumped storage power generation device 3 in the method for preventing urban submergence according to claim 1.A claim that the pump is operated when the tide level of the open ocean is below the average tide level, and the water turbine is operated when the tide level of the open ocean is also above the average tide level. Method 4 of operating a pumped storage power generation device in the method for preventing urban submergence described in Sections 1 and 2: When the water level of the reservoir is L. W. L. (
16), the pump automatically stops and the H. W
.. L. (15), the water wheel automatically stops and the reservoir's H. W. L. and L. W. L.
Reservoir water level control method 5 in the method for preventing urban submergence according to claims 1 to 3, in which the water level on the coast of the reservoir is controlled by arbitrarily changing the water level of the reservoir. Artificial peninsula (27
) is added to increase the strength of the dam against earthquakes or waves. 6 Subsea dam reinforcement method in the method for preventing urban submergence according to claim 1. An artificial peninsula ( 30), (3
1) and connects dams (4) and (5) to the tips thereof to create an artificial bay (7).
JP60001364A 1985-01-07 1985-01-07 Method and device of preventing sinking of city due to raising of water level Pending JPS61162612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60001364A JPS61162612A (en) 1985-01-07 1985-01-07 Method and device of preventing sinking of city due to raising of water level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001364A JPS61162612A (en) 1985-01-07 1985-01-07 Method and device of preventing sinking of city due to raising of water level

Publications (1)

Publication Number Publication Date
JPS61162612A true JPS61162612A (en) 1986-07-23

Family

ID=11499441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001364A Pending JPS61162612A (en) 1985-01-07 1985-01-07 Method and device of preventing sinking of city due to raising of water level

Country Status (1)

Country Link
JP (1) JPS61162612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768145B2 (en) * 2001-10-04 2010-08-03 Rotech Holdings Limited Power generator and turbine unit
CN113091848A (en) * 2021-04-08 2021-07-09 中国电建集团贵阳勘测设计研究院有限公司 Method and device for measuring water level of concrete faced rockfill dam reservoir

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768145B2 (en) * 2001-10-04 2010-08-03 Rotech Holdings Limited Power generator and turbine unit
CN113091848A (en) * 2021-04-08 2021-07-09 中国电建集团贵阳勘测设计研究院有限公司 Method and device for measuring water level of concrete faced rockfill dam reservoir

Similar Documents

Publication Publication Date Title
Charlier et al. Ocean energy: tide and tidal power
Baker Tidal power
WO2014169699A1 (en) A wave power generator set and method for generating electricity thereby
JP2004169564A (en) River water stream power generation facility
US11885089B2 (en) Mitigating flooding in existing coastal plain areas
CN102587320B (en) Reservoir-fishpond combined multifunctional seawall
WO1999002783A1 (en) System for protecting coastal land from rise of surface of the sea
JPS61162612A (en) Method and device of preventing sinking of city due to raising of water level
CN1090289C (en) Tidal current energy converter
CN104806436B (en) Tide power generation method and for implementing the electricity generation system of the method
Tong et al. Advanced materials and devices for hydropower and ocean energy
CN106438186A (en) Vertical shaft tidal current energy power generation device based on tidal current shear-line characteristics
Tunde Small hydro schemes-taking Nigeria's energy generation to the next level
JPS62228672A (en) Tide utilizing dock type pressure power generating method
CN206128121U (en) Passageway over strait with ocean current generating function
JP2012145090A (en) Power generation method by artificial water channel type water-wheel generator, power generation method by sea-water tide type water-wheel generator, artificial water channel type water-wheel generator, sea-water tide type water-wheel generator, artificial water channel for undershot water-wheel generator, and artificial water channel type irrigation water-wheel
Bardsley Note on the pumped storage potential of the Onslow-Manorburn depression, New Zealand
CN209243880U (en) A kind of submerged drain structure for water in coastal thermal power plant
CN218291864U (en) Underground water pumping energy storage system based on city protection river or natural water source
CA2694150A1 (en) The helical pathway system and method for harvesting electrical power from water flows using oval helical turbines
CN208533455U (en) A kind of flood control tunnel
EP4184002A1 (en) Hydropower barge
CN1651758A (en) Water energy machine
Swane Tidal power plant in Saemangeum
KR20170092211A (en) Sea power electricity system with multiple lagoons