JPS61162367A - Guide plate for wire dot printer and manufacture thereof - Google Patents

Guide plate for wire dot printer and manufacture thereof

Info

Publication number
JPS61162367A
JPS61162367A JP380985A JP380985A JPS61162367A JP S61162367 A JPS61162367 A JP S61162367A JP 380985 A JP380985 A JP 380985A JP 380985 A JP380985 A JP 380985A JP S61162367 A JPS61162367 A JP S61162367A
Authority
JP
Japan
Prior art keywords
silicon carbide
guide plate
open pores
silicon
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP380985A
Other languages
Japanese (ja)
Other versions
JPH0442990B2 (en
Inventor
Teruo Komori
照夫 小森
Atsuyuki Noda
野田 厚幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP380985A priority Critical patent/JPS61162367A/en
Publication of JPS61162367A publication Critical patent/JPS61162367A/en
Publication of JPH0442990B2 publication Critical patent/JPH0442990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/235Print head assemblies
    • B41J2/265Guides for print wires

Abstract

PURPOSE:To obtain a guide plate having high dimensional accuracy and high service durability and abrasion resistance, by forming a guide plate from a composite body comprising a sintered porous body of silicon carbide with open pores filled with metallic silicon. CONSTITUTION:A silicon carbide powder, polyvinyl alcohol water solusion are mixed with each other in a ball mill, and the mixture is dried. An appropriate amount of the dried mixture is agglomerated, and the agglomerated material is molded by a metallic die. A multiplicity of such molded bodies are produced, are placed into graphite crucibles, and are fired in a Tamman furnace in an atmosphere consisting mainly of argon gas at 1atm. Open pores of sintered porous bodies of silicon carbide thus obtained are filled with metallic silicon to an extent of 95vol% to produce composite bodies, thereby obtaining guide plates.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多孔質の炭化珪素質焼結体の気孔内に金属シリ
コンを充填させた複合体からなるワイヤードットプリン
ター用ガイド板とその製造方法に関し、特に本発明は、
所定形状に成形した生成形体の形状寸法を実質的に焼成
収縮させることなく焼結した開放気孔を有する多孔質体
の炭化珪素質焼結体の關放気孔内に金属シリコンを充填
させた複合体からつくられるワイヤードットプリンター
用ガイド板、並びに実質的に機械加工などの仕上加工を
必要とせず安価にかつ容易に前記ガイド板を製造する方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a guide plate for a wire dot printer made of a composite in which the pores of a porous silicon carbide sintered body are filled with metallic silicon, and a method for manufacturing the same. In particular, the present invention relates to
A composite in which metallic silicon is filled in the air release holes of a porous silicon carbide sintered body having open pores, which is sintered without substantially causing shrinkage of the shape of the formed body formed into a predetermined shape. The present invention relates to a guide plate for a wire dot printer made from the present invention, and a method for manufacturing the guide plate at low cost and easily without substantially requiring finishing processing such as machining.

〔従来の技術〕[Conventional technology]

従来のワイヤードットプリンター用ガイド板(以下単に
ガイド板ともいう)は、各種のプラスチック材料、ガラ
スのフォトエツチング加工材料、アルミナ焼結体、ルビ
ー又はサフアイヤなどからつくられている。
Conventional guide plates for wire dot printers (hereinafter simply referred to as guide plates) are made of various plastic materials, glass photo-etched materials, alumina sintered bodies, ruby or sapphire, and the like.

そして、ワイヤードットプリンターのプリントヘッドは
、一般にタングステンや炭化タングステンなどの硬質金
属で形成された断面円形のインパクトワイヤーが先端の
ガイド仮に向って設けられている。
In the print head of a wire dot printer, an impact wire generally made of a hard metal such as tungsten or tungsten carbide and having a circular cross section is provided toward a guide at the tip.

そのため、前記プラスチック材料°からなるガイド板は
摩耗が著しく使用寿命が短かい欠点があり、また前記ガ
ラスのフォトエツチング加工材料からなるガイド板は穴
がストレートに整列加工することが困難でありコストが
高価となるばかりでなく、破損し易いので使用寿命が短
かいなどの欠点がある。
Therefore, the guide plate made of the plastic material suffers from significant wear and has a short service life, and the guide plate made of the glass photo-etched material is difficult to align the holes in a straight line, resulting in high cost. Not only is it expensive, but it also has the drawbacks of being easily damaged and having a short service life.

−4、アルミナ焼結体、ルビー又はサファイヤなどから
つくられたガイド板は比較的硬度が高いため機械加工な
どによる仕上加工は困難でありコストが高価となるばか
りでなく比較的脆い性質があるため加工性が悪く、独立
した円形の孔をわずかな間隔で穿孔することは非常に困
難なものである。
-4. Guide plates made from alumina sintered compacts, ruby, sapphire, etc. have relatively high hardness, so it is difficult to finish them by machining, etc. Not only is the cost expensive, but they are also relatively brittle. It has poor workability and is extremely difficult to drill independent circular holes at small intervals.

また、例えば特開昭56−89962号の公報によれば
、「カーボンで構成したドツトプリンター用ガイド板の
基体に酸化珪素を反応させ基体の総てを炭化珪素層に転
化形成させるか又は基体の総ての表面か又は分散してい
る部分的表面を炭化珪素層に形成することを特徴とする
ワイヤードットプリンター用ガイド板。」が開示されて
いる。
Furthermore, for example, according to Japanese Patent Application Laid-Open No. 56-89962, ``the base of a dot printer guide plate made of carbon is reacted with silicon oxide to convert the entire base to a silicon carbide layer, or the entire base is converted into a silicon carbide layer. "A guide plate for a wire dot printer, characterized in that the entire surface or a dispersed partial surface is formed with a silicon carbide layer."

上記ワイヤードットプリンター用ガイドは、プリントす
る時にソレノイFによってインパクトワイ・ヤーが往復
運動し、ガイド板上を摺動すると共に、インパクトワイ
ヤーの先端部がリボンを叩いて文字をプリントすること
により使用されるものである。上記インパクトワイヤー
の作動は非常に早く、往復回数も非常に多い為、ガイド
板はインパクトワイヤーの摺動により摩耗し易い。また
1文字を構成する点と点の間隔は小さい方が読み易くな
る為、ガイド板の穴間距離はなるべく小さい方がよい。
The wire dot printer guide described above is used by the impact wire reciprocating by the solenoid F and sliding on the guide plate when printing, and the tip of the impact wire hits the ribbon to print characters. It is something that Since the impact wire operates very quickly and reciprocates many times, the guide plate is likely to wear out due to sliding of the impact wire. Also, the smaller the distance between the dots that make up one character, the easier it is to read, so the distance between the holes in the guide plate should be as small as possible.

前記特開昭56−89962号の公報によれば、カーボ
ン基体に酸化珪素を反応させ、基体全体又は表面を炭化
珪素に転化したコンバージランのガイド板が開示されて
いる。そして、カーボン基体表面を炭化珪素に転化する
反応は下記の通りのものである。
JP-A-56-89962 discloses a converge run guide plate in which the entire or surface of the substrate is converted to silicon carbide by reacting silicon oxide with a carbon substrate. The reaction for converting the carbon substrate surface into silicon carbide is as follows.

2C+8i0→SiC+■ それゆえ上記反応式によって生成するSiCの粒子の大
きさを調整することは一般に困難であり、生成した3i
Cの粒子が太き(成長し表面粒子が粗くなる為、穴の内
面を研摩加工しないと使用できる状態ではない。
2C+8i0→SiC+■ Therefore, it is generally difficult to adjust the size of SiC particles produced by the above reaction formula, and the produced 3i
Since the particles of C are thick (they grow and the surface particles become rough), it is not usable unless the inner surface of the hole is polished.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前記従来の各種材料からなるガイド板の欠点を
除去、改善することを目的とし、ガイド板に本来要求さ
れる高い寸法精度、耐摩耗性、耐久強度および使用時の
粉脱落防止などの諸特性をいずれも兼備した多孔買戻化
珪素ズ焼結体の開放気孔部に金属シリコンを充填した複
合体により構成されたワイヤードットブンリー用ガイド
板とその製造方法を提供するものである。
The present invention aims to eliminate and improve the drawbacks of the conventional guide plates made of various materials, and to improve the high dimensional accuracy, abrasion resistance, durable strength, and prevention of powder falling off during use, which are originally required for guide plates. The present invention provides a guide plate for a wire dot bunly made of a composite material in which the open pores of a porous repurchased silicon sintered body are filled with metallic silicon and has all of the various characteristics, and a method for manufacturing the same.

すなわち、前記目的に対し、開放気孔を有する多孔質体
であって、実質的に焼成収縮させることなく所定形状の
ままで焼結された炭化珪素質焼結体の開放気孔部に金属
シリコンを充填させた複合体により寸法精度が高く実用
耐久強度および耐摩耗性に優れたガイド板とその製造方
法を提供するものである。
That is, for the above purpose, metal silicon is filled into the open pores of a silicon carbide sintered body, which is a porous body having open pores and is sintered in a predetermined shape without substantially shrinking during firing. The present invention provides a guide plate with high dimensional accuracy, excellent practical durability strength and wear resistance, and a method for manufacturing the same.

〔問題点を解決するための手段〕 本発明によれば、開放気孔を有する多孔質であって、実
質的に収縮させることなく所定形状で焼結させた炭化珪
素質焼結体を基材とすることを必要とする。
[Means for Solving the Problems] According to the present invention, a porous silicon carbide sintered body having open pores and sintered into a predetermined shape without substantially shrinking is used as a base material. need to do.

一般に炭化珪素質焼結体は高い硬度、高い耐熱衝撃性並
びに高温での高い強度を有し、耐摩耗性、耐酸化性、耐
蝕性に優れ、良好な熱伝導率、低い熱膨張率などの化学
的および物理的に優れた緒特性を有するのでメカニカル
シールや軸受けなどの耐摩耗摺動材料又は耐蝕性の要求
されるポンプ部品などの耐久材料として広く使用されて
いる。
In general, silicon carbide sintered bodies have high hardness, high thermal shock resistance, and high strength at high temperatures, and have excellent wear resistance, oxidation resistance, and corrosion resistance, and have good thermal conductivity and low coefficient of thermal expansion. Because it has excellent chemical and physical properties, it is widely used as a wear-resistant sliding material for mechanical seals and bearings, and as a durable material for pump parts that require corrosion resistance.

しかしながら、反面高い硬度を有する炭化珪素質焼結体
は、前記アルミナ焼結体、ルビー又はサファイヤなどの
ように機械加工などによる仕上加工に困難を伴い高価と
なる欠点がある。特にワイヤードットプリンター用ガイ
ド板のように、例えば縦寸法が6wnxで、横寸法が3
ff、板厚さが1ffであって、しかも第1図および第
2図に例示するように、直径が200〜3000μm位
の穴が9〜24箇位明けられているものは、仕上加工費
が高価となる欠点がある。
However, silicon carbide sintered bodies having high hardness, like the alumina sintered bodies, ruby, or sapphire, have the disadvantage that they are difficult to finish by machining and are expensive. Especially for guide plates for wire dot printers, for example, the vertical dimension is 6wnx and the horizontal dimension is 3.
ff, the plate thickness is 1 ff, and as illustrated in Figures 1 and 2, the finishing cost is low for a plate with 9 to 24 holes with a diameter of 200 to 3000 μm. It has the disadvantage of being expensive.

そこで本発明は、実質的に焼成収縮を生じない方法で焼
結された炭化珪素質焼結体、すなわち開放気孔を有する
多孔質体であって、実質的に生成形体で形成された第1
図または第2図に例示するような形状で前記の形状寸法
を有する多数の成形体を殆んど焼結収縮を生じさせるこ
となく所定形状のままで焼結し、機械加工などの仕上加
工を実質的に必要としない多孔質の炭化珪素質焼結体を
基材とするものである。
Therefore, the present invention provides a silicon carbide sintered body sintered by a method that does not substantially cause firing shrinkage, that is, a porous body having open pores, and a first
A large number of molded bodies having the shapes and dimensions described above as illustrated in Figure 2 or Figure 2 are sintered in the predetermined shape with almost no sintering shrinkage, and then subjected to finishing processing such as machining. The base material is a porous silicon carbide sintered body that does not require substantially any porous material.

このような炭化珪素質焼結体をガイド板の基材に使用す
れば、従来のアルミナ焼結体やルビー又はサファイヤな
どのように比較的高い硬度の材料を仕上加工する必要は
なく、少なくとも加工費に要する分は安価に製造できる
If such a silicon carbide sintered body is used as the base material of the guide plate, there is no need to finish finishing materials with relatively high hardness such as conventional alumina sintered bodies, ruby, or sapphire. The amount required can be manufactured at a low cost.

また、炭化珪素質焼結体自体が有する本来の緒特性、特
に高い硬度で耐摩耗性に優れ、インクやその他の化学薬
品などに対する耐蝕性にも優れた特性をそのまま活用さ
せることもできる。
Further, the inherent properties of the silicon carbide sintered body itself, particularly its high hardness and excellent wear resistance, as well as its excellent corrosion resistance against ink and other chemicals, can be utilized as is.

また本発明によれば、前記所定形状で焼結した炭化珪素
質焼結体の前記開放気孔部に金属シリコンを含浸などの
方法により充填した複合体とすることを必要とする。金
属シリコンは炭化珪素質焼結体となじみがよく、多孔質
体である炭化珪素質焼結体の耐久強度を向上させること
ができるばかりでなく、金属シリコン自体も耐摩耗性お
よび耐蝕性に優れた特性を有するので有利に使用できる
ものである。
Further, according to the present invention, it is necessary to provide a composite body in which the open pores of the silicon carbide sintered body sintered in the predetermined shape are filled with metallic silicon by a method such as impregnation. Metallic silicon is compatible with silicon carbide sintered bodies, and not only can it improve the durability and strength of the porous silicon carbide sintered bodies, but also metal silicon itself has excellent wear resistance and corrosion resistance. It can be used advantageously because of its characteristics.

そして前記金属シリコンの充填率は、前記開放気孔10
0容量部に対し、少なくとも50容量部であることが好
ましい。その理由は、金属シリコンが50容量部以下で
あると多孔質の炭化珪素質焼結体の開放気孔にプリンタ
ー用インキが浸入する量が過剰となるばかりでなく、炭
化珪素質焼結体の耐久強度を十分に向上させることがで
きず、耐摩耗性を向上させかつ焼結体の粉脱落を十分に
防止させろことができないからである。
The filling rate of the metal silicon is the open pores 10
Preferably, it is at least 50 parts by volume compared to 0 parts by volume. The reason for this is that if the amount of metallic silicon is less than 50 parts by volume, not only will the amount of printer ink that penetrates into the open pores of the porous silicon carbide sintered body become excessive, but also the durability of the silicon carbide sintered body will be reduced. This is because the strength cannot be sufficiently improved, the abrasion resistance cannot be improved, and powder falling off of the sintered body cannot be sufficiently prevented.

また、前記炭化珪素質焼結体は、その結晶の平均粒径が
5μm以下であることが好しい。前記平均粒径が5μm
を超えると焼結体表面の面粗度が大きくなり、ガイド板
表面が平滑となり難く、しかも焼結体自体の寸法精度が
劣化するからである。
Further, it is preferable that the silicon carbide sintered body has an average grain size of crystals of 5 μm or less. The average particle size is 5 μm
This is because, if it exceeds this value, the surface roughness of the sintered body surface will increase, making it difficult for the guide plate surface to become smooth, and furthermore, the dimensional accuracy of the sintered body itself will deteriorate.

そして前記炭化珪素質焼結体の密度は、1.4〜2−6
 f/c4であることが好ましい。前記密度が1、41
7dよりも小さい焼結体は、炭化珪素の粒子相互の結合
箇所が少なくなるため十分な耐久強度を有する焼結体と
なすことが困難であるからであり、一方2.6f/dよ
り大きな焼結体はそれに見合った生成形体の密度とする
ことが極めて困難であって現実的でないからである。
The density of the silicon carbide sintered body is 1.4 to 2-6.
Preferably it is f/c4. The density is 1.41
This is because a sintered body smaller than 7d has fewer bonding points between silicon carbide particles, making it difficult to make a sintered body with sufficient durable strength.On the other hand, a sintered body smaller than 2.6f/d This is because it is extremely difficult and impractical to obtain a density of the formed body corresponding to the density of the aggregate.

次に本発明のガイド板の製造方法について説明する。Next, a method for manufacturing a guide plate according to the present invention will be explained.

本発明によれば、炭化珪素粉末を主成分とするセラミッ
クス原料を所定形状の生成形体とし、前記生成形体を8
00°〜2100℃の温度範囲に制御した非酸化性雰囲
気下で実質的に前記生成形体の形状寸法を収縮させるこ
となく高い寸法精度の状態で焼結して得られる開放気孔
を有する多孔質の炭化珪素質焼結体の前記開放気孔内に
金属シリコンを含浸させた複合体によりつくることを必
要とする。
According to the present invention, a ceramic raw material containing silicon carbide powder as a main component is formed into a predetermined shaped formed body, and the formed formed body is
A porous material having open pores obtained by sintering in a non-oxidizing atmosphere controlled at a temperature range of 00°C to 2100°C with high dimensional accuracy without substantially shrinking the shape of the formed body. It is necessary to make a composite body in which the open pores of a silicon carbide sintered body are impregnated with metallic silicon.

そして前記炭化珪素粉末は、平均粒径が5μm以下のβ
型炭化珪素微粉であることが好ましい。その理由は、5
μmより大きい粒度の炭化珪素は焼成収縮を抑制する上
では好ましいが、焼結体内の粒と粒との結合箇所が少な
(なるため、高強度の炭化珪素焼結体を得ることが困難
になるばかりでなく、表面の面粗度を劣化させるからで
ある。
The silicon carbide powder has an average particle size of 5 μm or less.
It is preferable to use type silicon carbide fine powder. The reason is 5.
Silicon carbide with a grain size larger than μm is preferable for suppressing firing shrinkage, but there are fewer bonding points between grains within the sintered body (this makes it difficult to obtain a high-strength silicon carbide sintered body). This is because it not only deteriorates the surface roughness of the surface.

ところで、前記炭化珪素の結晶系にはα型、β型および
非晶質のものがあるが、本発明によればその何れか、お
よびそれらの混合物をも使用することができ、なかでも
β型のものは本発明の目的とする5μm以下のものを微
粉末状で取得し易く。
Incidentally, the crystal systems of silicon carbide include α-type, β-type and amorphous, and according to the present invention, any of them or a mixture thereof can be used, and among them, β-type It is easy to obtain a powder having a diameter of 5 μm or less, which is the object of the present invention, in the form of a fine powder.

またβ型の結晶は粒子が比較的丸味を帯びており、被摺
動部材料を摩耗させず、面粗度が良好である。
In addition, β-type crystals have relatively rounded particles, do not abrade the material of the sliding part, and have good surface roughness.

しかも比較的高強度の焼結体を製造することができるt
こめ有利に使用することができ、なかでもβ型炭化珪素
を50重ffi%以上含有する炭化珪素粉末を使用する
ことが有利である。まtこ、前記出発原料は少くとも6
0重量%のβ型、2H型および非晶質の炭化ケイ素焼結
体を含有する炭化ケイ素の出発原料の1−;1.1!:
することが有利である。この理由はβ型結晶、2H型結
晶および非晶質の炭化ケイ素結晶は比較的低温で合成さ
れる低温安定型結晶であり、焼結に際し、その一部が4
H,6Hあるいは15R型等の高温安定型α型結晶に相
転移して、板状結晶を生じやすいばかりでなく、結晶の
成長性にも優れた特性を有しているからであり、特に6
0重量%以上のβ型炭化ケイ素からなる出発原料を用い
ることが有利である。
Moreover, it is possible to produce a sintered body with relatively high strength.
Among these, it is advantageous to use silicon carbide powder containing 50% by weight or more of β-type silicon carbide. Matoko, the starting materials are at least 6
1-; 1.1! of silicon carbide starting material containing 0% by weight of β-type, 2H-type and amorphous silicon carbide sintered body; :
It is advantageous to do so. The reason for this is that β-type crystals, 2H-type crystals, and amorphous silicon carbide crystals are low-temperature stable crystals that are synthesized at relatively low temperatures.
This is because not only does it easily undergo a phase transition to a high-temperature stable α-type crystal such as H, 6H or 15R type, forming plate-shaped crystals, but it also has excellent crystal growth properties.
It is advantageous to use a starting material consisting of more than 0% by weight of β-type silicon carbide.

また、本発明によれば、前記焼結に伴う収縮率は、実質
的に2%以下であって、生成形体の所定形状に近似の状
態で構成される高い寸法精度の複合体でつくられること
が好ましい。
Further, according to the present invention, the shrinkage rate due to the sintering is substantially 2% or less, and the composite body is made of a composite body with high dimensional accuracy and configured in a state that approximates the predetermined shape of the formed body. is preferred.

つまり、前述の如き寸法精度の高い焼結体を得る上で実
質的に収縮させることなく焼結する際の焼成収縮率は2
%以下であることが好ましく、なかでも、1%以下であ
ることがより好適である。
In other words, in order to obtain a sintered body with high dimensional accuracy as described above, the firing shrinkage rate when sintering without substantially shrinking is 2.
% or less, and more preferably 1% or less.

また、前記生成形体は800〜2100℃の温度範囲内
において焼成される。特に高強度の焼結体を製造する場
合には1700〜2100℃の温度範囲において、少な
くとも10分間雰囲気中のCOあるいはN2の少なくと
もいずれかのガス分圧が100Pa以上に維持された雰
囲気中で焼成されることが好ましい。その理由は、前記
温度範囲内において少なくとも10分間雰囲気中のCO
あるいはN2の少なくともいすかのガス分圧を100P
a以上とすることによって、ネックの成長を促進させ、
かつ炭化珪素の焼結時における焼成収縮を効果的に抑制
することができるからである。
Further, the formed body is fired within a temperature range of 800 to 2100°C. In particular, when manufacturing a high-strength sintered body, firing is performed in an atmosphere where the partial pressure of at least one of CO or N2 in the atmosphere is maintained at 100 Pa or more at a temperature range of 1700 to 2100°C for at least 10 minutes. It is preferable that The reason is that the CO in the atmosphere is kept in the temperature range for at least 10 minutes.
Or at least the gas partial pressure of N2 is 100P
By making it more than a, the growth of the neck is promoted,
This is also because firing shrinkage during sintering of silicon carbide can be effectively suppressed.

本発明の炭化珪素焼結体は前記生成形体を焼成雰囲気を
制御することのできる耐熱性容器内に装入し、焼成する
ことが有利である。このように耐熱性の容器内に装入し
て焼成雰囲気を制御しつつ焼成することが有利である理
由は、隣接する炭化珪素結晶同志の結合およびネックの
成長を促進させることができるからである。前述の如く
耐熱性の容器内に生成形体を装入して焼成雰囲気を制御
しつつ焼成することによりて隣接する炭化珪素結晶同志
の結合およびネックの成長を促進させることができる理
由は、炭化珪素粒子間における炭化珪素の蒸発−再凝縮
および/または表面拡散による移動を促進することがで
きるためと考えられる。
It is advantageous for the silicon carbide sintered body of the present invention to be fired by charging the formed body into a heat-resistant container in which the firing atmosphere can be controlled. The reason why it is advantageous to charge the material into a heat-resistant container and fire it while controlling the firing atmosphere is that it can promote the bonding of adjacent silicon carbide crystals and the growth of necks. . The reason why bonding between adjacent silicon carbide crystals and neck growth can be promoted by charging the formed body into a heat-resistant container and firing while controlling the firing atmosphere as described above is because silicon carbide This is thought to be because movement of silicon carbide between particles due to evaporation-recondensation and/or surface diffusion can be promoted.

前記耐熱性容器としては、黒鉛や炭化珪素などの材質お
よびこれらと同等の機能を有するものを有利に使用する
ことができる。
As the heat-resistant container, materials such as graphite and silicon carbide, and materials having functions equivalent to these materials can be advantageously used.

また、前記生成形体を焼成雰囲気を制御することのでき
る耐熱性容器中に装入して焼成することにより、焼成時
における炭化珪素の揮散率を5重量%以下に制御するこ
とが有利である。
Furthermore, it is advantageous to control the volatilization rate of silicon carbide to 5% by weight or less during firing by charging the formed body into a heat-resistant container in which the firing atmosphere can be controlled and firing it.

また、本発明によれば、前記生成形体は800〜210
0℃の温度範囲内で焼成される。その理由は前記温度が
800″Cより低いと粒と粒とを結合するネックを充分
に発達させろことが困難で、高い強度を有する焼結体を
得ることができず、一方2100℃より高いと一旦成長
したネックのうち一定の大きさよりも小さなネックがく
びれだ形状となったり、著しい場合には消失したりして
、むしろ強度が低くなるし、また一部の粒子が粗大化す
るため表面の面粗度が劣化するからである。
Further, according to the present invention, the produced body has a particle size of 800 to 210
It is fired within a temperature range of 0°C. The reason for this is that if the temperature is lower than 800"C, it is difficult to sufficiently develop the necks that connect the grains, making it impossible to obtain a sintered body with high strength. On the other hand, if the temperature is higher than 2100"C Once a neck has grown, a neck smaller than a certain size becomes constricted, or in severe cases disappears, resulting in a decrease in strength, and some particles become coarser, causing the surface to deteriorate. This is because the surface roughness deteriorates.

なお、前記生成形体は非酸化性雰囲気中で実質的に収縮
させることなく焼成されろ。その理由は、焼結時におけ
る収縮は焼結体の強度を向上させる上では好ましいが、
一般的には焼結時の収縮量は生成形体の密度に大きく影
響するため、均一な収縮を生成させるためには均一な密
度を有する生成形体を得ることが重要である。しかし、
そのような均一な密度を有する生成形体を得ることは役
めて困難であるため1本発明の目的とする極めて寸法精
度の高い焼結体を焼成収縮を生起させて製造することが
困難であるからである。
Note that the formed body is fired in a non-oxidizing atmosphere without substantially shrinking. The reason is that shrinkage during sintering is desirable for improving the strength of the sintered body, but
Generally, the amount of shrinkage during sintering greatly affects the density of the formed body, so in order to generate uniform shrinkage, it is important to obtain a formed body with uniform density. but,
Since it is extremely difficult to obtain a green body with such uniform density, it is difficult to produce a sintered body with extremely high dimensional accuracy, which is the object of the present invention, by causing firing shrinkage. It is from.

また、本発明の製造方法によれば、前記炭化珪素焼結体
を製造するための生成形体は40〜80容量%の密度を
有するものであることが有利である。
Further, according to the manufacturing method of the present invention, it is advantageous that the formed body for manufacturing the silicon carbide sintered body has a density of 40 to 80% by volume.

その理由は、前記生成形体の密度が40容量%より低い
と炭化珪素粒子相互の接触点が少ないため、必然的に結
合箇所が少なくなり強度を有する焼結体を得ることが困
難であるからであh、一方80容量%より高い生成形体
は製造することが困難であるからである。
The reason for this is that if the density of the formed body is lower than 40% by volume, there will be fewer points of contact between the silicon carbide particles, which will inevitably result in fewer bonding points, making it difficult to obtain a strong sintered body. Ah, on the other hand, because formed forms higher than 80% by volume are difficult to manufacture.

なお、炭化珪素以外の炭化物においても炭化珪素と同様
の焼結機構を有するものであれば、本発明と同様に寸法
精度および強度に優れた焼結体を得ることができる。
Note that, as long as carbides other than silicon carbide have a sintering mechanism similar to that of silicon carbide, it is possible to obtain a sintered body with excellent dimensional accuracy and strength as in the present invention.

次に本発明を実施例および比較例について説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

〔実施例〕〔Example〕

実施例1 出発原料として使用した炭化珪素粉末は94.6重量%
がβ型結晶で残部が実高的に2H型結晶よりなり、0.
29重量%の遊離炭素、0.17重量%の酸素、0.0
3重量%の鉄、0.03重量%のアルミニウムを主とし
て含有し、0.28μmの平均粒径を有しており、ホウ
素は検出されなかった。
Example 1 Silicon carbide powder used as starting material was 94.6% by weight
is a β-type crystal and the rest is a 2H-type crystal in terms of actual height, and 0.
29 wt% free carbon, 0.17 wt% oxygen, 0.0
It mainly contained 3% by weight of iron, 0.03% by weight of aluminum, and had an average particle size of 0.28 μm, and no boron was detected.

前記炭化珪素粉末100重量部に対し、ポリビニルアル
コール5N量部、水300重量部を配合し、ボールミル
中で5時間混合した後乾燥した。
5N parts of polyvinyl alcohol and 300 parts by weight of water were blended with 100 parts by weight of the silicon carbide powder, mixed in a ball mill for 5 hours, and then dried.

この乾燥混合物を適量採取し、顆粒化した後金属製押し
型を用いて3000 kQ/dの圧力で成形した。
An appropriate amount of this dry mixture was taken, granulated, and then molded using a metal mold at a pressure of 3000 kQ/d.

この生成形体の寸法は6111X 3 flX厚さIM
で、密度は2.Q f/cd (62容量%)であった
。そして前記生成形体に超硬ドリルで直径0.2flの
穴を第1図に示すように9個あけた。
The dimensions of this generated feature are 6111 x 3 fl x thickness IM
So, the density is 2. Q f/cd (62% by volume). Then, nine holes with a diameter of 0.2 fl were drilled in the formed body using a carbide drill, as shown in FIG.

前記生成形体を多数つくり、黒鉛製ルツボに装入し、タ
ンマン型焼成炉を使用して1気圧の主としてアルゴンガ
ス雰囲気中で焼成した。昇温過程は450°σ時間で1
900℃まで昇温し、最高温度1900℃で10分間保
持した。焼結中のCOガス分圧は常温〜1700℃がa
opa以下、1700℃よりも高温域では300±50
Paの範囲内となるようにアルゴンガス流量を適宜調整
して制御した。
A large number of the above-mentioned green bodies were produced, placed in a graphite crucible, and fired in a Tammann-type firing furnace in an atmosphere of mainly argon gas at 1 atm. The heating process is 1 in 450°σ hours.
The temperature was raised to 900°C and maintained at the maximum temperature of 1900°C for 10 minutes. The CO gas partial pressure during sintering is from room temperature to 1700℃.
300±50 at temperatures below opa and higher than 1700℃
The argon gas flow rate was appropriately adjusted and controlled so that it was within the range of Pa.

得られた焼結体の密度は2.05f/dで、その結晶構
造は走査型電子顕微鏡によって観察したところ、多方向
に複雑に絡み合った三次元構造を有しており、生成形体
に対する線収縮率はいずれの方向に対しても0.25±
0.02%の範囲内で、焼結体の寸法精度は±0.01
5fi以内であった。また、この焼結体の平均曲げ強度
は18.5#/−と極めて高い値を示した。
The density of the obtained sintered body was 2.05 f/d, and its crystal structure, when observed using a scanning electron microscope, had a three-dimensional structure intricately intertwined in multiple directions. The rate is 0.25± in either direction.
Within the range of 0.02%, the dimensional accuracy of the sintered body is ±0.01
It was within 5fi. Further, the average bending strength of this sintered body was as high as 18.5#/-.

このようにして得られた炭化珪素質焼結体の開放気孔部
に金属シリコンを95容量%含浸し複合体を得ることに
より、第1図に例示するような形状のガイド板を得た。
The open pores of the silicon carbide sintered body thus obtained were impregnated with 95% by volume of metallic silicon to obtain a composite, thereby obtaining a guide plate having a shape as illustrated in FIG.

そしてこのガイ板の表面粗さを測定したところ2μmR
maxであり、これをワイヤードットブンターのガイド
仮に供したところ、従来のプラスチック製ガイド板が1
.5億ドツト、ガラス製のガイド板が3億ドツトである
のに対し。
The surface roughness of this guy plate was measured to be 2μmR.
max, and when this was temporarily used as a guide for a wire dot bunter, the conventional plastic guide plate was 1
.. 500 million dots, compared to 300 million dots for glass guide plates.

本発明のガイド板は5億ドツト以上と優れた耐久性があ
ることが判った。このように本発明によれば耐摩耗性な
どの耐久使用期間が従来のそれに比し約2〜3倍になっ
た。
The guide plate of the present invention was found to have excellent durability, exceeding 500 million dots. As described above, according to the present invention, the durable use period such as wear resistance is approximately 2 to 3 times longer than that of the conventional method.

実施例2 実施例1と同様の操作を繰返して焼結体を製造した。結
果は第1表に示した。
Example 2 The same operation as in Example 1 was repeated to produce a sintered body. The results are shown in Table 1.

第1表に示した結果よりわかるように線収縮率は最大で
も(1,253±0.022%程度であり、実施例1に
示した焼結条件によれば線収縮率を0.25%に設定し
て生成形体を成形し焼結を行うことにより、寸法精度が
±0.02ff以内の極めて寸法精度の高い焼結体を容
易に製造することが可能であることが確認された。その
後、実施例1に準じて本発明のガイド板を得た。なお、
使用結果も実施例1とほぼ同様であった。
As can be seen from the results shown in Table 1, the linear shrinkage rate is approximately 1,253±0.022% at the maximum, and according to the sintering conditions shown in Example 1, the linear shrinkage rate was 0.25%. It was confirmed that by shaping and sintering the formed body with the settings set to A guide plate of the present invention was obtained according to Example 1.
The usage results were also almost the same as in Example 1.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明のガイド枚用炭化珪素質焼結体
は実質的に収縮を生じさせることなく焼結されたもので
あって、その開放気孔部に金属シリコンを含浸充填させ
た複合体からなるガイド板は寸法精度および耐久強度に
優れており、格別の機械加工を施すことなく安価に供給
できるものである。
As described above, the silicon carbide sintered body for guide plates of the present invention is sintered without substantially shrinking, and is a composite whose open pores are impregnated and filled with metallic silicon. The guide plate made of this material has excellent dimensional accuracy and durable strength, and can be supplied at low cost without special machining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明のワイヤードットプリンタ
ー用ガイド板の斜視図である。
1 and 2 are perspective views of a guide plate for a wire dot printer according to the present invention.

Claims (1)

【特許請求の範囲】 1、開放気孔を有する多孔質体であって、実質的に収縮
させることなく所定形状で焼結させた炭化珪素質焼結体
の前記開放気孔内に金属シリコンが充填された複合体か
らなるワイヤードットプリンター用ガイド板。 2、前記炭化珪素質焼結体は、その結晶の平均粒径が5
μm以下で密度が1.4〜2.6g/cm^2である特
許請求の範囲第1項記載のガイド板。 3、前記金属シリコンの充填率は、前記開放気孔100
容量部に対し、少なくとも50容量部である特許請求の
範囲第1項記載のガイド板。 4、炭化珪素粉末を主成分とするセラミックス原料を所
定形状の生成形体とし、前記生成形体を800℃〜21
00℃の温度範囲に制御した非酸化性雰囲気下で実質的
に前記生成形体の形状寸法を収縮させることなく高い寸
法精度の状態で焼結して得られる開放気孔を有する多孔
質の炭化珪素質焼結体の前記開放気孔内に金属シリコン
を含浸させた複合体によりつくることを特徴とするワイ
ヤードットプリンター用ガイド板の製造方法。 5、前記炭化珪素粉末は、平均粒径が5μm以下のβ型
炭化珪素微粉である特許請求の範囲第4項記載の製造方
法。 6、前記焼結に伴う収縮率は、実質的に2%以下であっ
て、生成形体の所定形状に近似の状態で構成される高い
寸法精度の複合体でつくられる特許請求の範囲第4項記
載の製造方法。
[Scope of Claims] 1. A porous body having open pores, the open pores of which are sintered into a predetermined shape without substantially shrinking, and the open pores of which are filled with metallic silicon. A guide plate for wire dot printers made of a composite material. 2. The silicon carbide sintered body has an average crystal grain size of 5.
The guide plate according to claim 1, which has a density of 1.4 to 2.6 g/cm^2 in micrometers or less. 3. The filling rate of the metal silicon is the open pores 100
The guide plate according to claim 1, wherein the guide plate is at least 50 parts by volume. 4. A ceramic raw material containing silicon carbide powder as a main component is formed into a predetermined shape, and the formed body is heated at 800°C to 21°C.
A porous silicon carbide material having open pores obtained by sintering the formed body with high dimensional accuracy without substantially shrinking the shape and dimensions of the formed body in a non-oxidizing atmosphere controlled at a temperature range of 0.000C. A method for manufacturing a guide plate for a wire dot printer, characterized in that the guide plate for a wire dot printer is made from a composite body in which the open pores of a sintered body are impregnated with metal silicon. 5. The manufacturing method according to claim 4, wherein the silicon carbide powder is β-type silicon carbide fine powder having an average particle size of 5 μm or less. 6. The shrinkage rate due to the sintering is substantially 2% or less, and the composite body is made of a highly dimensionally accurate composite body that approximates the predetermined shape of the formed body. Manufacturing method described.
JP380985A 1985-01-11 1985-01-11 Guide plate for wire dot printer and manufacture thereof Granted JPS61162367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP380985A JPS61162367A (en) 1985-01-11 1985-01-11 Guide plate for wire dot printer and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP380985A JPS61162367A (en) 1985-01-11 1985-01-11 Guide plate for wire dot printer and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61162367A true JPS61162367A (en) 1986-07-23
JPH0442990B2 JPH0442990B2 (en) 1992-07-15

Family

ID=11567517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP380985A Granted JPS61162367A (en) 1985-01-11 1985-01-11 Guide plate for wire dot printer and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61162367A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416221A (en) * 1977-07-06 1979-02-06 Suwa Seikosha Kk Compact printer
JPS5689962A (en) * 1979-12-25 1981-07-21 Ogura Houseki Seiki Kogyo Kk Guide plate for wire dot printer
JPS59153234U (en) * 1983-03-31 1984-10-15 東芝テック株式会社 dot printer head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416221A (en) * 1977-07-06 1979-02-06 Suwa Seikosha Kk Compact printer
JPS5689962A (en) * 1979-12-25 1981-07-21 Ogura Houseki Seiki Kogyo Kk Guide plate for wire dot printer
JPS59153234U (en) * 1983-03-31 1984-10-15 東芝テック株式会社 dot printer head

Also Published As

Publication number Publication date
JPH0442990B2 (en) 1992-07-15

Similar Documents

Publication Publication Date Title
US3853566A (en) Hot pressed silicon carbide
US5334562A (en) Composite ceramic articles
US4005235A (en) Dense sintered boron carbide containing beryllium carbide
US5656213A (en) Process for the production of carbon-filled ceramic composite material
JPWO2005030674A1 (en) Wear-resistant member made of silicon nitride and method of manufacturing the same
EP0170889B1 (en) Zrb2 composite sintered material
JP5362758B2 (en) Wear resistant parts
JPS61162367A (en) Guide plate for wire dot printer and manufacture thereof
JP3498989B2 (en) Silicon carbide based composite material and method for producing the same
JPH0520381B2 (en)
JP2511696B2 (en) High toughness aluminum oxide based sintered body and method for producing the same
JPH0520382B2 (en)
JPH059055A (en) Ceramics-carbon system composite material, its manufacture and sliding component
JP3853438B2 (en) Method for producing sintered silicon nitride
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
JP4217278B2 (en) Method for producing metal-ceramic composite material
JPS61275182A (en) Support member of ceramic composite body
JP2000144301A (en) Tungsten carbide sintered body and its production
JPH09155415A (en) Ceramic roller
JPS62138377A (en) Silicon carbide base composite material
CN109485422A (en) A kind of in-situ preparation SiC lath activeness and quietness tantalum carbide hafnium diphase ceramic material and preparation method thereof
JP3735397B2 (en) Titanium nitride sintered body and method for producing the same
JPH0780708B2 (en) High strength aluminum oxide based sintered body and method for producing the same
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
JPS60235777A (en) Guide plate for wire dot printer