JPS6116228A - Suction device for multivalve type engine - Google Patents

Suction device for multivalve type engine

Info

Publication number
JPS6116228A
JPS6116228A JP59138578A JP13857884A JPS6116228A JP S6116228 A JPS6116228 A JP S6116228A JP 59138578 A JP59138578 A JP 59138578A JP 13857884 A JP13857884 A JP 13857884A JP S6116228 A JPS6116228 A JP S6116228A
Authority
JP
Japan
Prior art keywords
intake
suction
port
swirl
ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59138578A
Other languages
Japanese (ja)
Other versions
JPH0522045B2 (en
Inventor
Michinobu Ikeda
池田 道信
Shuichi Kawamura
修一 川村
Yoshihisa Kaneda
金田 慶久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59138578A priority Critical patent/JPS6116228A/en
Publication of JPS6116228A publication Critical patent/JPS6116228A/en
Publication of JPH0522045B2 publication Critical patent/JPH0522045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To aim at improvements in combustibility in time of low load with a simple structure, by forming at least one unit, among plural suction ports being opened to one combustion chamber, into a swirl port in type and setting up it in a specific position, while bending a suction passage to some extent. CONSTITUTION:Two suction ports 4a and 4b are formed respectively in each combustion chamber 3 in case of plural cylinders, while a suction valve 6 is set up in each of these suction ports 4a and 4b. In this case, one side suction port 4a is made to open toward the tangential direction of a cylinder and to be formed into a swirl port leading air into the tangential direction, while it is set up on an almost nearly extension line of the center axis of a suction passage 9. And, a suction manifold 8 is formed in bend so as to cause its curvature center to be situated at the opposite side to the other side suction port 4b looking from the suction port 4a. With this constitution, suction dynamic pressure is given to the swirl port 4a, and a suction swirl is formed up without installing a complex valve mechanism and a control system, thus combustibility in time of low load is well improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、多弁式エンジンの吸気装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to an intake system for a multi-valve engine.

〔従来技術〕[Prior art]

近年、自動車用エンジンにおいては、エンジンの運転効
率改善の観点等から、エンジンに吸気を効率よく供給す
るようにしたものが種々開発されており、その1例とし
て、多弁式エンジンの吸気装置が知られている。即ち、
これは、1つの燃焼室に対して複数の吸%”、−トを開
口させるとともに、各吸気ポートに吸気弁を配置し、複
数の吸気ポートから吸気を供給して充填効率を向上させ
、もってエンジンの出力アンプを図るようにしたもので
ある。
In recent years, various types of automobile engines have been developed that efficiently supply intake air to the engine from the perspective of improving engine operating efficiency.One example is the intake system for multi-valve engines. It is being That is,
This allows multiple intake ports to be opened to one combustion chamber, and an intake valve is placed in each intake port to supply intake air from multiple intake ports to improve charging efficiency. This is designed to increase the output power of the engine.

ところでこの多弁式エンジンの吸気装置は、吸入空気量
の多い高負荷運転時における高出力化を図るという点で
有利であるが、その構造上、吸入空気量の少ない低負荷
時には吸気流速が遅く、燃□焼性が低下して燃費やエミ
ッションの悪化を招来するという不具合がある。
By the way, this multi-valve engine intake system is advantageous in that it can achieve high output during high-load operation with a large amount of intake air, but due to its structure, the intake flow rate is slow during low-load operations with a small amount of intake air. There is a problem in that flammability decreases, leading to deterioration in fuel efficiency and emissions.

そこで従来のこの種の吸気装置では、上述の不具合を解
消するため、例えば特開昭57−70914号公報に示
されるように、複数の吸気ポートのうちの少なくとも1
つをスワールポートに形成する一方、残りの吸気ポート
に連通ずる吸気通路の途中に閉塞弁(シャッタバルブ)
を介設し、高負荷運転時には閉塞弁を開いて吸気通路の
通路面積を確保し、もって高出力化を図り、′一方低負
荷時には閉塞弁を閉じて吸気通路の通路面積を絞り、吸
気流速を高めて燃焼室内に吸気スワールを生成させ、も
って燃焼性を改善するようにしていた。
Therefore, in order to solve the above-mentioned problems, in the conventional intake device of this type, at least one of the plurality of intake ports is
One is formed as a swirl port, while a blockage valve (shutter valve) is placed in the middle of the intake passage that communicates with the remaining intake ports.
During high-load operation, the blockage valve is opened to secure the passage area of the intake passage, thereby achieving high output. On the other hand, during low-load operation, the blockage valve is closed to narrow the passage area of the intake passage and reduce the intake flow rate. This was done to increase the intake air swirl in the combustion chamber, thereby improving combustibility.

しかしながらこの従来の吸気装置では、運転状態に応じ
て閉塞弁を開閉制御して高負荷時における出力アップと
低負荷時における燃焼性の改善とを実現するようにして
いるので、複雑な弁機構ばかりでなく、複雑な制御系を
も必要とするという問題があった。
However, in this conventional intake system, the closure valve is controlled to open and close depending on the operating condition to increase output at high loads and improve combustibility at low loads, so the valve mechanism is complicated. However, there was a problem in that it also required a complicated control system.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる問題点に鑑み、複雑な弁機構や制御
系を用いることなく、高負荷時における出力アップと低
負荷時における燃焼性の改善とを実現できる多弁式エン
ジンの吸気装置を提供せんとするものである。
In view of these problems, the present invention provides an intake system for a multi-valve engine that can increase output at high loads and improve combustibility at low loads without using a complicated valve mechanism or control system. That is.

〔発明の構成〕[Structure of the invention]

そして本件発明者は、弁機構を用いることなく、高負荷
時における出力アンプと低負荷時における燃焼性の改善
とを実現できる装置を開発せんと鋭意研究した結果、吸
気通路の形状等をうまく設定し、スワールポートに吸気
動圧が加わるようにしてやればよいことを見い出した。
The inventor of the present invention conducted extensive research to develop a device that could achieve output amplification during high loads and improvement of combustibility during low loads without using a valve mechanism, and as a result, the shape of the intake passage, etc. was well set. However, I discovered that it would be better to apply intake dynamic pressure to the swirl port.

即ち、通常この種の吸気装置では、高負荷時における高
出力化の観点から、吸気通路の通路面積を確保すること
に重点が置かれ、複数の全吸気ポートあるいはスワール
ポート以外の吸気ポートに吸気動圧が加わるように吸気
通路の形状等を設定しており、そのため上述のように低
負荷時には閉塞弁によって吸気通路を絞り、吸入空気流
をスワールポートに案内してやる必要があった訳である
In other words, in this type of intake system, from the perspective of achieving high output under high loads, emphasis is placed on securing the passage area of the intake passage, and the intake system is designed to ensure that the intake passage has a sufficient passage area, and that intake air is supplied to all intake ports or to intake ports other than the swirl port. The shape of the intake passage is designed to apply dynamic pressure, and as a result, as mentioned above, when the load is low, it is necessary to throttle the intake passage with a closure valve and guide the intake air flow to the swirl port.

これに対しスワールポートに吸気動圧が加わるように吸
気通路の形状等を設定した場合、吸入空気量の少ない低
負荷時には吸入空気の大部分はスワールポートに流れ、
その結果別途弁機構を設けることなく吸気スワールを生
成でき、燃焼性を改善できるものである。しかるにこの
場合、高負荷時になって吸入空気量が増大した時に通路
抵抗が増大し、充填効率が低下するのではないがという
疑問が生じるが、吸入空気量が増大すると、吸入空気量
とスワールポートの通路抵抗との関係で、吸入空気はス
ワールポー1・のみではなく、残りの吸気ポートにも流
れ、これにより吸気通路の通路面積を確保して高エンジ
ン出方を保証できるものである。
On the other hand, if the shape of the intake passage is set so that intake dynamic pressure is applied to the swirl port, most of the intake air will flow to the swirl port at low loads with a small amount of intake air.
As a result, an intake swirl can be generated without providing a separate valve mechanism, and combustibility can be improved. However, in this case, the question arises as to whether passage resistance increases when the intake air volume increases under high load and the filling efficiency decreases.However, as the intake air volume increases, the intake air volume and swirl port increase. Due to the relationship with the passage resistance, the intake air flows not only through the swirl port 1, but also through the remaining intake ports, thereby securing the passage area of the intake passage and ensuring high engine output.

そこでこの発明は、多弁式エンジンの吸気装置において
、複数の吸気ポートのうちの少なくとも1つを、スワー
ルポートに形成するとともに、それを吸気通路の中心軸
線のほぼ延長線上に配置し、該吸気通路をその下流側で
分岐させて複数の吸気ポートに連通させ、かつ該吸気通
路をその曲率中心が上記スワールポートから見て残りの
吸気ポートと反対側に位置するように湾曲させ、これに
より吸気動圧をスワールポートに与えるようにしたもの
である。
Accordingly, the present invention provides an intake system for a multi-valve engine in which at least one of the plurality of intake ports is formed as a swirl port, and the swirl port is arranged substantially on an extension of the center axis of the intake passage. is branched on the downstream side to communicate with a plurality of intake ports, and the intake passage is curved so that its center of curvature is located on the opposite side of the remaining intake ports when viewed from the swirl port, thereby improving intake movement. It is designed to apply pressure to the swirl port.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図及び第2図は本発明の一実施例による多弁式エン
ジンの吸気装置を示す。図において、1は4気筒エンジ
ンで、該エンジンlのシリンダヘッド2には第1〜第4
気筒の各燃焼室3に開口して第1.第2の吸気ポート4
a、4b及び排気ポート5が形成され、該吸、排気ポー
ト4.a、4b。
1 and 2 show an intake system for a multi-valve engine according to an embodiment of the present invention. In the figure, 1 is a four-cylinder engine, and the cylinder head 2 of the engine 1 has first to fourth cylinders.
A first opening into each combustion chamber 3 of the cylinder. Second intake port 4
a, 4b and an exhaust port 5 are formed, and the intake and exhaust ports 4. a, 4b.

5にはその開口を開閉する吸気弁6及び排気弁が配設さ
れている。上記シリンダヘッド8には各燃焼室3に対面
して点火プラグ7が各々取付けられている。
5 is provided with an intake valve 6 and an exhaust valve for opening and closing the opening. Spark plugs 7 are respectively attached to the cylinder head 8 so as to face each combustion chamber 3.

また上記シリンダへソド2の側壁には吸気マニホールド
8下流端のフランジ部8aが固定されている。この吸気
マニホールド8は吸気通路9を構成するもので、該吸気
通路9はその下流側で隔壁9aによって2つに分岐され
て上記第1.第2の吸気ポート4a、4bに連通されて
いる。また上記吸気マニホールド8は各々上流側が上方
に湾曲されて側面略り字状に形成され、その上流端は号
−ジタンク10の底壁に連通接続され、該サージタンク
10の上流端にはスロットル弁11を内蔵したスロット
ルチャンバ12が接続されている。
Further, a flange portion 8a at the downstream end of the intake manifold 8 is fixed to the side wall of the cylinder head 2. This intake manifold 8 constitutes an intake passage 9, and the intake passage 9 is branched into two by a partition wall 9a on the downstream side thereof. It communicates with second intake ports 4a and 4b. Each of the intake manifolds 8 is curved upward on the upstream side to form an abbreviated shape on the side, and the upstream end thereof is connected to the bottom wall of the surge tank 10, and the upstream end of the surge tank 10 is connected to a throttle valve. A throttle chamber 12 having a built-in throttle valve 11 is connected thereto.

一方、上記吸気マニホールド8の下流端付近には燃料噴
射弁13が吸気通路9の中心軸線aから第1の吸気ポー
ト4a側にずらして設けられ、該燃料噴射弁13の噴射
方向く第1,2図の矢印A参照)は上記隔壁9aの先端
下部に向かうような方向に設定され、又その噴霧角(第
1.2図のB参照)は噴射燃料が第1.第2の吸気ポー
)4a。
On the other hand, near the downstream end of the intake manifold 8, a fuel injection valve 13 is provided offset from the central axis a of the intake passage 9 toward the first intake port 4a. The spray angle (see arrow A in FIG. 2) is set in such a direction as to point toward the lower tip of the partition wall 9a, and the spray angle (see arrow B in FIG. 1.2) is such that the injected fuel is in the first direction. 2nd intake port) 4a.

4bにほぼ均等に分配されるような角度に設定されてい
る。この燃料噴射弁13の上部は燃料のデリバリパイプ
14に挿入され、該デリバリパイプ14は吸気マニホー
ルド8に形成されたステー15にボルト16によって締
付固定され、これにより下肥燃料噴射弁13は吸気マニ
ホールド8に押圧固定されている。
The angle is set so that the light is almost evenly distributed to the 4b. The upper part of the fuel injection valve 13 is inserted into a fuel delivery pipe 14, and the delivery pipe 14 is tightened and fixed to a stay 15 formed in the intake manifold 8 with a bolt 16, so that the manure fuel injection valve 13 is inserted into the intake manifold 8. It is pressed and fixed to the manifold 8.

そして本装置においては、上記第1の吸気ポー)4aは
シリンダの接線方向に向けて開口されて該接線方向に吸
入空気を導くスワールポートに形成されるとともに、吸
気通路9の中心軸線aのほぼ延長線上に配置されている
。また吸気マニホールド8はその曲率中心が第1の吸気
ポー)4aからみて第2の吸気ポート4bと反対側に位
置するように湾曲形成されている。
In this device, the first intake port 4a is formed as a swirl port that is opened in the tangential direction of the cylinder and guides the intake air in the tangential direction, and is approximately parallel to the central axis a of the intake passage 9. placed on an extension line. The intake manifold 8 is curved so that its center of curvature is located on the opposite side of the second intake port 4b when viewed from the first intake port 4a.

次に動作について説明する。Next, the operation will be explained.

エンジンが作動すると、サージタンク10にはエンジン
の吸気負圧の作用によりスロットル開度に応じた量の吸
入空気が導入され、該吸入空気はサージタンク10から
吸気行程にある気筒の吸気マニホールド8内に吸入され
、該吸気マニホールド8内で燃料噴射弁13からの噴霧
燃料と混合され、燃焼室3内に供給される。
When the engine operates, an amount of intake air corresponding to the throttle opening is introduced into the surge tank 10 by the action of the engine's intake negative pressure, and the intake air is transferred from the surge tank 10 into the intake manifold 8 of the cylinder on the intake stroke. The fuel is mixed with the sprayed fuel from the fuel injection valve 13 in the intake manifold 8, and is supplied into the combustion chamber 3.

そしてエンジンの低負荷時においては、吸入空気量が少
ないことから、上記吸入空気は吸気マニホールド8の形
状の影響を受け、その大部分がスワールポートである第
1の吸気ポー1−48から燃焼室3内に(兵給され、こ
れにより燃焼室3内には吸気スワールが生成され、燃焼
が良好に行なわれることとなる。ところで上述のように
吸入空気の大部分が第1の吸気ポー)4aに流れると、
燃料噴射弁I3の噴射方向Aを隔壁9a先端下部に設定
していることから、噴射燃料の一部が第2の吸気ポート
4b側に供給され、吸入空気とうまく混合されないので
はないかという疑問が生じる。しかるにこの場合、燃料
噴射弁13の噴射方向Aは吸入空気流の影響を受けて第
1の吸気ポート4a −側に移り、従って噴射燃料は吸
入空気と良好に混合されるものである。
When the engine is under low load, the amount of intake air is small, so the intake air is influenced by the shape of the intake manifold 8, and most of it flows from the first intake port 1-48, which is the swirl port, into the combustion chamber. 3 (supplied to the troops, this creates an intake swirl in the combustion chamber 3, resulting in good combustion. By the way, as mentioned above, most of the intake air is in the first intake port) 4a When it flows to
Since the injection direction A of the fuel injection valve I3 is set to the lower part of the tip of the partition wall 9a, there is a question that some of the injected fuel may be supplied to the second intake port 4b side and not be mixed well with the intake air. occurs. However, in this case, the injection direction A of the fuel injection valve 13 moves toward the first intake port 4a − side under the influence of the intake air flow, so that the injected fuel is well mixed with the intake air.

一方、エンジンが高負荷状態になって吸入空気量が増大
すると、吸入空気は吸入空気量と第1の吸気ポート4a
の通路抵抗との関係で、上記第1の吸気ポート4aに加
え、第2の吸気ポート4bにも流れ、これにより燃焼室
3内には多量の吸入空気が円滑に供給され、充虜効率を
高めてエンジンの高出力を確保できる。
On the other hand, when the engine is in a high load state and the intake air amount increases, the intake air is divided between the intake air amount and the first intake port 4a.
Due to the passage resistance of This can be increased to ensure high engine output.

またその際、上述のように燃料噴射弁13の噴射方向A
を隔壁9aの先端下部に設定していることから、噴射燃
料は第1.第2の吸気ポート4a。
In addition, at that time, as described above, the injection direction A of the fuel injection valve 13 is
is set at the bottom of the tip of the partition wall 9a, so the injected fuel is injected into the first. Second intake port 4a.

4bに均等に分配され、又該噴射燃料の一部はポート内
壁に付着し、吸入空気流に巻き込まれるようにして良好
に霧化されることとなる。
4b, and a portion of the injected fuel adheres to the inner wall of the port and is drawn into the intake air flow, resulting in good atomization.

以上のような本実施例の装置では、スワールポートであ
る第1の吸気ポートに吸気動圧を与えるように構成した
ので、複雑な弁機構や制御系を設けることなく、吸気ス
ワールを生成でき、これにより低負荷時における燃焼性
を改善できる。またエンジンの高負荷時には吸入空気量
とスワールポートの通路抵抗との関係で、第2の吸気ポ
ートにも吸入空気が流れ、これにより吸気通路の通路面
積を確保して高出力化を保証できる。
The device of this embodiment as described above is configured to apply intake dynamic pressure to the first intake port, which is a swirl port, so that an intake swirl can be generated without providing a complicated valve mechanism or control system. This improves combustibility at low loads. Furthermore, when the engine is under high load, the intake air also flows to the second intake port due to the relationship between the intake air amount and the passage resistance of the swirl port, thereby ensuring the passage area of the intake passage and ensuring high output.

なお、」−記実施例では吸気ポートを2つ設けた場合に
ついて説明したが、これは2以J−であってもよい。
In addition, although the case in which two intake ports are provided has been described in the embodiment described in "-," there may be two or more intake ports.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る多弁式エンジンの吸気装置
によれば、複数の吸気ポートのうちの少なくとも1つを
、スワールポートに形成するとともに、それを吸気通路
の中心軸線のほぼ延長線−ヒに配置し、該吸気通路をそ
の下流側で分岐させて複数の吸気ポートに連通させ、か
つ該吸気通路をその曲率中心が上記スワールポートから
見て残りの吸気ポートと反対側に位置するように湾曲さ
せたので、複雑な弁機構や制御系を設けることなく、低
負荷時における燃焼性の改善と高負荷時における出力ア
ップとを達成できる効果がある。
As described above, according to the intake system for a multi-valve engine according to the present invention, at least one of the plurality of intake ports is formed as a swirl port, and the swirl port is formed at approximately the extension line of the center axis of the intake passage. The intake passage is arranged so that the intake passage is branched on the downstream side to communicate with a plurality of intake ports, and the center of curvature of the intake passage is located on the opposite side of the remaining intake ports when viewed from the swirl port. Since it is curved, it is possible to improve combustibility at low loads and increase output at high loads without providing a complicated valve mechanism or control system.

【図面の簡単な説明】[Brief explanation of drawings]

■線断面図である。 ■It is a line sectional view.

Claims (1)

【特許請求の範囲】[Claims] (1)1つの燃焼室に対して複数の吸気ポートを開口さ
せ、該各吸気ポートに吸気弁を配置してなる多弁式エン
ジンの吸気装置において、上記複数の吸気ポートのうち
の少なくとも1つを、シリンダの接線方向に向けて開口
させて該接線方向に吸入空気を導くスワールポートに形
成するとともに、該スワールポートを上記複数の吸気ポ
ートに吸入空気を供給する吸気通路の中心軸線のほぼ延
長線上に配置し、該吸気通路をその下流側で分岐させて
上記各吸気ポートに連通させ、かつ上記吸気通路をその
曲率中心が上記スワールポートから見て上記残りの吸気
ポートと反対側に位置するように湾曲させ、吸気動圧を
上記スワールポートに与えるように構成したことを特徴
とする多弁式エンジンの吸気装置。
(1) In an intake system for a multi-valve engine in which a plurality of intake ports are opened to one combustion chamber and an intake valve is arranged in each intake port, at least one of the plurality of intake ports is opened. , a swirl port is formed that opens in the tangential direction of the cylinder and guides intake air in the tangential direction, and the swirl port is located approximately on an extension of the central axis of the intake passage that supplies intake air to the plurality of intake ports. , the intake passage is branched on the downstream side to communicate with each of the intake ports, and the center of curvature of the intake passage is located on the opposite side of the remaining intake ports when viewed from the swirl port. 1. An intake device for a multi-valve engine, characterized in that the intake device is curved to apply intake dynamic pressure to the swirl port.
JP59138578A 1984-07-04 1984-07-04 Suction device for multivalve type engine Granted JPS6116228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138578A JPS6116228A (en) 1984-07-04 1984-07-04 Suction device for multivalve type engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138578A JPS6116228A (en) 1984-07-04 1984-07-04 Suction device for multivalve type engine

Publications (2)

Publication Number Publication Date
JPS6116228A true JPS6116228A (en) 1986-01-24
JPH0522045B2 JPH0522045B2 (en) 1993-03-26

Family

ID=15225399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138578A Granted JPS6116228A (en) 1984-07-04 1984-07-04 Suction device for multivalve type engine

Country Status (1)

Country Link
JP (1) JPS6116228A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283726A (en) * 2005-04-04 2006-10-19 Fuji Heavy Ind Ltd Intake system of vehicle-mounted engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981776U (en) * 1982-11-26 1984-06-02 トヨタ自動車株式会社 Intake system for fuel injection internal combustion engines
JPS6350531A (en) * 1986-08-13 1988-03-03 Showa Denko Kk Method for producing mixed cotton web and apparatus therefor
JPS6421345A (en) * 1987-07-16 1989-01-24 Fuji Photo Film Co Ltd Medium film for electrophoresis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981776U (en) * 1982-11-26 1984-06-02 トヨタ自動車株式会社 Intake system for fuel injection internal combustion engines
JPS6350531A (en) * 1986-08-13 1988-03-03 Showa Denko Kk Method for producing mixed cotton web and apparatus therefor
JPS6421345A (en) * 1987-07-16 1989-01-24 Fuji Photo Film Co Ltd Medium film for electrophoresis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283726A (en) * 2005-04-04 2006-10-19 Fuji Heavy Ind Ltd Intake system of vehicle-mounted engine
JP4628161B2 (en) * 2005-04-04 2011-02-09 富士重工業株式会社 Intake device for vehicle-mounted engine

Also Published As

Publication number Publication date
JPH0522045B2 (en) 1993-03-26

Similar Documents

Publication Publication Date Title
US4867109A (en) Intake passage arrangement for internal combustion engines
US5094210A (en) Intake and fuel/air mixing system for multi-cylinder, externally ignited internal combustion engines
JPS5932656B2 (en) engine intake system
JPS62284919A (en) Combustion chamber structure for engine
JPH048606B2 (en)
JPS5934850B2 (en) Intake system for multi-cylinder internal combustion engine
JPS6116228A (en) Suction device for multivalve type engine
JPH0413415Y2 (en)
JPH10252486A (en) Intake/exhaust device for internal combustion engine
GB2087479A (en) Ic engine mixture intake system
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JPH048295Y2 (en)
JPS5851375Y2 (en) Internal combustion engine intake system
JPS6131147Y2 (en)
JPH11107763A (en) Intake system for multiple cylinder engine
JPS5833371B2 (en) engine supercharging device
JPH0415945Y2 (en)
JPS5918148Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS61232382A (en) Air intake device of engine
JPS6356406B2 (en)
JPH0634579Y2 (en) Double intake valve engine
JPH036854Y2 (en)
JPH0634581Y2 (en) Double intake valve engine
JPS5813084Y2 (en) Intake system for multi-cylinder internal combustion engine
JPH0217689B2 (en)