JPS61162181A - Production of thermostable xylanase - Google Patents

Production of thermostable xylanase

Info

Publication number
JPS61162181A
JPS61162181A JP60003490A JP349085A JPS61162181A JP S61162181 A JPS61162181 A JP S61162181A JP 60003490 A JP60003490 A JP 60003490A JP 349085 A JP349085 A JP 349085A JP S61162181 A JPS61162181 A JP S61162181A
Authority
JP
Japan
Prior art keywords
xylanase
thermostable xylanase
xylan
heat
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60003490A
Other languages
Japanese (ja)
Other versions
JPH0121957B2 (en
Inventor
Yasushi Mitsuishi
三石 安
Hitoshi Yamabe
倫 山辺
Yoshiyuki Takasaki
高崎 義幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60003490A priority Critical patent/JPS61162181A/en
Priority to US06/720,416 priority patent/US4742005A/en
Priority to EP85302505A priority patent/EP0188050B1/en
Priority to DE8585302505T priority patent/DE3583603D1/en
Priority to DK166685A priority patent/DK164070C/en
Publication of JPS61162181A publication Critical patent/JPS61162181A/en
Priority to US07/011,043 priority patent/US4956291A/en
Publication of JPH0121957B2 publication Critical patent/JPH0121957B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To collect thermostable xylanase from a culture mixture, by cultivating a microorganism belonging to the genus Acremonium, capable of producing thermostable xylanase. CONSTITUTION:A microorganism such as Acromonium cellulolyticus TN (FERMBP-685), etc. belonging to the genus Acremonium, capable of producing thermostable xylanase, is cultivated. It is cultivated aerobically in a medium containing a carbon source such as xylan, cellulose, bagasse, etc., a nitrogen source such as a nitrate, etc. and a metallic salt. A supernatant liquid or an extracted solution obtained after the cultivation is used as a crude enzyme solution. Crude enzyme powder can be obtained by acetone precipitation method, etc., impure protein is denatured and precipitated by heat treatment and removed, to give an enzyme solution having only xylanase activity.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、アクレモニウム属菌による耐熱性キシラナー
ゼの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing heat-stable xylanase using bacteria of the genus Acremonium.

〔従来技術〕[Prior art]

キシラナーゼは、植物細胞壁を構成するヘミセルロース
のうちキシランに作用し、これを構成単糖であるキシロ
ースまたはキシロースの重合物であるキシロオリゴ糖に
分解する作用を持つもので、この作用をもとにした用途
に利用できる。すなわち、植物性バイオマス中のキシラ
ンに作用させることにより、飼料では可食性の改良、コ
ーヒー豆ではコーヒーエキスの抽出性の改善等に利用出
来る。また近年、石油代替資源としてバイオマスのエネ
ルギー化あるいは化学原料化法の開発が進められ、七ル
ラーゼによるバイオマスの酵素糖化法が検討されている
が、ここでも七ルラーゼにキシ、補角−ゼを併用するこ
とで、バイオマス中のグル(;1117t’スばかりで
はなくキシロースもまた資源化すC′とができる。更に
、セルロースをとりまくヘミセルロースのマトリクスを
キシラナーゼで分解することにより、七ルラーゼがセル
ロースに接近しやすくなり、セルロースの分解性を高め
る効果も期待できる。
Xylanase acts on xylan, which is part of the hemicellulose that makes up plant cell walls, and breaks it down into xylose, a constituent monosaccharide, or xylooligosaccharide, a polymer of xylose. Available for That is, by acting on xylan in plant biomass, it can be used to improve the edibility of feed, and the extractability of coffee extract from coffee beans. In addition, in recent years, the development of methods for converting biomass into energy or chemical raw materials as an alternative resource to petroleum has been progressing, and an enzymatic saccharification method of biomass using heptylulase is being considered. By doing this, not only glucose (; It can also be expected to have the effect of increasing the degradability of cellulose.

一方、こうしたキシラナーゼの利用に際して。On the other hand, when using such xylanase.

キシラナーゼには次のような二つの性質が求められる。The following two properties are required for xylanase.

すなわち、分解反応中に雑菌による汚染を防ぐ点からな
るべく高温に作用最適温度をもつこと、またキシランの
糖化能力に優れていることである。
That is, it must have an optimum operating temperature as high as possible in order to prevent contamination by bacteria during the decomposition reaction, and it must have an excellent ability to saccharify xylan.

従来、高温域に最適作用温度をもつキシラナーゼとして
は、フミコラ・ラヌギノザ(J、Fer■、Tschn
ol、、62巻 p63−69.1984)  チェラ
ビラ・テレストリX (Enzyi+e Microb
、τechno1.,6巻、p175−180゜Md4
)などが知られている。しかし、これらのキシラナーゼ
の短時間反応における最適作用温度はユ゛―←付近であ
り、長時間反応での安定作用温度はもっと低いものと推
定されること、また反応生成物は、キシロースよりもキ
シロオリゴ糖が多く糖化が不完全であるなどの問題を残
している。
Conventionally, xylanases with optimal action temperatures in the high temperature range include Humicola lanuginosa (J, Fer■, Tschn
ol,, vol. 62 p63-69.1984) Cherabira Telestri X (Enzyi+e Microb
, τechno1. , Volume 6, p175-180゜Md4
) etc. are known. However, the optimal operating temperature of these xylanases in short-term reactions is around y-←, and the stable operating temperature in long-term reactions is estimated to be lower, and the reaction products are more likely to contain xylo-oligomers than xylose. Problems remain, such as high sugar content and incomplete saccharification.

〔目的〕〔the purpose〕

そこで本発明者らは、広く自然界より植物バイオマスを
分解する微生物を求めて検索したところ中温性糸状菌の
一種アクレモニウム属菌の一菌株が、80℃に最適作用
温度をもつキシラナーゼを培養物中に生産蓄積する事実
を見出し、中温性糸状菌で初めて高度に耐熱性のキシラ
ナーゼを生産することを知り、かつこのキシラナーゼが
高温域において極めて糖化力に優れたキシロース生成力
の強い斬規キシラナーゼであることを認め、本発明を完
成したものである。
Therefore, the present inventors conducted a wide search in nature for microorganisms that decompose plant biomass, and found that a strain of Acremonium, a type of mesophilic fungus, produced xylanase in culture, which has an optimal action temperature of 80°C. We discovered that mesophilic filamentous fungi produce xylanase that is highly thermostable for the first time, and that this xylanase is a highly saccharifying xylanase with a strong xylose-producing ability at high temperatures. Having recognized this fact, the present invention has been completed.

〔構成〕〔composition〕

すなはち、本発明は、耐熱性キシラナーゼを生産するア
クレモニウム属菌を培養し、培養物より耐熱性キシラナ
ーゼを採取することを特徴とする耐熱性キシラナーゼの
製造法に関するものである以下に本発明の内容を更に具
体的に説明する。
In other words, the present invention relates to a method for producing heat-stable xylanase, which comprises culturing Acremonium bacteria that produce heat-stable xylanase, and collecting heat-stable xylanase from the culture. The contents will be explained in more detail.

1JQfilにおいては、その例示菌株としてアクレモ
、pigliT五・セルロリティカス(^creson
ius csllulol−:声tlJ g )が有効
に利用される0本国は耐熱性キシラナーゼと同時に著量
のβ−グルコシダーゼを含むことによって、強力なセル
ロース糖化能力を持つことを特徴としたセルラーゼ複合
物をも生産する菌である。
In 1JQfil, examples of strains include Acremo, PigliT5 cellulolyticus (^creson).
ius csllulol-:voice tlJ g) is effectively used. Japan also has a cellulase complex characterized by having a strong cellulose saccharification ability by containing a significant amount of β-glucosidase as well as a heat-stable xylanase. It is a bacterium that produces

次に、本発明において使用される耐熱性キシラナーゼ生
産菌の国学的性質を示すと、下記の通りである。
Next, the national characteristics of the heat-stable xylanase-producing bacteria used in the present invention are as follows.

生育、麦芽エキス寒天上では生育は遠く30℃7日間で
直径70順に達する。集落は最初白色で後にやや黄色味
をおびる。気性菌糸はゆるく盛り上がり羊毛状を呈し、
・時に編状の菌糸束を形成する。
Growth: Growth on malt extract agar is far reaching 70 degrees in diameter in 7 days at 30°C. The colony is initially white and later becomes slightly yellowish. The aerial hyphae are loosely raised and wool-like,
・Sometimes forms knitted hyphal bundles.

培養後期には集落裏面は桃褐色ないし赤褐色を呈する。In the later stages of cultivation, the underside of the colony becomes pinkish-brown to reddish-brown.

ツアペック寒天上でもほぼ同様の生育を示すが男性菌糸
の盛り上がりはより少ない、生育PI(彌1耐43.5
−6.0で最−PHは4付近、生育温度範囲)ぼ+Ii
Mk −43℃で、最適生育温度は30℃である。
Almost the same growth was observed on Czapek agar, but the male hyphae were less bulging, with a growth PI of 43.5
-6.0, maximum -PH is around 4, growth temperature range) +Ii
Mk -43°C, optimal growth temperature is 30°C.

j蛾、菌糸の菫径は0 、5−2 、5μm、無色で菌
糸には隔壁が認められる。また、菌糸表面は滑面である
The violet diameter of the moth and hyphae is 0, 5-2, 5 μm, colorless, and septa are observed in the hyphae. In addition, the hyphal surface is smooth.

分生子、分生子形成能は非常に不安定でツアペック寒天
および麦芽エキス寒天培地による継代培養により容易に
消失した0分離時における観察では、分生子柄は気化菌
糸側面より突出し、無色である。分生子は亜球形で滑面
、無色で連鎖は非常にゆるく分散しやすい、 以上の菌
学的性質について、W、Gam5のrcephalos
poriu@artige Schimmel−pil
ge J P84 、G、Fisher (1971)
及びC,H,Dickin−son、  Mycol、
Papers 115巻 PIG (1968)を参照
した結果、本国はアクレモニウム(^are膳◎niu
〜S)属に近縁の糸状菌と考えるのが妥当であると考え
た。なお、アクレモニウム属には、従来、強力なセルラ
ーゼ生産菌が知られていなかったこと、及び、本発明の
菌株が強力かつ特徴的なセル−’i=、==に暇用所に
寄託されている。
Conidia and the ability to form conidia were very unstable and easily disappeared by subculturing on Czapek agar and malt extract agar media. When observed at 0 isolation, the conidiophores protruded from the side of the vaporized hyphae and were colorless. The conidia are subspherical, smooth, colorless, and the chains are very loose and easily dispersed. Regarding the above mycological properties, W, Gam5 rcephalos
poriu@artige Schimmel-pil
ge J P84, G. Fisher (1971).
and C.H. Dickin-son, Mycol.
As a result of referring to Papers Volume 115 PIG (1968), the home country is Acremonium (^arezen◎niu
It was considered appropriate to consider it as a filamentous fungus closely related to the genus ~S). It should be noted that there have been no known strong cellulase-producing bacteria in the Acremonium genus, and that the strain of the present invention has been deposited in the free space in the strong and characteristic cell-'i=,==. ing.

t*rkA明のアクレモニウム属菌による耐熱性4.+
ν゛4”−外→ゼを生産するためには、通常、キシラン
5キシaグルカン、セルロース、アビセル、フスマ稲ワ
ラ、バガスなと植物性バイオマスを炭素源とし、これに
窒素源として、硝酸塩、アンモニウム塩あるいはペプト
ン、酵母エキスのような有機または無機の窒素源と少量
の金属塩を含む液体または固体培地を用い、20−40
℃で、2−15日間程度、好気的に培養される。耐熱性
キシラナーゼは菌体外に生産される酵素であるため、液
体培地の場合は、培養後ろ過あるいは遠心分離した上澄
液を、そして固体培養の場合は培養後、水または適当な
無機塩類で抽出した液を、粗酵素液として用いることが
できる。粗酵素液は、そのまま使用してもよいが、例え
ば硫安塩析法やアセトン沈殿法など公知の方法により、
粗酵素粉末を得ることができ(,3jB4.+1−に、
本酵素が耐熱性であることを利用して’::Vs’1l
lI%、 9 、65°02時間の熱処理をすることに
より、−if%C: lラナーゼの活性を損なうことな
く不純蛋白質を変性沈殿させて除くことができ、キシラ
ナーゼ活性のみをもつ酵素液を簡単に調製することがで
きる。このようにして得られた、本発明の耐熱性キシラ
ナーゼ標品は次のような諸性質をもっている。
4. Heat resistance due to Acremonium bacteria of t*rkA light. +
In order to produce ν゛4''-exo→ze, normally xylan 5xa glucan, cellulose, Avicel, bran rice straw, bagasse and other vegetable biomass are used as carbon sources, and nitrates, nitrates and nitrogen are added as nitrogen sources. Using a liquid or solid medium containing an organic or inorganic nitrogen source such as ammonium salts or peptone, yeast extract, and small amounts of metal salts,
The cells are cultured aerobically at ℃ for about 2 to 15 days. Thermostable xylanase is an enzyme produced outside the bacterial cell, so in the case of a liquid medium, the supernatant after filtration or centrifugation is used after cultivation, and in the case of solid culture, it is added with water or an appropriate inorganic salt after cultivation. The extracted solution can be used as a crude enzyme solution. The crude enzyme solution may be used as is, but it can be prepared by known methods such as ammonium sulfate salting out method or acetone precipitation method.
Crude enzyme powder can be obtained (,3jB4.+1-,
'::Vs'1l by taking advantage of the heat resistance of this enzyme.
By heat-treating for 2 hours at 65°C, it is possible to denature and precipitate impure proteins and remove them without impairing the activity of -if%C:llanase, making it easy to prepare an enzyme solution with only xylanase activity. It can be prepared as follows. The heat-stable xylanase preparation of the present invention thus obtained has the following properties.

(1)キシラナーゼの多成分性 耐熱性キシラナーゼは、ディスク電気泳動的に少なくと
も3成分に分離され、それぞれは分子量と等電点により
区別される。キシラナーゼAは分子量約 51,000
で等重点5.05、以下同様にBは約46.000.4
.57、Cは約36,000.3.55  であり、こ
れら成分の複合物よりキシラナーゼは成っている。
(1) Multicomponent Xylanase Thermostable xylanase is separated into at least three components by disk electrophoresis, and each component is distinguished by its molecular weight and isoelectric point. Xylanase A has a molecular weight of approximately 51,000
So the equal point is 5.05, and similarly B is about 46.000.4
.. 57, C is approximately 36,000.3.55, and xylanase is a composite of these components.

(2)作用 キシラナーゼ複合物は、植物バイオマスに合まれる可溶
性および不溶性のキシランに作用して、キシロースおよ
びキシロオリゴ糖を生成する。また、アラビノースを含
むアラビノキシランからは上記以外にアラビノースおよ
びアラビノースとキシロースからなるオリゴ糖も生成す
る0本酵素複’14siJ i呻1(1キシロビオース
にも有効に作用し、これを’jjm411ut?−スに
分解する。従って最終生成物は、主・21゛iゼにキシ
ロースから成る。
(2) Action The xylanase complex acts on soluble and insoluble xylan incorporated into plant biomass to produce xylose and xylooligosaccharides. In addition, from arabinoxylan containing arabinose, in addition to the above, arabinose and oligosaccharides consisting of arabinose and xylose are also produced. The final product therefore consists primarily of xylose.

(3)作用pH及び最適作用pH 本酵素複合物の作用pH範囲は第1図(a)に示したよ
うに、pH3−6であり、最適作用pHは約5に認めら
れた。
(3) Action pH and Optimal Action pH The action pH range of this enzyme complex is pH 3-6, as shown in FIG. 1(a), and the optimum action pH was found to be approximately 5.

(4)安定pH範囲 クエン酸−リン酸塩s術液の下で25°G24時間放置
したときの安定pH範囲は、第1図(C)に示したよう
に約2.5−8.5であった。
(4) Stable pH range The stable pH range when left for 24 hours at 25° under a citric acid-phosphate surgical solution is approximately 2.5-8.5 as shown in Figure 1 (C). Met.

(5)作用温度範囲及び最適温度範囲 本酵素複合物のどの成分も、約90℃までの高温で作用
できるが、第1図(b)に示したように、0.25!キ
シラン、0.05M酢酸緩衛液(PH4,9) ノ下で
10分間反応させた時の最適作用温度は約80’Cにコ
莞壺1れた・ 1安、曖1熱安定性 εニア−#f−f7I素複合物を0.1M酢酸緩衛液(
p)14.9)の下で11→で10分間加熱処理した結
果、第1図(d)に示したように、70℃まではほとん
ど失活せず、80℃lO分間で約60χそして85°C
IO分間の加熱で約gozが活性を失った。
(5) Action temperature range and optimum temperature range All components of the present enzyme complex can act at high temperatures up to about 90°C, but as shown in Figure 1(b), 0.25! When reacted for 10 minutes under xylan and 0.05M acetic acid solution (PH 4, 9), the optimum working temperature was approximately 80'C. - #f-f7I elemental complex was dissolved in 0.1M acetic acid solution (
As a result of heat treatment at 11→ for 10 minutes under p) 14.9), as shown in Figure 1(d), there was almost no deactivation up to 70°C, and approximately 60χ and 85 °C
Approximately goz lost activity after heating for IO minutes.

(7)阻害剤 各種重金属イオンのうちで1+wM以上の水銀イオン及
び銅イオンにより強く阻害された。
(7) Inhibitor Among various heavy metal ions, it was strongly inhibited by mercury ions and copper ions of 1+wM or more.

(8)精製法 本酵素複合物は培養ろ液を、65℃ 2時間加熱処理し
、含まれる不純蛋白質を変性させ生じた沈殿を遠心分離
により除いた後、I)EAE七ファロース及びクロマト
フオーカシングのカラムクロマトグラフィーにより、デ
ィスク電気泳動的に均一なまでに各成分を分離精製する
ことができた。
(8) Purification method This enzyme complex is prepared by heating the culture filtrate at 65°C for 2 hours, denaturing the impure proteins contained therein, and removing the resulting precipitate by centrifugation. Using Sing's column chromatography, each component could be separated and purified to homogeneity using disk electrophoresis.

(9)活性測定法 0.1M酢酸緩衝液に稲ワラより調製したキシラン(約
9zのアラビノースを含む) 0.5%を懸濁させた基
質懸濁液(pi44.9) 0−5m1に、a量の酵素
を加え、蒸留水で全量を1.0鱈 とし、60°Cで反
応を行なった。そして、生成する還元糖はソモギー・ネ
;附?#法により測定した。
(9) Activity measurement method Substrate suspension (pi44.9) in which 0.5% xylan prepared from rice straw (containing about 9z arabinose) was suspended in 0.1M acetate buffer (0-5ml) A quantity of enzyme was added, the total volume was made up to 1.0% with distilled water, and the reaction was carried out at 60°C. And the reducing sugar produced is somogyi ne; Measured by # method.

I纂→条件で、1分間に 1μgのキシロースに相、f
4t’F番還元力を生成する酵素量を1単位とした。
Under the conditions, 1μg of xylose is added to the phase, f
The amount of enzyme that generates 4t'F reduction power was defined as 1 unit.

帰巣〕 以上のとおり、本発明の耐熱性キシラナーゼは最適作用
温度が80°C付近に存在し、かつキシランからの主な
生成物がキシロースであるというように、その酵素的性
質がこれまで知られている酵素に比べ非常に優れている
。そしてこのような本発明の酵素の特徴は、キシラナー
ゼの工業的利用においても著しく技術的進歩をもたらし
たものである。
As described above, the thermostable xylanase of the present invention has an optimal action temperature around 80°C, and its enzymatic properties have not been known so far, as the main product from xylan is xylose. It is much superior to other enzymes. These characteristics of the enzyme of the present invention have brought about significant technological progress in the industrial use of xylanase.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 セルロース4%、ペプトン1%、硝酸カリウム0.6%
、塩化カリウム0.16%、塩化ナトリラム0.16%
、@酸マグネシウム0.12%、!!7路FR1カリウ
ム1.20%、及び疏#加鉛、疏■+7::曜にン、硫
酸銅をそれそ゛れ0.001%含む清度’、!、、p 
H4、0) 20 m lを200 m l 電層培養
後、遠心分離機により除菌し、得られた上澄液について
キシラナーゼ活性を測定した結果培養液1ml当たり1
050単位であった。
Example 1 Cellulose 4%, peptone 1%, potassium nitrate 0.6%
, potassium chloride 0.16%, sodium chloride 0.16%
, @magnesium acid 0.12%,! ! 7-Road FR1 Potassium 1.20%, leaded, sulfate + 7:: Contains 0.001% copper sulfate. ,,p
H4, 0) After culturing 20 ml in a 200 ml electrolayer, the cells were sterilized using a centrifuge, and the xylanase activity of the obtained supernatant was measured.
It was 050 units.

実施例2 実施例1において、セルロースに代えて、キシログルカ
ン(大日本製薬製 グリロイド3s)230’Cで8日
間通気培養した。培養後遠心分^1りた上澄液について
、キシラナーゼ活性を測定した結果培養液1ml当たり
2400単位であった。
Example 2 In Example 1, instead of cellulose, xyloglucan (Glyloid 3s, manufactured by Dainippon Pharmaceutical Co., Ltd.) was cultured with aeration at 230'C for 8 days. The xylanase activity of the supernatant obtained after centrifugation after culture was measured and found to be 2400 units per ml of culture solution.

この培養上澄液のPHを4.9に調整して、65℃2時
間加熱処理をした後生じた沈殿を遠心分離により除き、
キシラナーゼ活性のみをもつ酵素標品を得た。キシラナ
ーゼの回収率は、92.4%だった。
The pH of this culture supernatant was adjusted to 4.9, and the precipitate formed after heat treatment at 65°C for 2 hours was removed by centrifugation.
An enzyme preparation with only xylanase activity was obtained. The recovery rate of xylanase was 92.4%.

実施例3 博0M例2で得たキシラナーゼ酵素標品を終濃度t 7
qoo単位/ m lとなるように10%キシラ、it
J液に添加し、65℃で48時間糖化した。
Example 3 The xylanase enzyme preparation obtained in Example 2 was adjusted to a final concentration of t 7
10% xyla, it to be qoo units/ml
It was added to Solution J and saccharified at 65°C for 48 hours.

得られた糖液の一部について、還元糖量を測定した結果
キシロースとして60 m g / m 1であった。
Regarding a portion of the obtained sugar solution, the amount of reducing sugar was measured and found to be 60 mg/m1 as xylose.

この値を硫酸により同濃度のキシランを分解した値(6
8mg/ml)と比較すると、88.2%の分解率であ
った。また、このときの分解産物をペーパークロマトグ
ラフィーにより同定した結果主にキシロースからなり、
他に僅かなキシロビオースを含んでいた。
This value is the value obtained by decomposing xylan of the same concentration with sulfuric acid (6
8mg/ml), the decomposition rate was 88.2%. In addition, the decomposition products at this time were identified by paper chromatography and were found to consist mainly of xylose.
It also contained a small amount of xylobiose.

一5=A(ts生産する耐熱性キシラナーゼの(a)「
最:適−・、やめlpH安定性そして(d)熱安定性を
示している。
-5 = A (ts of the thermostable xylanase produced (a) "
Best: suitable -, indicates poor lpH stability and (d) thermal stability.

官庁出願 手続争甫正書(方式) 1、事件の表示   昭和60年特許願第   349
0 号2、発明の名称 耐熱性キシラナーゼの製造法 3、補正をする者 6、補正の対象 明細書の「発明の詳細な説明」の種 別  紙 O明細書第5頁第13行〜同頁第17行の「以上の・・
・・・・した結果、」を削除し、次の字句を加入します
Government Office Application Procedure Dispute Manual (Method) 1. Indication of Case Patent Application No. 349 of 1985
0 No. 2, Name of the invention Process for producing thermostable xylanase 3, Person making the amendment 6, Type of "Detailed description of the invention" in the specification to be amended Paper O Specification, page 5, line 13 to the same page Line 17: “More than that...
As a result of ..., delete "and add the following phrase.

Claims (1)

【特許請求の範囲】[Claims] 耐熱性キシラナーゼを生産するアクレモニウム属菌を培
養し、培養物より耐熱性キシラナーゼを採取することを
特徴とする耐熱性キシラナーゼの製造法。
A method for producing heat-stable xylanase, which comprises culturing Acremonium bacteria that produces heat-stable xylanase, and collecting heat-stable xylanase from the culture.
JP60003490A 1985-01-07 1985-01-11 Production of thermostable xylanase Granted JPS61162181A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60003490A JPS61162181A (en) 1985-01-11 1985-01-11 Production of thermostable xylanase
US06/720,416 US4742005A (en) 1985-01-07 1985-04-05 Method for production of cellulolytic enzymes and method for saccharification of cellulosic materials therewith
EP85302505A EP0188050B1 (en) 1985-01-07 1985-04-10 Method for production of cellulolytic enzymes
DE8585302505T DE3583603D1 (en) 1985-01-07 1985-04-10 METHOD FOR PRODUCING CELLULOLYTIC ENZYMES.
DK166685A DK164070C (en) 1985-01-07 1985-04-12 METHOD FOR PREPARING A COMPOSITE CELLULASE / XYLANASE ENZYM PREPARATION
US07/011,043 US4956291A (en) 1985-01-07 1987-02-05 Method for production of cellulolytic enzymes and method for saccharification of cellulosic materials therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60003490A JPS61162181A (en) 1985-01-11 1985-01-11 Production of thermostable xylanase

Publications (2)

Publication Number Publication Date
JPS61162181A true JPS61162181A (en) 1986-07-22
JPH0121957B2 JPH0121957B2 (en) 1989-04-24

Family

ID=11558776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60003490A Granted JPS61162181A (en) 1985-01-07 1985-01-11 Production of thermostable xylanase

Country Status (1)

Country Link
JP (1) JPS61162181A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171484A (en) * 1987-12-25 1989-07-06 Agency Of Ind Science & Technol Production of xylooligosyl transferase
JPH01171485A (en) * 1987-12-25 1989-07-06 Agency Of Ind Science & Technol Novel xylooligosyl transferase
JPH01171492A (en) * 1987-12-25 1989-07-06 Agency Of Ind Science & Technol Production of xylooligosaccharide derivative
EP0913467A1 (en) * 1997-03-04 1999-05-06 Meiji Seika Kaisha Ltd. Mesophilic xylanases
JPWO2014061763A1 (en) * 2012-10-19 2016-09-05 国立研究開発法人産業技術総合研究所 New xylanase

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171484A (en) * 1987-12-25 1989-07-06 Agency Of Ind Science & Technol Production of xylooligosyl transferase
JPH01171485A (en) * 1987-12-25 1989-07-06 Agency Of Ind Science & Technol Novel xylooligosyl transferase
JPH01171492A (en) * 1987-12-25 1989-07-06 Agency Of Ind Science & Technol Production of xylooligosaccharide derivative
JPH0320235B2 (en) * 1987-12-25 1991-03-18 Kogyo Gijutsuin
EP0913467A1 (en) * 1997-03-04 1999-05-06 Meiji Seika Kaisha Ltd. Mesophilic xylanases
EP0913467A4 (en) * 1997-03-04 2003-01-02 Meiji Seika Kaisha Mesophilic xylanases
JPWO2014061763A1 (en) * 2012-10-19 2016-09-05 国立研究開発法人産業技術総合研究所 New xylanase

Also Published As

Publication number Publication date
JPH0121957B2 (en) 1989-04-24

Similar Documents

Publication Publication Date Title
DK164070B (en) METHOD FOR PREPARING A COMPOSITE CELLULASE / XYLANASE ENZYM PREPARATION
EP0184019A1 (en) Thermostable alpha-amylase-producing, thermophilic anaerobic bacteria, thermostable alpha-amylase and process for producing the same
JPH10501694A (en) Pyrrodictium xylanase, amylase and pullulanase
JPS61162181A (en) Production of thermostable xylanase
JPS59166081A (en) Preparation of cellulase
JPH0358715B2 (en)
JPS6342690A (en) Production of ethanol by yeast fermentative at high temperature
DE2717333A1 (en) HEAT- AND ACID-RESISTANT ALPHA AMYLASE ENZYME, METHOD FOR ITS MANUFACTURING AND USE
JP4039494B2 (en) Mesophilic xylanase
JPS5917983A (en) Preparation of amylase g3
JPS5836392A (en) Preparation of ethanol
JPS6374490A (en) Use of cellulase preparation in culture and use of cellulose producing bacteria
JPS61162177A (en) Production of cellulase
JPS59166095A (en) Treatment of cellulose
JPS592272B2 (en) Method for producing cellulase
JPS59159780A (en) Preparation of cellulase by bacterium
JPS61162167A (en) Novel acremonium cellulolyticus tn strain
JPS61162179A (en) Improved method for producing cellulase
JPH0365149B2 (en)
JPH01171484A (en) Production of xylooligosyl transferase
JPS61162178A (en) Improved process for producing cellulase
JPH0248231B2 (en) SHINKIKISHIRANAAZEOYOBISONOSEIZOHO
JPH01171485A (en) Novel xylooligosyl transferase
JP2784062B2 (en) Method for producing microbial cellulase
JPS59166083A (en) Preparation of cellulase

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term