JPS6116074B2 - - Google Patents

Info

Publication number
JPS6116074B2
JPS6116074B2 JP53144910A JP14491078A JPS6116074B2 JP S6116074 B2 JPS6116074 B2 JP S6116074B2 JP 53144910 A JP53144910 A JP 53144910A JP 14491078 A JP14491078 A JP 14491078A JP S6116074 B2 JPS6116074 B2 JP S6116074B2
Authority
JP
Japan
Prior art keywords
electrode
main electrode
pigment particles
layer
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53144910A
Other languages
Japanese (ja)
Other versions
JPS5485699A (en
Inventor
Roorensu Darisa Andoryuu
Mana Shingaa Barii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Publication of JPS5485699A publication Critical patent/JPS5485699A/en
Publication of JPS6116074B2 publication Critical patent/JPS6116074B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • G09G3/3446Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices with more than two electrodes controlling the modulating element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/06Passive matrix structure, i.e. with direct application of both column and row voltages to the light emitting or modulating elements, other than LCD or OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は第1のパネルと、そこから予じめ定め
られた距離だけ隔てて設けられた第2のパネルと
を具え、これらの両パネルの少なくとも一方を透
明体とし、上記第1のパネルに第1の主電極を固
着し、上記第2のパネルにこの第1の主電極から
は離して第2の主電極を固着し、これらの第1と
第2の主電極間に少なくとも一色の顔料粒子を懸
濁させた不透明絶縁性液体を入れ、これらの顔料
粒子の大多数を一極性に帯電させ、上記第2の主
電極上に少なくとも部分的に或る種の層を固着
し、少なくとも部分的にはこの層により分離され
るようにして上記第1の主電極と第2の主電極と
の間に第3の電極を介在させた電気泳動表示装置
に関するものである。 電気泳動表示装置は受動表示装置であつて、そ
こでは粒子の電気泳動的な移動により、画像や模
様が形成される。 簡単な電気泳動画像表示装置(以下EPID装置
と略称する。)が米国特許第3688106号明細書から
既知である。 この既知のEPID装置は2個の電極間に挟持さ
れた有機物液に顔料粒子を懸濁させたもので、少
なくとも一方の電極を透明体にしてある。一実施
例では顔料粒子を有機物液に対して負に帯電させ
ている。こうしておいて懸濁液中にある一方の電
極に正の電位を与えると顔料粒子はその電極に引
き寄せられる。電極に負の電位を与えると粒子は
はじき出される。 このようなEPID装置を造るには、一側の電極
パネルをガラスのような透明な基板に透明な導電
材料層をコーテイングして造る。この透明電極パ
ネル側に明かるい色の顔料粒子が引きつけられる
と、観察者はこの透明電極パネルを通してこの顔
料粒子で反射された明かるい色を見ることにな
る。懸濁液に暗い色の染料を溶かし、装置の背景
部では顔料粒子が不透明な染料で隠され、観察者
は染料で反射された暗い色だけを見る。電極の電
位の極性を反転すると、色の位置関係が反転す
る。またこの米国特許明細書に記載されている
EPID装置は「記憶作用」を有している。蓋し、
電極から印加電圧がはずされても、顔料粒子は化
学的な力、電気的な力又はフアンデルワールス力
により旧の位置にとゞまるからである。 しかし、上述したようなEPID装置は或る種の
用途には実用的ではない。それはマトリツクス表
示させるような場合である。蓋し、上記EPID装
置は顔料粒子を装置の一側から他側へ移動させる
際のスイツチングのしきい値が一定した値に固定
されていないからである。 マトリツクス表示装置でこのように鋭いしきい
値特性を欠いているとアドレス時間が長くかゝ
り、また厄介な半選択問題を抱えることになる。
このようなマトリツクス表示装置ではアドレス指
定を受けてはいないが関連横行電極又は、縦例電
極の一方が選択されているという半分選択された
状態が存在し、該当する表示要素は印加電圧の約
半分の電圧を受けることになるが、斯かる表示要
素内の顔料粒子はしきい値がブロードなため一部
が装置を横断するだけで、この為表示情報に著し
い変動が生ずる。 アンドリユー・エル・ダリサとロジヤー・エ
ー・デラノの共同執筆に成る「Digest of the
Society for Information Display」(1974年5月
カリフオルニア州サンデイエゴにて開催。)に収
録されている「Recent Progress In
Electrophoretic Displays」と題する論文には、
原始的な制御格子付きのEPID装置が報告されて
いる。論文に記載されているところによると、こ
の制御格子は「ワイヤグリツト」であり、これを
2個の電極面から電気的に絶縁して両者の中間に
配設し、そこに正規状態ではA電極に対して約1/
2Vの正の電圧をバイアス電圧として印加する。
論文(殊に第5図)を見る限り、この原始的な構
造にはX−Yアドレツシング機能がない。また論
文中に非常に簡単な略図で示されている構造によ
つても確かにしきい値が作られるが、これでは再
現性良く市場に提供できる電気泳動表示装置は造
れない。 なお本明細書冒頭に記載したタイプのEPID装
置は米国特許第4045327号明細書から既知である
が、そこに記載されているEPID装置では、電気
泳動懸濁液内の顔料粒子の移動に関するしきい値
を、電圧に対して抵抗値が非線形的に変わる抵抗
層を一方の電極上に付加的に設けることにより強
化している。電圧に対して非線形的に抵抗値が変
わるこの付加的な抵抗層の抵抗値を電気泳動懸濁
液の抵抗値と整合させる目的で、この付加的抵抗
層には縦列電極と横行電極の交点の位置に点状の
電極を設けてある。この点状電極のサイズは電圧
に非線形的に抵抗値が依存する付加的抵抗層のキ
ヤパシタンスが電気泳動液のキヤパシタンスと整
合するように選択しなければならない。 しかしこのような構成にしても再現性が良好で
市場に出せる電気泳動表示装置は造れない。 本発明の目的はX−Yアドレス可能な簡単な電
気泳動表示装置及び/又は電気泳動記録装置を提
供するにある。 本発明のもう一つの目的は電気泳動懸濁液内で
の顔料粒子の空間分布を変えるための制御兼スイ
ツチング装置を提供するにある。 本発明の更にもう一つの目的は低電圧でしかも
可成り高速にアドレスできる電気泳動カラー表示
装置を提供するにある。 本発明によれば明細書冒頭に記載した形式の電
気泳動表示装置において、前記の或る種の層を絶
縁層とし、前記の第3の電極を制御電極として前
記第1の主電極と第2の主電極との間の電界を選
択的に調整し、その際一個のしきい値を確立し、
電界方向に依存して顔料粒子を移動させ、この顔
料粒子の存在と不存在とによつて前記主電極上に
画像を形成するようにしたことを特徴とするもの
である。 第1の電極は前記第1パネル上に設けられた連
続的な層とし、第2の電極は複数個の平行細条で
構成するのが好適である。 第3の制御電極は前記絶縁層上に複数個の平行
な細条を第2の電極の平行細条と交さするように
配設することにより構成するのが好適である。 第2電極の平行細条と第3電極の平行細条とが
夫々マトリツクスの縦列電極と横行電極とを形成
し、両者が絶縁層で分離されることになる。 なお第3の電極と絶縁層とには多数の一様に分
布された孔を設け、その孔を通つて顔料粒子が移
動できるようにすると好適である。 本発明によればアドレス指定は受けていないが
選択された横行電極又は選択された縦行電極に関
連する表示要素にある顔料粒子は表示装置を端か
ら端迄移動することはしないが、これは第2電極
と第3電極との間の電界により半選択表示要素に
関連する顔料粒子を第3電極及び絶縁層にあけら
れた孔内にホールド(保持)するからである。 なお前記孔の寸法は10〜50μmとし、孔の中心
間の距離は15〜60μmとする。 図面につき本発明を説明する。 第1図は本発明EPID装置を一部切欠して拡大
して示した図である。第1図は本発明EPID装置
の構造を示すだけでなく、その製造方法を説明す
るのに役立つ。 第1図に見るように、本発明EPID装置は厚さ
1.5mmのガラス又は透明なプラスチツクから成る
第1の平坦なパネル即ち基板10から出発する。
基板10の主表面に複数個の互いに平行な透明導
電性細条を固着して縦列電極11とする。縦列電
極11はインジウム酸化物から作るが、典型的な
ケースはスパツタリングにより基板10に塗布且
つ固着させる。本例では縦列電極11は典型的ケ
ースでは厚さ3000Å、幅2.5mmとする。縦列電極
11の長さは表示装置自体の大きさと寸法によつ
て決まる。 次に基板10と縦列電極11を厚さ5乃至50μ
mのフオトレジストその他の誘導体から成る絶縁
層13で覆う。これは浸漬被覆法により行う。次
にこの絶縁層13の上側表面上に縦列電極11に
対して直角方向に延在する複数個の平行細条から
成る横行電極14を固着する。この横行電極14
はアルミニウムから成り、真空蒸着により絶縁層
13に固着するもので、少なくとも部分的に絶縁
層13を介して縦列電極11から隔在させられ
る。横行電極14の厚さ約700Åとし、幅は2.5mm
とする。横行電極14間のスペース12は縦列電
極11間のスペース12も同じであるが、25〜
100μm幅とする。 本発明の一実施例では横行電極14と絶縁層1
3とに微少なポケツト即ち孔18をあける。これ
を一部拡大して第2図に示した。第1図では図面
を複雑にしないため孔18は省略してある。 なお、孔18は横行電極14を真空蒸着で固着
させた後に後から形成する。その場合、先ず横行
電極14全面上にフオトレジスト層(図示せず)
を塗布し、このフオトレジスト層の上に所望通り
のポケツト即ち孔のパターンを付したフオトマス
クをのせ、フオトレジストを露光する。次にフオ
トマスクを取りはずし、フオトレジストを現像
し、露光部分のフオトレジスト層に孔をあける。
その下側に横行電極14が延在する。 次に孔が一様にあいている上記フオトレジスト
層にアルミニウムエツチング液を塗布し、横行電
極14の露光部を除去する。その下側には絶縁層
13が裸で残る。次に従来技術で標準的な方法で
残存フオトレジスト層を除去する。すると、孔が
一様にあいている横行電極14が裸の状態で現わ
れる。 次に横行電極14の孔の下側の絶縁層13を除
去しなければならない。絶縁層13をフオトレジ
スト層で作つた場合はこのプロセスは簡単で、孔
のあいている横行電極14がそのまま露光用のフ
オトマスクとして使える。斯くして絶縁性のフオ
トレジスト層13を露光して現像(即ち分解)す
れば、横行電極14の孔の下に対応して孔18が
形成される。この孔18を縦列電極11に達する
迄延長する。 次いで第1の平坦なパネル即ち基板10に平行
になるように第2の平坦なパネル17を設ける。
第2のパネル17の主表面を電極層16で覆い、
第1のパネル10に対向させる。この電極層16
は厚さ約3000Åのインジウム酸化物の連続的な透
明電極層とし、スパツタリングにより第2のパネ
ル17の主表面に固着する。この連続的な透明電
極層16と前述した縦列及び横行電極群との間に
約40μmのスペースを設ける。そして第1のパネ
ル10及び第2のパネル17の周縁部を封止し
(第4図参照)、その間に液体を入れる。 縦列電極11と連続的な透明電極層16との間
の領域をキシレンやペルクロルエチレン(テトラ
クロエチレン)のような導電体液に可溶性の染料
と着色顔料粒子とを均一に分散・懸濁させたもの
から成るコロイド溶液又は懸濁液(第4図の1
9)のような「電気泳動液」(本明細書及び特許
請求の範囲を一貫して上記コロイド溶液等を以下
「電気泳動液」を称する。)で充填する。電気泳動
液内に懸濁している全ての粒子は同一符号(極
性)に帯電させるが、これは電気泳動液に荷電助
剤を添加することにより実現できる。なお、第1
図に示した構造のEPID装置の動作については後
に第4図につき詳細に説明する。 第2図は絶縁層13と横行電極14を一部拡大
して示したものである。この絶縁層13と横行電
極14とにはフオトリトグラフイで多数の孔18
が密に一様にあけられている。 孔18の形は任意でよいが、第2図では簡単な
ため円形にしてある。しかし後の断面を示す図面
では説明の便宜上、孔18の形を正方形を仮定す
る。いずれにせよ、典型的ケースでは孔18は一
辺約20μmの正方形又は直径20μmの円である
が、一般化していえば寸法は10乃至50μmとす
る。一つの孔の中心と隣りの孔の中心との間の距
離は15乃至60μmとする。孔18は横行電極14
だけでなく、絶縁層13をも完全に貫通するよう
にし、縦列電極11が電気泳動液にさらされるよ
うにする。こうすると、横行電極14が制御格子
として機能する。これにより孔18は電界が印加
された時それに応じて顔料粒子がその中を移動で
きる物理的なポテンシヤル井戸として機能する。
なお、孔18の占める面積は横行電極表面の少な
くとも50%、典型的ケースでは60〜70%を占める
ようにする。 第3図は第2図の−線に沿つて切つた断面
図を拡大して示したものである。この第3図の断
面図では、縦列電極11は第1のパネル10上に
左右の方向に連続的な層として延在している。そ
の上に絶縁層13と横行電極14とが物理的なポ
テンシヤル井戸即ち孔18を具備しつつ固着して
いる。 第4図は本発明EPID装置を簡略化して示した
ものであり、上と下に2個の縦列電極が見える。
図面には基板10と、2個の縦列電極11(Y1
及びY2という符号を付してある)と、絶縁層1
3と、横行電極14とが描かれている。第2のパ
ネル17は基板10に対して平行に延在し、両者
の間に電気泳動液19が入つている。第2のパネ
ル17には連続的な透明電極16がバツク電極と
して固着されている。なお、第4図には本発明
EPID装置に於て基板10と第2のパネル17と
の間に電気泳動液19を封入し、格納する目的で
設けられるスペーサ兼シール28(これは合成樹
脂で作ることができる。)も図示されている。 なお、第4図の各電極又は各層相互間の厚さ関
係は寸法通りに描かれてはいない。図面を見易く
するため孔18は非常に誇張されて描かれてい
る。なお、顔料粒子20は図面の上側では孔18
内にひきつけられた状態で示され、図面の下側で
は透明バツク(背面)電極16にひきつけられた
状態で示されている。 EPID表示装置を作動させるための電気関係も
高度に略式形態で図示されているだけである。簡
単にするため連続的な透明バツク電極16を21
で接地して示したが、動作モードによつては透明
バツク電極16には正又は負の電圧を印加する。
第1の縦列電極Y1は第1のスイツチ23に接続
し、第2の縦列電極Y2は第2のスイツチ22に
接続した状態で図示してある。横行電極14も電
圧源に接続するのであるが、第4図では図面を簡
単ならしめる為、図示していない。後に詳述する
ように横行電極14と縦列電極11の極性を変え
ることにより、顔料粒子20は縦列電極11にひ
きつけられたり、逆に縦列電極11から反撥され
て透明バツク電極16にひきつけられたりする。
これによりEPID装置の適当な領域に所望通りの
画像を形成させることができる。 EPID動作の視覚的効果を高度略式で図示した
のが第4図である。EPID装置はそのいずれの側
も画像表示に使用することができる。これを第4
図では観測者1と観測者2とを両側に図示して示
した。観測者1は第2のパネル17の透明な第一
部24を通して染料の色を見ることになる。蓋
し、電気泳動液19は不透明で、顔料粒子は隠さ
れてしまうからである。第2のパネル17の第二
部25では透明バツク電極16の領域で顔料粒子
20が染料を追いやつており、観測者1は第2の
パネル17の第二部25を通してて顔料粒子20
の色を見ることになる。本発明の一実施例では明
かるい黄色の顔料を使用している。このEPID装
置は「記憶作用」を有していることに注意された
い。蓋し、顔料粒子は印加電圧がはずされた後も
電気的な力、化学的な力及びフアンデルワールス
力により電極上若しくはその近傍にとどまるから
である。 観測者2は基板10の上側部26を通して顔料
の色を見、基板10の下側部27では、基板10
に隣接して存在するのは染料であるから、観測者
2は基板10を通して染料の色を見ることにな
る。 第5,6及び7図は、1本の特定の横行電極1
4と縦列電極11に対応する1個の単一のEPID
装置の「リセツト」動作状態と、ホールド動作状
態(hold−during−write)と、書き込み動作状
態とにおける顔料粒子20の動きを示したもので
ある。これらの第5,6及び7図は高度に略式図
示したものであつて、透明バツク電極16、電気
泳動液19、電界の作用を受けて電気泳動液19
内を運動する顔料粒子20(矢印で示す)、単一
の制御電極即ち横行電極14、絶縁層13(寸法
通りではない)、単一の縦列電極11の一部及び
基板10が大きく拡大された状態で描かれてあ
る。 第5,6及び7図は透明バツク電極16、制御
電極即ち横行電極14及び縦列電極11に種々の
予じめ定められた電圧を印加した時、それによる
電気力線に沿つて顔料粒子20が電気泳動液19
内でどのような軌跡を描くかを図示しているが、
それは第1図の実施例に提示したEPID装置の幾
何学的構造(即ち、絶縁層13の厚さ並びに物理
的なポテンシヤル井戸29の直径、深さ及び分離
状態)を用いて理論計算したものに基づくもの
で、外部電界の下での粒子の運動をコンピユータ
でシミユレートしたものである。 第5図は「リセツト」動作状態を示す。この場
合、顔料粒子20は従前の表示動作状態において
透明バツク電極16上若しくはその近傍にあつた
ものと仮定してある。新規の情報を表示するため
に第一になすべきことは全部の顔料粒子20を孔
18(ここでは物理的なポテンシヤル井戸29と
して示されている)内に移動させることにより、
従前の情報を消去し、装置を「リセツト」するこ
とである。なお、この「リセツト」動作状態並び
に第6図及び第7図の動作状態にあつて顔料粒子
20は負に帯電しているものとする。これは米国
特許第3612758号明細書に記載されている既知の
技術で行なうこともできる。リセツト動作状態に
あつては縦列電極11(これは物理的なポテンシ
ヤル井戸29の底にある。)に例えば10Vの正電
圧を印加する。他方、制御電極即ち横行電極14
は約0Vにセツトする。連続的な透明バツク電極
16には例えば−10Vの負のパルス電圧を印加す
る。動作速度を高めたい場合は、これらの印加電
圧の絶対値を大きくしてやればよい。結果として
第5図に示すように顔料粒子20は透明バツク電
極16から離れたそれぞれの軌道に沿つて移動
し、物理的なポテンシヤル井戸29に入り、その
底の透明な縦列電極11近傍の領域に達する。 X−Yアドレス指定を行なうには、活動させた
い表示要素に対応する横行電極と縦列電極とに予
じめ定められた電圧を印加することによりその表
示要素を「選択」する。この時「選択」された横
行電極又は「選択」された縦列電のいずれか一方
に関連するだけのその他の表示要素を活動させた
くない時は従前通りの状態にとどまるようにしな
ければならない。そのためにはこれらの表示要素
は装置を「ホールド」動作状態にすることにより
「半選択」状態にする必要がある。なお、「半選
択」状態自体を「ホールド」動作状態(hold−
during−write)と呼ぶこともある。第6図は上
述した「ホールド」動作状態即ち「半選択」状態
を図示したものであつて、ここではEPIDセルア
レーのX−Yアドレス指定にあたつて図示されて
いる縦列電極11(符号Ykを付す。)は選択され
ないが、他方図示されている横行電極14(符号
Xiを付す。)は選択されている。この「半選択」
状態では顔料粒子20は物理的なポテンシヤル井
戸29内に停まる。従来技術の説明に際し既に指
摘したように、X−Yアドレス指定を具体化する
に当つてはこの「半選択」状態を作れることが非
常に大きな意味をもつ。この半選択状態では書き
込まれるべきではないが、選択された横行電極又
は縦列電極のいずれか一方に沿つて位置する表示
要素についてはその横行電極14と縦列電極11
との間に10Vの電位差がかかることになる。而し
てこの10Vの電位差はホールド状態を作り、半選
択状態にある表示要素内の顔料粒子を第6図に示
したように物理的なポテンシヤル井戸29内にホ
ールドするに足る電位差である。 この「ホールド」動作状態では透明バツク電極
16の方には例えば38Vの正のパルス電圧を与え
る。しかし制御電極即ち横行電極14と縦列電極
11との間には前述したように、10Vの電位差が
あるため顔料粒子20は物理的なポテンシヤル井
戸29内に閉じ込められる。物理的なポテンシヤ
ル井戸29内の顔料粒子20を代表する第6図の
2個の顔料粒子20には物理的なポテンシヤル井
戸29の奥深くへ引張る力がかかることに注意さ
れたい。 第7図に示す書き込み動作状態では、書き込み
たい表示要素に対応する所望の横行電極14と縦
列電極11とに同一のパルス電圧を印加するか又
は縦列電極11に印加するパルス電圧よりも一層
正パルス電圧を制御電極即ち横行電極14に印加
することにより、顔料粒子20を物理的なポテン
シヤル井戸29内に閉じ込めていた電界を消去し
又は反転する。すると透明バツク電極16に印加
される35Vの電位により顔料粒子20はセル内を
横切つて透明バツク電極16方向に移動する。そ
して顔料粒子20は上記横行電極14と縦列電極
11の交点ともいうべき位置に対応する透明バツ
ク電極16上の領域に集まる。その結果、X−Y
選択された表示要素は透明バツク電極16側から
見れば、顔料粒子の色に見え、基板10側から見
れば染料の色に見えることになる。 それ故、本発明によれば、制御電極たる横行電
極14により他の表示要素には一切影響を及ぼさ
ずにXYマトリツクス内の任意の所望の表示要素
を選択してそれに書き込むことができる。その場
合、アドレス時間は任意の表示要素につき顔料粒
子20が物理的なポテンシヤル井戸29の底面か
ら制御電極14上の一点迄移動するに要する時間
を指す。顔料粒子20がセルの全厚さに亘つて移
動するのを待つて他の表示要素を書き込むように
する必要はない。 本発明EPID装置の作動特性をいくつか下表に
挙げる。
The present invention comprises a first panel and a second panel provided at a predetermined distance from the first panel, at least one of these panels is a transparent body, and the first panel has a a first main electrode is fixed to the second panel, a second main electrode is fixed to the second panel apart from the first main electrode, and at least one color of pigment is disposed between the first and second main electrodes. an opaque insulating liquid in which particles are suspended, a majority of these pigment particles are unipolarly charged, and a layer of some kind is fixed at least partially on the second main electrode; Specifically, the present invention relates to an electrophoretic display device in which a third electrode is interposed between the first main electrode and the second main electrode so as to be separated by this layer. Electrophoretic displays are passive displays in which images or patterns are formed by the electrophoretic movement of particles. A simple electrophoretic image display device (hereinafter abbreviated as EPID device) is known from US Pat. No. 3,688,106. This known EPID device has pigment particles suspended in an organic liquid sandwiched between two electrodes, and at least one of the electrodes is transparent. In one embodiment, the pigment particles are negatively charged relative to the organic liquid. When a positive potential is applied to one electrode in the suspension, the pigment particles are attracted to that electrode. Particles are repelled when a negative potential is applied to the electrode. To create such an EPID device, one electrode panel is made by coating a transparent substrate, such as glass, with a layer of transparent conductive material. When light-colored pigment particles are attracted to the transparent electrode panel, the viewer sees the bright color reflected by the pigment particles through the transparent electrode panel. A dark dye is dissolved in a suspension, and in the background of the device, the pigment particles are hidden by the opaque dye, and the viewer sees only the dark color reflected by the dye. When the polarity of the electrode potential is reversed, the positional relationship of the colors is reversed. Also described in this U.S. patent specification
The EPID device has a "memory effect". Close the lid,
This is because even when the applied voltage is removed from the electrodes, the pigment particles remain in their old positions due to chemical, electrical or Van der Waals forces. However, EPID devices such as those described above are impractical for certain applications. This is the case when displaying a matrix. This is because the EPID device described above does not have a constant threshold value for switching when moving pigment particles from one side of the device to the other. The lack of such a sharp threshold characteristic in a matrix display results in long address times and a troublesome half-selection problem.
In such a matrix display device, there is a half-selected state in which one of the associated horizontal electrodes or vertical electrodes is selected although it is not addressed, and the corresponding display element receives about half of the applied voltage. However, due to the broad threshold voltage of the pigment particles in such a display element, only some of them cross the device, resulting in significant fluctuations in the displayed information. “Digest of the
"Recent Progress In" included in "Society for Information Display" (held in San Diego, California, May 1974).
The paper entitled "Electrophoretic Displays"
EPID devices with primitive control grids have been reported. According to the paper, this control grid is a "wire grit" that is electrically insulated from the two electrode surfaces and placed between them, where the A electrode is normally connected. About 1/
A positive voltage of 2V is applied as a bias voltage.
As far as the literature (particularly FIG. 5) is concerned, this primitive structure has no X-Y addressing function. Furthermore, although a threshold is certainly created by the structure shown in the paper as a very simple diagram, it is not possible to produce an electrophoretic display device that can be marketed with good reproducibility. It should be noted that an EPID device of the type mentioned at the beginning of this specification is known from U.S. Pat. The value is enhanced by additionally providing on one electrode a resistive layer whose resistance varies non-linearly with voltage. In order to match the resistance of this additional resistive layer, whose resistance varies non-linearly with voltage, to the resistance of the electrophoretic suspension, this additional resistive layer has a resistor at the intersection of the column and row electrodes. Point-shaped electrodes are provided at certain positions. The size of this point electrode must be chosen such that the capacitance of the additional resistive layer, whose resistance depends non-linearly on the voltage, matches the capacitance of the electrophoretic liquid. However, even with such a configuration, an electrophoretic display device with good reproducibility that can be sold on the market cannot be manufactured. It is an object of the present invention to provide a simple electrophoretic display and/or recording device that is X-Y addressable. Another object of the invention is to provide a control and switching device for varying the spatial distribution of pigment particles within an electrophoretic suspension. Yet another object of the invention is to provide an electrophoretic color display that can be addressed at low voltages and at relatively high speeds. According to the present invention, in the electrophoretic display device of the type described at the beginning of the specification, the above-mentioned certain layer is an insulating layer, the above-mentioned third electrode is used as a control electrode, and the above-mentioned first main electrode and the second selectively adjusting the electric field between the main electrode and establishing a threshold;
The present invention is characterized in that the pigment particles are moved depending on the direction of the electric field, and an image is formed on the main electrode depending on the presence or absence of the pigment particles. Preferably, the first electrode is a continuous layer provided on the first panel and the second electrode is comprised of a plurality of parallel strips. Preferably, the third control electrode is constructed by disposing a plurality of parallel stripes on the insulating layer so as to intersect with the parallel stripes of the second electrode. The parallel strips of the second electrode and the parallel strips of the third electrode form the column and row electrodes of the matrix, respectively, and are separated by an insulating layer. Preferably, the third electrode and the insulating layer are provided with a large number of uniformly distributed holes through which the pigment particles can migrate. According to the invention, pigment particles that are not addressed but are in a display element associated with a selected row electrode or a selected column electrode are not moved across the display; This is because the electric field between the second electrode and the third electrode holds the pigment particles associated with the semi-selective display element within the third electrode and the holes formed in the insulating layer. Note that the dimensions of the holes are 10 to 50 μm, and the distance between the centers of the holes is 15 to 60 μm. The invention will be explained with reference to the drawings. FIG. 1 is a partially cutaway and enlarged view of the EPID device of the present invention. FIG. 1 not only shows the structure of the EPID device of the present invention, but also serves to explain its manufacturing method. As shown in Figure 1, the EPID device of the present invention has a thickness of
Starting from a first flat panel or substrate 10 of 1.5 mm glass or clear plastic.
A plurality of parallel transparent conductive strips are fixed to the main surface of the substrate 10 to form column electrodes 11 . Column electrodes 11 are made of indium oxide, typically applied and fixed to substrate 10 by sputtering. In this example, the column electrodes 11 typically have a thickness of 3000 Å and a width of 2.5 mm. The length of the column electrodes 11 depends on the size and dimensions of the display device itself. Next, the substrate 10 and the vertical electrodes 11 are bonded to a thickness of 5 to 50 μm.
It is covered with an insulating layer 13 of photoresist or other dielectric of m. This is done by dip coating. Next, a row electrode 14 consisting of a plurality of parallel strips extending perpendicularly to the column electrodes 11 is fixed onto the upper surface of this insulating layer 13. This transverse electrode 14
is made of aluminum and is adhered to the insulating layer 13 by vacuum evaporation, and is spaced at least partially from the column electrode 11 via the insulating layer 13. The thickness of the transverse electrode 14 is approximately 700 Å, and the width is 2.5 mm.
shall be. The space 12 between the row electrodes 14 is the same as the space 12 between the column electrodes 11, but 25~
The width shall be 100μm. In one embodiment of the invention, the transverse electrode 14 and the insulating layer 1
A minute pocket or hole 18 is made in each of the holes 3 and 3. This is partially enlarged and shown in Figure 2. The hole 18 is omitted in FIG. 1 to avoid complicating the drawing. Note that the holes 18 are formed after the transverse electrodes 14 are fixed by vacuum deposition. In that case, first, a photoresist layer (not shown) is applied on the entire surface of the horizontal electrode 14.
A photomask with the desired pattern of pockets or holes is placed over the photoresist layer and the photoresist is exposed. The photomask is then removed, the photoresist is developed, and holes are made in the photoresist layer in the exposed areas.
A transverse electrode 14 extends below it. Next, an aluminum etching solution is applied to the photoresist layer in which the holes are uniformly formed, and the exposed portions of the horizontal electrodes 14 are removed. The insulating layer 13 remains bare underneath. The remaining photoresist layer is then removed using standard methods in the prior art. Then, the transverse electrode 14 with uniform holes appears in a bare state. The insulating layer 13 below the hole of the transverse electrode 14 must then be removed. If the insulating layer 13 is made of a photoresist layer, this process is simple, and the perforated horizontal electrodes 14 can be used as they are as a photomask for exposure. When the insulating photoresist layer 13 is thus exposed and developed (ie, decomposed), holes 18 are formed corresponding to the holes of the horizontal electrodes 14. This hole 18 is extended until it reaches the column electrode 11. A second flat panel 17 is then provided parallel to the first flat panel or substrate 10.
Covering the main surface of the second panel 17 with an electrode layer 16,
It is made to face the first panel 10. This electrode layer 16
is a continuous transparent electrode layer of indium oxide approximately 3000 Å thick and is adhered to the main surface of the second panel 17 by sputtering. A space of approximately 40 μm is provided between this continuous transparent electrode layer 16 and the aforementioned column and row electrode groups. Then, the peripheral edges of the first panel 10 and the second panel 17 are sealed (see FIG. 4), and a liquid is poured between them. In the region between the column electrodes 11 and the continuous transparent electrode layer 16, soluble dyes and colored pigment particles are uniformly dispersed and suspended in a conductive liquid such as xylene or perchlorethylene (tetrachlorethylene). A colloidal solution or suspension consisting of
9) is filled with an "electrophoretic liquid" (the above colloidal solution and the like will hereinafter be referred to as "electrophoretic liquid" throughout the present specification and claims). All particles suspended in the electrophoresis liquid are charged to the same sign (polarity), which can be achieved by adding a charging aid to the electrophoresis liquid. In addition, the first
The operation of the EPID device having the structure shown in the figure will be explained in detail later with reference to FIG. FIG. 2 shows a partially enlarged view of the insulating layer 13 and the horizontal electrodes 14. A large number of holes 18 are formed in the insulating layer 13 and the horizontal electrodes 14 by photolithography.
are densely and evenly spaced. Although the hole 18 may have any shape, it is shown in FIG. 2 as a circle for simplicity. However, in the later cross-sectional drawings, for convenience of explanation, the shape of the hole 18 is assumed to be square. In any case, in a typical case the hole 18 will be a square of approximately 20 .mu.m on a side or a circle of 20 .mu.m in diameter, but in general terms the dimensions will be between 10 and 50 .mu.m. The distance between the center of one hole and the center of the next hole is 15 to 60 μm. The hole 18 is the transverse electrode 14
In addition, the insulating layer 13 is completely penetrated so that the column electrodes 11 are exposed to the electrophoretic liquid. In this way, the transverse electrode 14 functions as a control grid. The pores 18 thereby function as physical potential wells through which the pigment particles can move in response to an applied electric field.
The area occupied by the holes 18 should be at least 50%, typically 60-70%, of the surface of the transverse electrodes. FIG. 3 is an enlarged cross-sectional view taken along the - line in FIG. 2. In this cross-sectional view of FIG. 3, the column electrodes 11 extend in a continuous layer on the first panel 10 in the left-right direction. An insulating layer 13 and a transverse electrode 14 are bonded thereon with physical potential wells or holes 18 thereon. FIG. 4 is a simplified representation of the EPID device of the present invention, with two column electrodes visible at the top and bottom.
The drawing shows a substrate 10 and two column electrodes 11 (Y 1
and Y 2 ), and the insulating layer 1
3 and a transverse electrode 14 are depicted. The second panel 17 extends parallel to the substrate 10 and has an electrophoretic liquid 19 between them. A continuous transparent electrode 16 is fixed to the second panel 17 as a back electrode. Note that FIG. 4 shows the present invention.
Also shown is a spacer/seal 28 (this can be made of synthetic resin) provided for the purpose of sealing and storing the electrophoretic liquid 19 between the substrate 10 and the second panel 17 in the EPID device. ing. Note that the thickness relationship between each electrode or each layer in FIG. 4 is not drawn to scale. Hole 18 is drawn in a highly exaggerated manner for clarity of illustration. Note that the pigment particles 20 are located at the holes 18 on the upper side of the drawing.
It is shown attracted to a transparent back electrode 16 at the bottom of the figure. The electrical connections for operating the EPID display are also only shown in highly schematic form. For simplicity, the continuous transparent back electrode 16 is
Although the transparent back electrode 16 is shown grounded, a positive or negative voltage may be applied to the transparent back electrode 16 depending on the operating mode.
The first column electrode Y 1 is shown connected to the first switch 23 and the second column electrode Y 2 is shown connected to the second switch 22 . The transverse electrode 14 is also connected to a voltage source, but is not shown in FIG. 4 to simplify the drawing. As will be explained in detail later, by changing the polarity of the row electrodes 14 and the column electrodes 11, the pigment particles 20 can be attracted to the column electrodes 11, or conversely be repelled from the column electrodes 11 and attracted to the transparent back electrode 16. .
This allows a desired image to be formed in an appropriate area of the EPID device. FIG. 4 is a highly schematic illustration of the visual effects of EPID operation. Either side of the EPID device can be used for image display. This is the fourth
In the figure, observer 1 and observer 2 are illustrated on both sides. The observer 1 will see the color of the dye through the transparent first part 24 of the second panel 17. This is because the electrophoresis liquid 19 is opaque and the pigment particles are hidden when the lid is closed. In the second part 25 of the second panel 17 , the pigment particles 20 drive the dye in the area of the transparent back electrode 16 , and the observer 1 can see through the second part 25 of the second panel 17 the pigment particles 20 .
You will see the color of One embodiment of the invention uses a bright yellow pigment. Note that this EPID device has a "memory effect". This is because the pigment particles remain on or near the electrode due to electrical forces, chemical forces, and van der Waals forces even after the applied voltage is removed. The observer 2 sees the color of the pigment through the upper side 26 of the substrate 10 and at the lower side 27 of the substrate 10.
Since the dye is present adjacent to the substrate 10, the observer 2 sees the color of the dye through the substrate 10. 5, 6 and 7 show one particular transverse electrode 1
4 and one single EPID corresponding to column electrode 11
The movement of the pigment particles 20 is shown during the "reset", hold-during-write, and write operating conditions of the device. These Figures 5, 6 and 7 are highly schematic representations of the transparent back electrode 16, the electrophoretic liquid 19, and the electrophoretic liquid 19 under the action of an electric field.
The pigment particles 20 (indicated by arrows) moving within, the single control or row electrode 14, the insulating layer 13 (not to scale), a portion of the single column electrode 11 and the substrate 10 have been greatly enlarged. It is depicted in the condition. 5, 6 and 7 show that when various predetermined voltages are applied to the transparent back electrode 16, the control electrodes or row electrodes 14 and the column electrodes 11, the pigment particles 20 move along the lines of electric force caused by the voltages. Electrophoresis liquid 19
It shows the trajectory that will be drawn within the
It is based on a theoretical calculation using the geometry of the EPID device (i.e., the thickness of the insulating layer 13 and the diameter, depth, and isolation state of the physical potential well 29) presented in the embodiment of FIG. It is based on a computer simulation of the movement of particles under an external electric field. FIG. 5 shows the "reset" operating condition. In this case, it is assumed that the pigment particles 20 were on or near the transparent back electrode 16 in the previous display operation state. The first thing that must be done to display the new information is to move all the pigment particles 20 into the holes 18 (here shown as physical potential wells 29).
This involves erasing previous information and "resetting" the device. It is assumed that the pigment particles 20 are negatively charged in this "reset" operating state and in the operating states shown in FIGS. 6 and 7. This can also be done with known techniques as described in US Pat. No. 3,612,758. In the reset operating state, a positive voltage of, for example, 10V is applied to the column electrode 11 (which is at the bottom of the physical potential well 29). On the other hand, the control electrode or transverse electrode 14
is set to approximately 0V. A negative pulse voltage of, for example, -10V is applied to the continuous transparent back electrode 16. If it is desired to increase the operating speed, the absolute values of these applied voltages may be increased. As a result, the pigment particles 20 move along their respective trajectories away from the transparent back electrode 16 and enter the physical potential well 29, as shown in FIG. reach To perform X-Y addressing, a display element is "selected" by applying predetermined voltages to the row and column electrodes corresponding to the display element to be activated. At this time, if it is not desired to activate other display elements related to either the "selected" row electrode or the "selected" column electrode, the previous state should be maintained. To do this, these display elements must be placed in a "half-selected" state by placing the device in a "hold" operating state. Note that the "half-select" state itself is also referred to as the "hold" operating state (hold-
It is also called "during-write". FIG. 6 illustrates the above-mentioned "hold" or "half-select" operating state, in which the column electrodes 11 (designated Yk) are used for X-Y addressing of the EPID cell array. ) is not selected, while the transverse electrode 14 shown (labeled
Add Xi. ) is selected. This "half-select"
In this state, the pigment particles 20 remain within the physical potential wells 29. As already pointed out in the description of the prior art, being able to create this "half-selected" state is of great significance when implementing XY addressing. Although no writing should be done in this half-selected state, for display elements located along either the selected row electrode or column electrode, the row electrode 14 and the column electrode 11
A potential difference of 10V will be applied between the two. This potential difference of 10 V is sufficient to create a hold state and hold the pigment particles in the display element in the semi-selected state within the physical potential well 29 as shown in FIG. In this "hold" operating state, a positive pulse voltage of, for example, 38V is applied to the transparent back electrode 16. However, because of the 10 V potential difference between the control or row electrodes 14 and the column electrodes 11, as described above, the pigment particles 20 are confined within the physical potential wells 29. Note that the two pigment particles 20 in FIG. 6, which are representative of the pigment particles 20 within the physical potential well 29, are subject to a pulling force that pulls them deeper into the physical potential well 29. In the write operation state shown in FIG. 7, the same pulse voltage is applied to the desired row electrodes 14 and column electrodes 11 corresponding to the display element to be written, or a pulse voltage more positive than the pulse voltage applied to the column electrodes 11 is applied. By applying a voltage to the control or transverse electrode 14, the electric field that confined the pigment particles 20 within the physical potential well 29 is erased or reversed. The pigment particles 20 then move across the cell toward the transparent back electrode 16 due to the 35 V potential applied to the transparent back electrode 16. The pigment particles 20 gather in a region on the transparent back electrode 16 corresponding to the intersection of the row electrode 14 and the column electrode 11. As a result, X-Y
When the selected display element is viewed from the transparent back electrode 16 side, it appears to be the color of the pigment particles, and when viewed from the substrate 10 side, it appears to be the color of the dye. Therefore, according to the present invention, any desired display element within the XY matrix can be selected and written to by the transverse electrode 14, which is the control electrode, without affecting any other display elements. In that case, the address time refers to the time required for the pigment particles 20 to move from the bottom of the physical potential well 29 to a point on the control electrode 14 for any display element. There is no need to wait for the pigment particles 20 to travel through the entire thickness of the cell before writing other display elements. Some operating characteristics of the EPID device of the present invention are listed in the table below.

【表】 本発明EPID装置は普通の周囲光レベルの下で
非常に明かるく光り、コントラストも高い、そし
て明かるい周囲光内で非常に広い観察角度レンジ
に亘つてコントラストが高く保たれる。 第8a及び8b図は本発明EPID装置内の複数
個の表示要素につきX−Yアドレス指定をどのよ
うに行なうかを非常に簡略化して示した図であ
る。 第8a図の示すところによれば、EPIDセル即
ち表示要素を電圧源29及び30に接続する。図
は一例として第4横行と第3縦列の交点にある表
示要素〔R4C3〕を活動させる場合の電圧源への接
続態様を示している。 第8b図はこの時選択された表示要素
〔R4C3〕が光る結果を模式的に示したものであ
る。第8b図上の破線は参考のために示しただけ
である。表示画面上に文字像を形成させるのに使
れわれる一つの技術は複数個の表示要素を走査す
ることであり、その走査中、順次にしかるべき表
示要素を選んで活動状態におき、所望の文字像を
形成することである。走査ライン数が有限であ
り、各表示要素は目にも止らぬ速さで走査される
から、眼は活動状態におかれた各表示要子全体を
一時に見ることになり、画面上には多数の活動状
態におかれた表示要素から成る文字全体が一時に
描かれたかのように見える。 第9図は本発明EPID装置の一実施例で使用で
きるEPID装置のデコーデイング回路と駆動回路
とを極めて簡略化して示したブロツク図である。
使用者は表示したいと思う文字はキーボート31
に入力する。キーボート31にはデコーデイング
回路32が接続されていて、キーボート31上の
特定の文字をデコードし、XY表示装置の特定の
横行及び縦列を活動させる。この目的でデコーデ
イング回路32の出力端子を縦列駆動回路33に
接続しておき、デコーデイング回路32が指定す
る特定の縦列に対応するEPID装置のしかるべき
縦列電極11を駆動し、他方ではデコーデイング
回路32のもう一つの出力端子を横行駆動回路3
4に接続しておき、デコーデイング回路32が指
定する特定の横行に対応するEPID装置のしかる
べき横行電極14を駆動する。 消去機能を有するスイツチ35と書込み機能を
有するスイツチ36を順番付け回路
(sequencing circuit)37に接続しておき、こ
の順番付け回路37からしかるべき信号を縦列駆
動回路33と横行駆動回路34とに送つてこれら
の駆動回路33及び34を正しい順序で活動させ
る。また、順番付け回路37を連続電極駆動回路
38に接続しておき、EPID装置の連続的で透明
なバツク電極16を活動させる。
Table: The EPID device of the present invention is very bright and has high contrast under normal ambient light levels, and the contrast remains high over a very wide range of viewing angles in bright ambient light. Figures 8a and 8b are highly simplified diagrams of how X-Y addressing is accomplished for multiple display elements within an EPID device of the present invention. FIG. 8a shows that the EPID cell or display element is connected to voltage sources 29 and 30. FIG. The figure shows, as an example, how to connect to the voltage source when activating the display element [R 4 C 3 ] located at the intersection of the fourth row and the third column. FIG. 8b schematically shows the result of the display element [R 4 C 3 ] selected at this time lighting up. The dashed lines on Figure 8b are shown for reference only. One technique used to form a character image on a display screen is to scan a plurality of display elements, during which time appropriate display elements are sequentially selected and activated to produce the desired image. It is to form a character image. Because the number of scan lines is finite and each display element is scanned at a speed that is imperceptible to the eye, the eye sees each active display element in its entirety at once; The entire character, consisting of a large number of active display elements, appears to be drawn at once. FIG. 9 is a highly simplified block diagram of a decoding circuit and a driving circuit of an EPID device that can be used in one embodiment of the EPID device of the present invention.
The character the user wants to display is on the keyboard 31.
Enter. A decoding circuit 32 is connected to the keyboard 31 and decodes specific characters on the keyboard 31 to activate specific rows and columns of the XY display. For this purpose, the output terminal of the decoding circuit 32 is connected to a column drive circuit 33, which drives the appropriate column electrode 11 of the EPID device corresponding to the particular column designated by the decoding circuit 32; Transverse drive circuit 3 with another output terminal
4 to drive the appropriate row electrode 14 of the EPID device corresponding to the particular row specified by the decoding circuit 32. A switch 35 with an erase function and a switch 36 with a write function are connected to a sequencing circuit 37, and appropriate signals are sent from the sequencing circuit 37 to the column drive circuit 33 and the row drive circuit 34. Then, these drive circuits 33 and 34 are activated in the correct order. A sequencing circuit 37 is also connected to a continuous electrode drive circuit 38 to activate the continuous transparent back electrode 16 of the EPID device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明EPID装置の一部切欠斜視図、
第2図は第1図のEPID絶縁層の横行電極と絶縁
層との一部を拡大して示した斜視図、第3図は第
2図の−線に沿つて切つてみたEPID装置の
断面図、第4図は2本の横行電極を有する本発明
EPID装置の簡単な一実施例の垂直断面図、第5
図は「リセツト」動作時における顔料粒子の運動
を非常に拡大して略式図示した説明図、第6図は
「ホールド」動作状態即ち「半選択」動作時の同
様な説明図、第7図は「書込み」動作時の同様な
説明図、第8a及び第8b図は本発明EPID装置
の多数の表示要素をX−Yアドレスする仕方を非
常に簡略化して示した略図、第9図はX−Yマト
リツクスに配列したEPID表示要素に正しく像を
描かせるためのデコーデイング回路や駆動回路等
を示す非常に簡略化されたブロツク図である。 1,2……観測者、10……基板(第1のパネ
ル)、11……縦列電極、(Y1……第1部、Y2
…第2部)、12……スペース、13……絶縁
層、14……横行電極、16……連続的な透明バ
ツク電極層、17……第2のパネル、18……
孔、19……電気泳動液、20……顔料粒子、2
1……接地点、22……スイツチ、23……スイ
ツチ、24……第2のパネルの第一部、25……
第2のパネルの第二部、26……基板10の上側
部、27……基板10の下側部、28……スペー
サ兼シール、29……物理的なポテンシヤル井
戸、31……キーボート、32……デコーデイン
グ回路、33……縦列駆動回路、34……横行駆
動回路、35……消去スイツチ、36……書込み
スイツチ、37……順番付け回路、38……連続
電極駆動回路。
FIG. 1 is a partially cutaway perspective view of the EPID device of the present invention;
Figure 2 is an enlarged perspective view of a part of the transverse electrodes and insulation layer of the EPID insulating layer in Figure 1, and Figure 3 is a cross section of the EPID device taken along the - line in Figure 2. Figure 4 shows the present invention having two transverse electrodes.
Vertical cross-sectional view of a simple embodiment of an EPID device, No. 5
The figure is a highly enlarged schematic illustration of the movement of pigment particles during the "reset" operation, FIG. 6 is a similar illustration during the "hold" or "half-select" operation, and FIG. Similar illustrations during a "write" operation, FIGS. 8a and 8b are highly simplified diagrams showing how to X-Y address the multiple display elements of the EPID device of the present invention; FIG. FIG. 2 is a very simplified block diagram showing a decoding circuit, a driving circuit, etc. for correctly drawing an image on the EPID display elements arranged in a Y matrix. 1, 2... Observer, 10... Substrate (first panel), 11... Column electrode, (Y 1 ... First part, Y 2 ...
...Second part), 12...Space, 13...Insulating layer, 14...Transverse electrode, 16...Continuous transparent back electrode layer, 17...Second panel, 18...
Hole, 19... Electrophoresis liquid, 20... Pigment particle, 2
1... Ground point, 22... Switch, 23... Switch, 24... First part of second panel, 25...
Second part of second panel, 26... Upper side of substrate 10, 27... Lower side of substrate 10, 28... Spacer and seal, 29... Physical potential well, 31... Keyboard, 32 ... decoding circuit, 33 ... column drive circuit, 34 ... row drive circuit, 35 ... erase switch, 36 ... write switch, 37 ... ordering circuit, 38 ... continuous electrode drive circuit.

Claims (1)

【特許請求の範囲】 1 第1の透明なパネルと、そこから予じめ定め
られた距離だけ隔てゝ設けられる第2の透明又は
不透明なパネルとを具え、上記第1のパネルに第
1の主電極を固着し、上記第2のパネルにこの第
1の主電極からは離して第2の主電極を固着し、
これらの第1と第2の主電極間に少なくとも一色
の顔料粒子を懸濁させた不透明絶縁性液体を入
れ、これらの顔料粒子の大多数を一極性に帯電さ
せ、上記第2の主電極上に少なくとも部分的に或
る種の層を固着し、この層により分離されるよう
にして上記第1の主電極と第2の主電極との間に
第3の電極を介在させた電気泳動表示装置におい
て、前記の或る種の層を絶縁層とし、前記の第3
の電極を制御電極として前記第1の主電極と第2
の主電極との間の電界を選択的に調整し、その際
一個のしきい値を確立し、電界方向に依存して顔
料粒子を移動させ、この顔料粒子の存在と不存在
とによつて前記主電極上に画像を形成するように
し、 前記第1の主電極を連続層により構成し、 前記第2の主電極を複数個の平行細条により構
成し、 前記第3の電極を前記第2の主電極の平行細条
と交さする方向に前記絶縁層上に配設された複数
個の平行細条により構成し、 前記第3の電極と前記絶縁層に多数の空間的に
一様に分布する孔をあけ、この孔を通して前記顔
料粒子が移動できるようにしたことを特徴とする
電気泳動表示装置。 2 前記孔の寸法を10乃至50μmとし、孔同士の
中心間の距離を15乃至60μmとしたことを特徴と
する特許請求の範囲第1項記載の電気泳動表示装
置。 3 前記絶縁層の厚さを6μm乃至50μmとした
ことを特徴とする特許請求の範囲第1項記載の電
気泳動表示装置。 4 前記第3の電極をアルミニウム電極としたこ
とを特徴とする特許請求の範囲第1項記載の電気
泳動表示装置。
[Scope of Claims] 1. A first transparent panel, and a second transparent or opaque panel spaced apart from it by a predetermined distance, the first panel having a first transparent panel. fixing a main electrode, fixing a second main electrode to the second panel apart from the first main electrode;
An opaque insulating liquid in which pigment particles of at least one color are suspended is placed between these first and second main electrodes, and the majority of these pigment particles are charged unipolarly, and the liquid is charged onto the second main electrode. an electrophoretic display in which a certain type of layer is at least partially adhered to said first main electrode and said second main electrode, and a third electrode is interposed between said first main electrode and said second main electrode, separated by said layer; In the device, the certain layer is an insulating layer, and the third layer is an insulating layer.
The first main electrode and the second main electrode are used as control electrodes.
selectively adjusting the electric field between the main electrode and establishing a threshold and moving the pigment particles depending on the direction of the electric field, depending on the presence or absence of the pigment particles. an image is formed on the main electrode, the first main electrode is formed of a continuous layer, the second main electrode is formed of a plurality of parallel strips, and the third electrode is formed of a continuous layer. a plurality of parallel stripes disposed on the insulating layer in a direction intersecting the parallel stripes of the second main electrode; 1. An electrophoretic display device, characterized in that the pigment particles are made to move through the pores, which are distributed throughout the pores. 2. The electrophoretic display device according to claim 1, wherein the dimensions of the holes are 10 to 50 μm, and the distance between the centers of the holes is 15 to 60 μm. 3. The electrophoretic display device according to claim 1, wherein the insulating layer has a thickness of 6 μm to 50 μm. 4. The electrophoretic display device according to claim 1, wherein the third electrode is an aluminum electrode.
JP14491078A 1977-11-23 1978-11-22 Xxy addressable electrophoresis display unit Granted JPS5485699A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/854,117 US4203106A (en) 1977-11-23 1977-11-23 X-Y addressable electrophoretic display device with control electrode

Publications (2)

Publication Number Publication Date
JPS5485699A JPS5485699A (en) 1979-07-07
JPS6116074B2 true JPS6116074B2 (en) 1986-04-28

Family

ID=25317773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14491078A Granted JPS5485699A (en) 1977-11-23 1978-11-22 Xxy addressable electrophoresis display unit

Country Status (5)

Country Link
US (1) US4203106A (en)
EP (1) EP0002094B1 (en)
JP (1) JPS5485699A (en)
CA (1) CA1118876A (en)
DE (1) DE2861794D1 (en)

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023741A1 (en) * 1979-08-02 1981-02-11 Koninklijke Philips Electronics N.V. Electrophoretic image display device
US4311361A (en) * 1980-03-13 1982-01-19 Burroughs Corporation Electrophoretic display using a non-Newtonian fluid as a threshold device
US4418346A (en) * 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
US4450440A (en) * 1981-12-24 1984-05-22 U.S. Philips Corporation Construction of an epid bar graph
US4522472A (en) * 1982-02-19 1985-06-11 North American Philips Corporation Electrophoretic image display with reduced drives and leads
US4650288A (en) * 1983-07-07 1987-03-17 North American Philips Corporation Electrically conductive materials for devices
DE3474740D1 (en) * 1983-07-07 1988-11-24 Philips Nv Improved electrically conductive materials for devices
US4732830A (en) * 1984-11-13 1988-03-22 Copytele, Inc. Electrophoretic display panels and associated methods
US4655897A (en) * 1984-11-13 1987-04-07 Copytele, Inc. Electrophoretic display panels and associated methods
US4859038A (en) * 1984-12-24 1989-08-22 Pitney Bowes Inc. Non-volatile memory display cell
US4817002A (en) * 1984-12-24 1989-03-28 Pitney Bowes Inc. Electronic postage meter non-volatile memory systems having human visually readable and machine stored data
US4741988A (en) * 1985-05-08 1988-05-03 U.S. Philips Corp. Patterned polyimide film, a photosensitive polyamide acid derivative and an electrophoretic image-display cell
US4686524A (en) * 1985-11-04 1987-08-11 North American Philips Corporation Photosensitive electrophoretic displays
US4620916A (en) * 1985-09-19 1986-11-04 Zwemer Dirk A Degradation retardants for electrophoretic display devices
NL8502663A (en) * 1985-09-30 1987-04-16 Philips Nv DISPLAY DEVICE WITH IMPROVED CONTROL.
US4680103A (en) * 1986-01-24 1987-07-14 Epid. Inc. Positive particles in electrophoretic display device composition
NL8601373A (en) * 1986-05-29 1987-12-16 Philips Nv DISPLAY DEVICE WITH IMPROVED CONTROL.
US4833464A (en) * 1987-09-14 1989-05-23 Copytele, Inc. Electrophoretic information display (EPID) apparatus employing grey scale capability
US4947159A (en) * 1988-04-18 1990-08-07 501 Copytele, Inc. Power supply apparatus capable of multi-mode operation for an electrophoretic display panel
US4947157A (en) * 1988-10-03 1990-08-07 501 Copytele, Inc. Apparatus and methods for pulsing the electrodes of an electrophoretic display for achieving faster display operation
DE3910159A1 (en) * 1989-03-21 1990-09-27 Stefan Weller Method for the touch-controlled windowing of a display which is effective in at least one step on at least one of four sides of a display at right-angles to each other
US5053763A (en) * 1989-05-01 1991-10-01 Copytele, Inc. Dual anode flat panel electrophoretic display apparatus
US5077157A (en) * 1989-11-24 1991-12-31 Copytele, Inc. Methods of fabricating dual anode, flat panel electrophoretic displays
WO1992021733A1 (en) * 1991-05-30 1992-12-10 Copytele, Inc. Methods of fabricating dual anode, flat panel electrophoretic displays
US5411656A (en) * 1993-08-12 1995-05-02 Copytele, Inc. Gas absorption additives for electrophoretic suspensions
EP0721638A4 (en) * 1993-10-01 1997-04-09 Copytele Inc Electrophoretic display panel with selective character addressability
US7109968B2 (en) 1995-07-20 2006-09-19 E Ink Corporation Non-spherical cavity electrophoretic displays and methods and materials for making the same
US6664944B1 (en) 1995-07-20 2003-12-16 E-Ink Corporation Rear electrode structures for electrophoretic displays
US7352353B2 (en) * 1995-07-20 2008-04-01 E Ink Corporation Electrostatically addressable electrophoretic display
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6710540B1 (en) 1995-07-20 2004-03-23 E Ink Corporation Electrostatically-addressable electrophoretic display
US6515649B1 (en) 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US6120839A (en) * 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US7106296B1 (en) 1995-07-20 2006-09-12 E Ink Corporation Electronic book with multiple page displays
US7304634B2 (en) * 1995-07-20 2007-12-04 E Ink Corporation Rear electrode structures for electrophoretic displays
US6727881B1 (en) 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US7071913B2 (en) * 1995-07-20 2006-07-04 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US6124851A (en) * 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US7167155B1 (en) 1995-07-20 2007-01-23 E Ink Corporation Color electrophoretic displays
US5956005A (en) * 1995-12-29 1999-09-21 Xerox Corporation Electrocapillary display sheet which utilizes an applied electric field to move a liquid inside the display sheet
US5731792A (en) * 1996-05-06 1998-03-24 Xerox Corporation Electrocapillary color display sheet
CA2260947A1 (en) * 1996-07-19 1998-01-29 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US7242513B2 (en) 1997-08-28 2007-07-10 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6839158B2 (en) 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US7002728B2 (en) 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US6232950B1 (en) 1997-08-28 2001-05-15 E Ink Corporation Rear electrode structures for displays
US6067185A (en) 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US6177921B1 (en) 1997-08-28 2001-01-23 E Ink Corporation Printable electrode structures for displays
US7247379B2 (en) 1997-08-28 2007-07-24 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US6300932B1 (en) 1997-08-28 2001-10-09 E Ink Corporation Electrophoretic displays with luminescent particles and materials for making the same
DE69917441T2 (en) 1998-03-18 2004-09-23 E-Ink Corp., Cambridge ELECTROPHORETIC DISPLAY
US6704133B2 (en) 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
WO1999053371A1 (en) 1998-04-10 1999-10-21 E-Ink Corporation Electronic displays using organic-based field effect transistors
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
JP4651193B2 (en) 1998-05-12 2011-03-16 イー インク コーポレイション Microencapsulated electrophoretic electrostatically addressed media for drawing device applications
ATE276536T1 (en) 1998-07-08 2004-10-15 E Ink Corp METHOD FOR IMPROVING COLOR RENDERING IN ELECTROPHORETIC DEVICES USING MICROCAPSULES
USD485294S1 (en) 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
US7256766B2 (en) 1998-08-27 2007-08-14 E Ink Corporation Electrophoretic display comprising optical biasing element
US6184856B1 (en) * 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
US6262833B1 (en) 1998-10-07 2001-07-17 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
JP4679726B2 (en) 1998-10-07 2011-04-27 イー インク コーポレイション Lighting system for non-luminous electronic display
EP1127309A1 (en) * 1998-11-02 2001-08-29 E Ink Corporation Broadcast system for display devices made of electronic ink
US20070285385A1 (en) * 1998-11-02 2007-12-13 E Ink Corporation Broadcast system for electronic ink signs
JP2000137250A (en) * 1998-11-04 2000-05-16 Sony Corp Display device and method for driving the display device
US6312304B1 (en) 1998-12-15 2001-11-06 E Ink Corporation Assembly of microencapsulated electronic displays
US6724519B1 (en) * 1998-12-21 2004-04-20 E-Ink Corporation Protective electrodes for electrophoretic displays
US6987502B1 (en) * 1999-01-08 2006-01-17 Canon Kabushiki Kaisha Electrophoretic display device
WO2000059625A1 (en) 1999-04-06 2000-10-12 E Ink Corporation Methods for producing droplets for use in capsule-based electrophoretic displays
US6842657B1 (en) 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6611100B1 (en) 1999-04-26 2003-08-26 Chad Byron Moore Reflective electro-optic fiber-based displays with barriers
US6531997B1 (en) 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US6504524B1 (en) 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US6693620B1 (en) 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
US7038655B2 (en) 1999-05-03 2006-05-02 E Ink Corporation Electrophoretic ink composed of particles with field dependent mobilities
US7030412B1 (en) 1999-05-05 2006-04-18 E Ink Corporation Minimally-patterned semiconductor devices for display applications
JP4744757B2 (en) 1999-07-21 2011-08-10 イー インク コーポレイション Use of storage capacitors to enhance the performance of active matrix driven electronic displays.
US6879314B1 (en) * 1999-09-28 2005-04-12 Brother International Corporation Methods and apparatus for subjecting an element to an electrical field
US6337761B1 (en) 1999-10-01 2002-01-08 Lucent Technologies Inc. Electrophoretic display and method of making the same
US6639580B1 (en) 1999-11-08 2003-10-28 Canon Kabushiki Kaisha Electrophoretic display device and method for addressing display device
JP3667242B2 (en) 2000-04-13 2005-07-06 キヤノン株式会社 Electrophoretic display method and electrophoretic display device
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
AU2001253575A1 (en) * 2000-04-18 2001-10-30 E-Ink Corporation Process for fabricating thin film transistors
JP4035953B2 (en) * 2000-04-19 2008-01-23 富士ゼロックス株式会社 Image display medium and image display device
US20020060321A1 (en) 2000-07-14 2002-05-23 Kazlas Peter T. Minimally- patterned, thin-film semiconductor devices for display applications
US7236290B1 (en) 2000-07-25 2007-06-26 E Ink Corporation Electrophoretic medium with improved stability
NL1015841C2 (en) * 2000-07-31 2002-02-01 Zetfolie B V An imaging system as well as an apparatus and method for controlling this system.
EP1340216A2 (en) * 2000-11-29 2003-09-03 E Ink Corporation Addressing circuitry for large electronic displays
JP4595220B2 (en) 2001-03-23 2010-12-08 コニカミノルタビジネステクノロジーズ株式会社 Rewritable display sheet and image forming apparatus
US7230750B2 (en) 2001-05-15 2007-06-12 E Ink Corporation Electrophoretic media and processes for the production thereof
US20050156340A1 (en) 2004-01-20 2005-07-21 E Ink Corporation Preparation of capsules
US20100148385A1 (en) * 2001-05-15 2010-06-17 E Ink Corporation Electrophoretic media and processes for the production thereof
US6822783B2 (en) * 2001-06-26 2004-11-23 Canon Kabushiki Kaisha Electrophoretic display unit, and driving method thereof
JP4134543B2 (en) * 2001-06-26 2008-08-20 富士ゼロックス株式会社 Image display device and display driving method
JP2003005226A (en) * 2001-06-26 2003-01-08 Canon Inc Electrophoresis display device
US6967640B2 (en) * 2001-07-27 2005-11-22 E Ink Corporation Microencapsulated electrophoretic display with integrated driver
US7202847B2 (en) 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
WO2003050607A1 (en) * 2001-12-13 2003-06-19 E Ink Corporation Electrophoretic electronic displays with films having a low index of refraction
US6900851B2 (en) 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
US7463398B2 (en) * 2002-02-19 2008-12-09 Liquivista B.V. Display device
WO2003088495A1 (en) * 2002-04-17 2003-10-23 Bridgestone Corporation Image display unit
US7312916B2 (en) 2002-08-07 2007-12-25 E Ink Corporation Electrophoretic media containing specularly reflective particles
EP1537451A1 (en) * 2002-08-26 2005-06-08 Koninklijke Philips Electronics N.V. Electrophoretic display panel
JP4427942B2 (en) * 2002-08-29 2010-03-10 富士ゼロックス株式会社 Image writing device
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
JP4947901B2 (en) * 2002-10-16 2012-06-06 アドレア エルエルシー Display device having a display device having a DC balancing circuit
US20060152475A1 (en) * 2003-07-04 2006-07-13 Koninklijke Philips Electronics N.V. Electrophoretic display panel
JP4246000B2 (en) * 2003-07-14 2009-04-02 株式会社 日立ディスプレイズ Image display device
CA2541246A1 (en) * 2003-10-01 2005-04-14 Board Of Regents The University Of Texas System Compositions, methods and systems for making and using electronic paper
US20080297878A1 (en) * 2003-10-01 2008-12-04 Board Of Regents, The University Of Texas System Compositions, methods and systems for making and using electronic paper
JP2005148711A (en) * 2003-10-21 2005-06-09 Seiko Epson Corp Display device, method of driving display device and electronic equipment
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
KR101234796B1 (en) * 2006-01-16 2013-02-20 삼성전자주식회사 Apparatus and method for interface using electronic paper
KR101407375B1 (en) * 2006-08-15 2014-06-17 코닌클리케 필립스 엔.브이. Moving particle display device
US20110181575A1 (en) * 2008-02-26 2011-07-28 Hewlett-Packard Development Company, L.P. Matrix-Addressable Display Device
US8018642B2 (en) * 2009-03-26 2011-09-13 Hewlett-Packard Development Company, L.P. Electro-optical display
JP5381662B2 (en) * 2009-12-01 2014-01-08 富士ゼロックス株式会社 Display device
JP5381671B2 (en) * 2009-12-11 2014-01-08 富士ゼロックス株式会社 Display device
US7957054B1 (en) 2009-12-21 2011-06-07 Hewlett-Packard Development Company, L.P. Electro-optical display systems
US8089687B2 (en) * 2009-12-21 2012-01-03 Hewlett-Packard Development Company, L.P. Electro-optical display systems
JP2012003231A (en) * 2010-05-20 2012-01-05 Seiko Epson Corp Electrophoretic display device and method for driving the same, and electronic apparatus
US8384659B2 (en) * 2010-06-15 2013-02-26 Hewlett-Packard Development Company, L.P. Display element including electrodes and a fluid with colorant particles
JP5780941B2 (en) * 2010-12-28 2015-09-16 日東電工株式会社 Porous electrode sheet, method for producing the same, and display device
EP2979133A4 (en) 2013-03-26 2016-11-16 Clearink Displays Inc Displaced porous electrode for frustrating tir
US9280029B2 (en) 2013-05-13 2016-03-08 Clearink Displays, Inc. Registered reflective element for a brightness enhanced TIR display
US10203436B2 (en) 2013-05-22 2019-02-12 Clearink Displays, Inc. Method and apparatus for improved color filter saturation
US10705404B2 (en) 2013-07-08 2020-07-07 Concord (Hk) International Education Limited TIR-modulated wide viewing angle display
JP6360557B2 (en) 2013-07-08 2018-07-18 クリアインク ディスプレイズ, インコーポレイテッドClearink Displays, Inc. TIR-modulated wide viewing angle display
US9740075B2 (en) * 2013-09-10 2017-08-22 Clearink Displays, Inc. Method and system for perforated reflective film display device
WO2015048679A1 (en) 2013-09-30 2015-04-02 Clearink Displays Llc Method and apparatus for front-lit semi-retro-reflective display
US9897890B2 (en) 2014-10-07 2018-02-20 Clearink Displays, Inc. Reflective image display with threshold
EP3204800A4 (en) 2014-10-08 2018-06-06 Clearink Displays, Inc. Color filter registered reflective display
US10386691B2 (en) 2015-06-24 2019-08-20 CLEARink Display, Inc. Method and apparatus for a dry particle totally internally reflective image display
US10386547B2 (en) 2015-12-06 2019-08-20 Clearink Displays, Inc. Textured high refractive index surface for reflective image displays
US10261221B2 (en) 2015-12-06 2019-04-16 Clearink Displays, Inc. Corner reflector reflective image display
WO2017105443A1 (en) * 2015-12-16 2017-06-22 Clearink Displays Llc Method and apparatus for driving a reflective image display

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7005615A (en) * 1969-04-23 1970-10-27
US3792308A (en) * 1970-06-08 1974-02-12 Matsushita Electric Ind Co Ltd Electrophoretic display device of the luminescent type
US3897137A (en) * 1974-01-28 1975-07-29 Rockwell International Corp Display device containing a liquid-crystal cell and a suspended-crystal cell arranged in series
US4045327A (en) * 1974-08-28 1977-08-30 Matsushita Electric Industrial Co., Ltd. Electrophoretic matrix panel
US4046456A (en) * 1976-04-22 1977-09-06 Honeywell Inc. Electro-optic cell with transverse electric field
US4071430A (en) * 1976-12-06 1978-01-31 North American Philips Corporation Electrophoretic image display having an improved switching time

Also Published As

Publication number Publication date
DE2861794D1 (en) 1982-06-24
EP0002094A2 (en) 1979-05-30
EP0002094B1 (en) 1982-05-05
EP0002094A3 (en) 1979-06-13
CA1118876A (en) 1982-02-23
US4203106A (en) 1980-05-13
JPS5485699A (en) 1979-07-07

Similar Documents

Publication Publication Date Title
JPS6116074B2 (en)
US8139050B2 (en) Addressing schemes for electronic displays
EP0601072B1 (en) Electrophoretic display panel with interleaved local anode
JPH09502540A (en) Selective character addressable electrophoretic display panel
EP0601075B1 (en) Electrophoretic display with single character erasure
EP0396247B1 (en) Dual anode flat panel electrophoretic display apparatus
US5412398A (en) Electrophoretic display panel and associated methods for blinking displayed characters
US5302235A (en) Dual anode flat panel electrophoretic display apparatus
JP2825656B2 (en) Electrophoretic display panel with single pixel erasure performance and associated method
CA2172552C (en) Electrophoretic display panel with selective character addressability
US4062009A (en) Electrophoretic display device
US5276438A (en) Electrophoretic display panel with internal mesh background screen
US5359346A (en) Electrophoretic display panel and associated methods for blinking displayed characters
JP5406526B2 (en) In-plane switching display
CA2119247C (en) Method for writing data to an electrophoretic display panel
JP2001125512A (en) Display device
JPH06511094A (en) Electrode structure for electrophoretic display devices
JPS58129475A (en) Operation of electrically coloring display matrix
JPH052894Y2 (en)