JPS61157744A - Piston for engine - Google Patents

Piston for engine

Info

Publication number
JPS61157744A
JPS61157744A JP27559184A JP27559184A JPS61157744A JP S61157744 A JPS61157744 A JP S61157744A JP 27559184 A JP27559184 A JP 27559184A JP 27559184 A JP27559184 A JP 27559184A JP S61157744 A JPS61157744 A JP S61157744A
Authority
JP
Japan
Prior art keywords
piston
engine
pressure gas
gas
top surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27559184A
Other languages
Japanese (ja)
Inventor
Haruo Horinouchi
堀ノ内 治夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27559184A priority Critical patent/JPS61157744A/en
Publication of JPS61157744A publication Critical patent/JPS61157744A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/443Free-space packings provided with discharge channels

Abstract

PURPOSE:To suppress a flow of blow-bye gas in an engine and ensure its safety operation, by forming a passage of pressure gas communicating with a peripheral sealed part from the top surface of a piston, in the case of the piston with at least its head part consisting of ceramic material. CONSTITUTION:A no-supercharge type engine 1 generates a negative pressure in a combustion chamber 2 as a piston 3 moves lowering, and the piston 3, easily generating the action of oil up, mounts to its bottom part an oil ring 4 for preventing the oil up. And the engine 1 forms the piston 3 and a cylinder liner 5, which form a no-cooling type heat insulating combustion chamber 2, by ceramics. The above piston provides pressure gas passages 6 in a tapered nozzle shape, facing to the diagonally upward between an upper sealed part 30 and a bottom sealed part 31 and forming the inflow side opening area of a piston top surface 3a larger than the delivery side opening area, and the piston 3 arranges in its peripheral part said pressure gas passage 6 in an equal space facing to a direction A in the drawing such that jetted gas turns in the counterclockwise direction as viewed from the piston top surface.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はエンジン用ピストンに関し、特にコンプレッシ
ョン・ピストンリングを装着する必要のないセラミック
ピストンに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to engine pistons, and more particularly to ceramic pistons that do not require compression piston rings.

従来の技術 セラミック材及びセラミック成形技術の急速な進歩によ
って、昨今内燃機関の燃焼室を所謂エンジニアリング、
・セラミックスで形成した断熱構造のセラミックエンジ
ンが提案されるようになった。
Conventional Technology Due to rapid advances in ceramic materials and ceramic molding technology, the combustion chamber of internal combustion engines has recently been engineered.
・Ceramic engines with a heat-insulating structure made of ceramics have been proposed.

即チセラミックス対セラミックスの摩擦抵抗が金属同士
の場合よシも2桁程小さく、又金属対セラミックスの場
合よりも更に小さいことから、セラミックピストンとセ
ラミックシリンダライチとの間に潤滑油を供給しない無
潤滑形エンジンの実現が可能となった。(先行技術とし
て、例えは実開昭59−xasss4r無潤滑ピストン
」、特開昭59−1735361”エンジン用ピストン
」、特開w3ss−47o4aa rセラミックエンジ
ン」等に開示されている。) 〔発明が解決しようとする問題点〕 これら無潤滑形セラミックエンジンにおいて。
In other words, since the frictional resistance between ceramics and ceramics is about two orders of magnitude smaller than that between metals, and even smaller than that between metals and ceramics, it is not possible to supply lubricating oil between the ceramic piston and the ceramic cylinder. It became possible to realize a lubricated engine. (As prior art, examples are disclosed in JP-A-59-1735361 "Piston for Engines", JP-A-59-1735361 "Piston for Engines", JP-A-59-1735361 "Piston for Engines", JP-A-59-1735361 "Japanese Patent Application Laid-open W3SS-47O4AAR Ceramic Engine", etc.) Problems to be solved] In these non-lubricated ceramic engines.

セラミックス製ピストンリングは、ピストンリング溝部
において接合する分割型ピストンにしない限シ、セラミ
ックス自体の脆性によって通常装着することが不可能で
ある。このためコンプレッション脅リングを設けないで
、ピストン外周部の上方に形成した複数の環状の凸状シ
ール部をシリンダライチの円周面に近接させる構造をと
ることが多い、しかし、直接シリンダライチ及びピスト
ンリング溝面に接触する面を有するピストンリングを使
用した場合と比較して、上記無潤滑形エンジンのピスト
ンとライチ間のシール構造は、比較的高い圧縮比を必要
とするディーゼルエンジンにおいてはなお気密性が不充
分であり、又各種エンジンにおいてもガスのブローバイ
量が多くなり、エンジンの安全運転上問題を有していた
Ceramic piston rings cannot normally be installed due to the brittleness of the ceramic itself, unless the piston is of a split type that is joined at the piston ring groove. For this reason, a structure is often adopted in which a plurality of annular convex seals formed above the piston outer periphery are brought close to the circumferential surface of the cylinder lychee without providing a compression ring. Compared to the case where a piston ring with a surface that contacts the ring groove surface is used, the seal structure between the piston and litchi in the above-mentioned non-lubricated engine is still airtight in a diesel engine that requires a relatively high compression ratio. In addition, the amount of gas blow-by increases in various engines, which poses problems in terms of safe operation of the engine.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のエンジン用ピストンは、少なくともヘッド部が
セラミック体から成るピストンにおいて。
The engine piston of the present invention has at least a head portion made of a ceramic body.

該ピストンの頂面から外周シール部に連通ずる圧力ガス
通路を形成し、該圧力ガス通路を経て噴出する圧力ガス
によ)ブローバイガス流を抑制することを特徴としてい
る。従って本発明は上記構成によって、コンプレッショ
ン・リングを有しない無潤滑形エンジンにおいても、ノ
ッキングを起こさない範囲においてよシ高い圧縮比を形
成しエンジン性能を向上させると共に、ブローバイガス
量を減少させエンジンの安全運転を確保することを目的
とする。
The piston is characterized in that a pressure gas passage is formed that communicates with the outer seal portion from the top surface of the piston, and blow-by gas flow is suppressed by the pressure gas jetted out through the pressure gas passage. Therefore, with the above configuration, the present invention improves engine performance by creating a higher compression ratio within a range that does not cause knocking even in a non-lubricated engine that does not have a compression ring, and reduces the amount of blow-by gas to improve engine performance. The purpose is to ensure safe driving.

〔作用〕[Effect]

セラミックピストンとセラミックシリンダライチとの摩
擦抵抗は、金属同士の場合よりも2桁小さく、潤滑油を
供給しなくとも良好な摺動特性を有しておシ、無冷却型
の断熱エンジンにおいて、特にその優れた耐熱特性及び
耐摩耗特性を発揮する。又ピストン上側面の環状に凹凸
形状を成した外周シール部は、ラビリンス効果によって
高温高圧の燃焼ガスを絞〕と膨張の繰返しによってピス
トンの下方、即ち燃焼室からクランクケース内に燃焼ガ
スがブローバイガスとして漏れるのを最小限に防いでい
る。一般に洩九量ttrKg/Sは次式で決まる。
The frictional resistance between the ceramic piston and the ceramic cylinder litchi is two orders of magnitude lower than that between metals, and it has good sliding characteristics even without the supply of lubricating oil, making it especially suitable for non-cooled adiabatic engines. Demonstrates excellent heat resistance and wear resistance properties. In addition, the outer circumferential seal, which has an annular uneven shape on the upper surface of the piston, uses a labyrinth effect to throttle the high-temperature, high-pressure combustion gas, and through repeated expansion, blow-by gas flows from the lower part of the piston, that is, from the combustion chamber into the crankcase. This prevents leakage to a minimum. Generally, the leakage quantity ttrKg/S is determined by the following formula.

Klは凹凸形状によって決まってくる次数1人はピスト
ンとシリンダライチ間の間隙の面積i%TOは着火時の
温度’に、l?oは着火時に生じる圧力Kg/α−鶴は
溝の数)これよシ、ピストンとシリンダライチの間隙の
面積1着火時に生じる圧力が小さい程。
Kl is the order determined by the uneven shape. 1 is the area of the gap between the piston and the cylinder litchi, i%TO is the temperature at ignition, and l? o is the pressure generated at the time of ignition Kg/α - Tsuru is the number of grooves) This is the area of the gap between the piston and the cylinder litchi (1) The smaller the pressure generated at the time of ignition.

又着火時の温度、ラビリンスのフィン及び溝に相当する
凹凸リング数が多い程少なくなる。従って第1図のよう
にクリアランスをつめてリング状の凸状体を設ける事に
より流体抵抗が増大し且つ圧力降下が増加して洩れ量が
減少する。圧力ガス通路は1例えば先細ノズルのように
流入開口部の最大流路面積から吐出側開口部の最小流路
面積にかけて、高圧の燃焼ガスを徐Aに膨張し出口から
かな〕の高速流速で放出すると共に、上記凹凸形状の外
周シール部よル流下して来るブローバイガス流の運動量
に勝る燃焼室側へ吹き上げるガス流を噴出することによ
ってクランクケースに抜けるブ通常圧力ガス通路を11
g1図及び第2図に示すように燃焼室側に湾曲した先細
ノズルにすると、ノズル面が極く滑らかで外部との熱の
出入がないとしても、摩擦が生じ、摩擦仕事は一部熱と
なってガスの温度を上げ有効に加速のために使用される
が、残シはノズル損失と云う摩擦損失として失なわれる
。しかしこのノズル損失によ〕摩擦のあるガス流のノズ
ル出口速度が断熱ガス流に対して低下する割合は速度係
数と呼ばれ、この場合0.6〜0、8の間と推定されて
いる。又熱の#14Lのあるボリト冨−プ変化における
ノズルの噴出速度、流量については、工業熱力学の一般
流体の流れにおいて計算式が提供されているため、ここ
で改めて説明することは省く、ただノズルのカーボン付
着等の経年変化を見越して、先細ノズルから噴出するガ
スの運動量が、ラビリンス効果で減衰されたブローイガ
スの運動量に対して勝る条件として、流量の制約面積を
形成するノズル吐出側開口部面積がピストンとシリンダ
ライチ間の間隙面積よりもす負(ンb−聴にピストン軸
、1゛、に暑14で−の合廖に上向いている場合更にl
/coaθ倍して先細ノズルの出口径を求める。
Further, the temperature decreases as the temperature at the time of ignition increases and the number of concavo-convex rings corresponding to the fins and grooves of the labyrinth increases. Therefore, by closing the clearance and providing a ring-shaped convex body as shown in FIG. 1, the fluid resistance increases, the pressure drop increases, and the amount of leakage decreases. For example, the pressure gas passage is like a tapered nozzle, from the maximum flow area of the inlet opening to the minimum flow area of the discharge side opening, where the high-pressure combustion gas is gradually expanded at a rate of A and discharged from the outlet at a high flow rate of . At the same time, by ejecting a gas flow that blows up toward the combustion chamber side that exceeds the momentum of the blow-by gas flow flowing down through the uneven outer seal portion, the normal pressure gas passage that exits to the crankcase is established.
If you use a tapered nozzle that curves toward the combustion chamber as shown in Figure g1 and Figure 2, friction will occur, and some of the frictional work will be converted into heat, even though the nozzle surface is extremely smooth and there is no heat exchange with the outside. This increases the temperature of the gas and is effectively used for acceleration, but the remainder is lost as friction loss called nozzle loss. However, the rate by which the nozzle exit velocity of the frictional gas stream is reduced relative to the adiabatic gas stream due to this nozzle loss is called the velocity coefficient, and in this case is estimated to be between 0.6 and 0.8. Also, regarding the nozzle ejection velocity and flow rate when the volope concentration changes with #14L of heat, calculation formulas are provided in the general fluid flow of industrial thermodynamics, so we will not explain them again here. In anticipation of age-related changes such as carbon adhesion on the nozzle, the nozzle discharge side opening that forms a flow rate constraint area is required as a condition for the momentum of the gas ejected from the tapered nozzle to exceed the momentum of the blowy gas that has been attenuated by the labyrinth effect. If the area is more negative than the gap area between the piston and the cylinder lychee (on the piston axis, 1゛, and on the confluence of 14), then l
/coaθ times to find the exit diameter of the tapered nozzle.

〔実施例〕〔Example〕

以下1本発明に係るエンジン用セラミックピストンの実
施例について1図面に基づいて説明する。
An embodiment of a ceramic piston for an engine according to the present invention will be described below based on one drawing.

第1図は本発明に係る無過給飄エンジン用セラミックビ
メトンを組込んだ燃焼室要部の縦断面図。
FIG. 1 is a longitudinal cross-sectional view of a main part of a combustion chamber incorporating a ceramic bimeton for a non-supercharged engine according to the present invention.

第2図は同過給厘エンジンに適用可能なセラミックピス
トンの縦断面図、第3図は同圧力ガス通路の配置状態を
示すピストンの平面図である。
FIG. 2 is a longitudinal sectional view of a ceramic piston applicable to the supercharged engine, and FIG. 3 is a plan view of the piston showing the arrangement of the pressure gas passages.

く第一実施例〉 第1因に示すように1本発明が適用される無過給型エン
ジン基のピストン3は、吸入行程において燃焼室2内が
ピストン3の下降に伴い負圧になシフランクケース内よ
〕潤滑油の上昇、即ちオイル−アップ現象が発生しやす
いため、そのオイル・アップを最小PLに抑えるために
その下方部にオイルリング4を装着している。鷺冷却麗
の断熱層燃焼室2を形成するピストン3及びシリンダラ
イナ5に使用されるエンジニアリング・セラミックスと
して、耐熱性に優れ且つ高温強度の大きい炭化珪素曇窒
化珪素、サイアロンが使用されるが、特に本実施例では
耐摩耗性が良好で摩擦係数が小さい炭化珪素焼結体が使
用されている。ピストン上側部に形成された外周シール
部30は、比較的小間隔で6条のリング状の凹凸が形成
されておシ、又オイルリンク番に至る側部に形成された
シール部31には比較的大間隔で2条のリング状の凹凸
が形成されている。ピストン頂面3mの流入側間ズルの
形状を成す圧力ガス通路6は、ピストン3の外周部に第
3図に示すように等間隔で、噴出ガスがピストン頂面か
ら見て反時計方向に旋回する方向(・矢視人で示す)を
向いて配列されている。
First Embodiment> As shown in the first factor, the piston 3 of the non-supercharged engine to which the present invention is applied is such that the inside of the combustion chamber 2 becomes negative pressure as the piston 3 descends during the intake stroke. Since lubricating oil (inside the flank case) tends to rise, that is, an oil-up phenomenon occurs, an oil ring 4 is installed at the lower part of the flank case in order to suppress the oil-up to the minimum PL. As the engineering ceramics used for the piston 3 and cylinder liner 5 that form the thermal insulation layer combustion chamber 2 of the Sagi Cooling Rei, silicon carbide-clouded silicon nitride and Sialon, which have excellent heat resistance and high temperature strength, are used. In this embodiment, a silicon carbide sintered body having good wear resistance and a small coefficient of friction is used. The outer circumferential seal part 30 formed on the upper side of the piston has six ring-shaped unevenness formed at relatively small intervals, and the seal part 31 formed on the side part leading to the oil link number has a relatively small groove. Two ring-shaped irregularities are formed with a large distance between the targets. Pressure gas passages 6 in the shape of a gap between the inflow side of the piston top surface 3m are formed on the outer circumference of the piston 3 at equal intervals as shown in FIG. They are arranged facing the direction (indicated by the arrow).

この圧力ガス通路6のピストン上側部の吐出側開口部面
積は、上述の如くピストン3とシリンダライナ5間の隙
間の横断面積よりも大きく決められる。
The discharge side opening area of the pressure gas passage 6 above the piston is determined to be larger than the cross-sectional area of the gap between the piston 3 and the cylinder liner 5, as described above.

即ち、ピストン外径Doが76.00 ’jfl 、シ
リンダライナ内径Diが76.03φn、圧力ガス通路
個数nが8個において、圧力ガス通路6のピストン上側
面における吐出側開口部断面積を試算してみるに* −
X (Di ” −Do” )≦ix〆×8 よシこの
吐出側開口部が前記旋回方向(矢視A)と開口部の垂直
線を含む面に対して成す角度θを特徴とする請求める実
効吐出側開口部電極はdv/cna aより1.五−闘
となる。この値をペースに圧力ガス通路6の他のディメ
ンションが求められていく。
That is, when the piston outer diameter Do is 76.00'jfl, the cylinder liner inner diameter Di is 76.03φn, and the number n of pressure gas passages is 8, the cross-sectional area of the discharge side opening of the pressure gas passage 6 on the upper surface of the piston is estimated. Let's see* -
X (Di" - Do")≦ix〆×8 A claim characterized by an angle θ formed by the discharge side opening with respect to a plane including the turning direction (arrow view A) and a perpendicular line to the opening. The effective discharge side opening electrode is 1. from dv/cna a. It will be a five-fight battle. Other dimensions of the pressure gas passage 6 are determined based on this value.

又噴出ガスは旋回しながらブローバイガスを燃焼室2へ
吹き上げながら、噴射された燃料が完全燃焼するように
スワールを発生させる。
Further, the ejected gas swirls and blows up blow-by gas into the combustion chamber 2, generating a swirl so that the injected fuel is completely combusted.

く第二実施例〉 !2図に示すように1本発明が適用される過給型エンジ
ン20のピストン23は、給気行程において正圧の新気
が供給されることになり、燃焼室22内がピストン23
の下降によって負圧になることが無いためオイルアップ
現象が起シに<<、オイルリンクの装置は省かれている
。ピストン挙動を安定させるためオイルリングに代えて
リング状の凸状部分24が設けられている。従ってピス
トン・リングによる機械摩擦損失を更に低減できるメリ
ットを享受できる。
Second example! As shown in FIG. 2, the piston 23 of the supercharged engine 20 to which the present invention is applied is supplied with positive pressure fresh air during the air intake stroke, and the inside of the combustion chamber 22 is filled with the piston 23.
Because there is no negative pressure caused by the drop in the pressure, an oil-up phenomenon occurs.<<The oil link device is omitted. In order to stabilize piston behavior, a ring-shaped convex portion 24 is provided in place of the oil ring. Therefore, it is possible to enjoy the advantage of further reducing mechanical friction loss due to piston rings.

本実施例におけるピストン頂面23aから外周シを最大
限10J/m(日本機械学会誌vol 、62 @ h
486・P、五062〜107五1図8.90 機関回
転数とガス吹き抜は量を参照)と見積#)、これ以上の
量のガス量をノズル6から噴出させる条件で算定してみ
る。ノズルの吐出側開口部断面積a (#)と流出ガス
量G(Kg/s)との関係は1次式で表わされる。
In this embodiment, the outer circumference from the top surface 23a of the piston is 10 J/m at the maximum (Journal of the Japan Society of Mechanical Engineers vol. 62 @ h
486・P, 5062~10751 Figure 8.90 For the engine speed and gas vent, refer to the amount) and estimate #), try calculating it under the condition that a larger amount of gas is ejected from the nozzle 6. . The relationship between the cross-sectional area a (#) of the discharge side opening of the nozzle and the outflow gas amount G (Kg/s) is expressed by a linear equation.

n−ノズル数、ψc−・ノズル効率、Pl・・・最大爆
発圧力(Kg/IO1”)・R・・・ガス定数(29,
13)・T1−爆発時温度ごk〕 (1)  B 瓢g 、 p e−Q、6において更に
1/coall Ca□45’)倍してノズルの吐出側
開口部直径を10−とする。
n-number of nozzles, ψc-・nozzle efficiency, Pl...maximum explosion pressure (Kg/IO1")・R...gas constant (29,
13)・T1-Temperature at explosion k] (1) B g , p e-Q, 6 is further multiplied by 1/coall Ca□45') to make the diameter of the discharge side opening of the nozzle 10-.

(2)  nm8 a we−0,8において更に1/
■#C0■450)倍してノズル吐出側開口部直径を1
.7’aとする。
(2) Further 1/ at nm8 a we-0,8
■#C0■450) Multiply the nozzle discharge side opening diameter by 1
.. 7'a.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く1本発明のエンジン用セラミックピスト
ンによれば、従来のコンプレッション・リングの装着を
省き1代えて複数のリング状の凸条体によって外周シー
ル部を形成してセラ電ツタ焼結体のシリンダライチ内に
おいて作動する構成をとっているため、ピストンリング
の張力による摩擦損失を大幅に低減させて正味平均有効
圧力の増大及び出力の増大を図ることが可能と表ると共
に・コンプレッション・リングを使用したエンジンに比
較してプローバイガスに対するシール性の低下を。
As described above, according to the ceramic piston for an engine of the present invention, the attachment of a conventional compression ring is omitted, and the outer circumferential seal portion is formed by a plurality of ring-shaped convex stripes instead of the ceramic piston. Because it is configured to operate within the cylinder litchi, it is possible to significantly reduce friction loss due to piston ring tension and increase net average effective pressure and output. Reduced sealing performance against prove-by gas compared to engines using

て最少限に抑え、エンジン性能の低下を防ぐと共に、無
潤滑ピストンのメリットを享受し、且つ長期間に渡る安
全運転を可能とする。
This prevents deterioration of engine performance, enjoys the benefits of a non-lubricated piston, and enables safe operation over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る無過給屋エンジン用セランツクピ
ストンを組込んだ燃焼室要部の縦断面図。 g2図は同過給麗エンジンに適用可能なセラミックピス
トンの縦断面図、第3図は同圧力ガス通路の配置状態を
示すピストンの平面図である。 C符号め説明) 2−燃焼室、3・−セラミックピストン、3m。 23m−ピストン頂面、5−シリンダライチ、6−圧力
ガス通路、ao、az−ピストンの外周シール部。 一以上一
FIG. 1 is a longitudinal sectional view of a main part of a combustion chamber incorporating a Selance piston for a non-supercharged engine according to the present invention. Fig. g2 is a longitudinal sectional view of a ceramic piston applicable to the supercharged engine, and Fig. 3 is a plan view of the piston showing the arrangement of the pressure gas passages. C code explanation) 2-Combustion chamber, 3.-Ceramic piston, 3m. 23m-piston top surface, 5-cylinder lychee, 6-pressure gas passage, ao, az-piston outer periphery seal. one or more one

Claims (1)

【特許請求の範囲】 1、少なくともヘッド部がセラミック体から成るピスト
ンにおいて、該ピストンの頂面から外周シール部に連通
する圧力ガス通路を形成し、該圧力ガス通路を経て噴出
する圧力ガスによりブローバイガス流を抑制することを
特徴とするエンジン用ピストン。 2、上記圧力ガス通路が、その吐出側開口部を流入側開
口部より小径にした特許請求の範囲第1項記載のエンジ
ン用ピストン。 3、上記圧力ガス通路の吐出側が、ブローバイガスの流
れ方向に対向した方向に形成された特許請求の範囲第1
項記載のエンジン用ピストン。
[Claims] 1. In a piston at least whose head portion is made of a ceramic body, a pressure gas passage is formed that communicates from the top surface of the piston to an outer peripheral seal, and blow-by is caused by the pressure gas ejected through the pressure gas passage. An engine piston characterized by suppressing gas flow. 2. The engine piston according to claim 1, wherein the pressure gas passage has a discharge side opening having a smaller diameter than an inflow side opening. 3. Claim 1, wherein the discharge side of the pressure gas passage is formed in a direction opposite to the flow direction of the blow-by gas.
Piston for the engine described in section.
JP27559184A 1984-12-28 1984-12-28 Piston for engine Pending JPS61157744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27559184A JPS61157744A (en) 1984-12-28 1984-12-28 Piston for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27559184A JPS61157744A (en) 1984-12-28 1984-12-28 Piston for engine

Publications (1)

Publication Number Publication Date
JPS61157744A true JPS61157744A (en) 1986-07-17

Family

ID=17557585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27559184A Pending JPS61157744A (en) 1984-12-28 1984-12-28 Piston for engine

Country Status (1)

Country Link
JP (1) JPS61157744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503700A (en) * 2011-12-29 2015-02-02 エタジェン, インコーポレイテッド Method and system for managing clearance in a piston engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503700A (en) * 2011-12-29 2015-02-02 エタジェン, インコーポレイテッド Method and system for managing clearance in a piston engine

Similar Documents

Publication Publication Date Title
US6314933B1 (en) Piston for internal combustion engines
JPS60182342A (en) Fluid cooling type composite piston for internal combustion engine
KR20200083672A (en) Internal combustion engine
US6363894B1 (en) Diesel engine having a cylinder liner with improved cooling characteristics
JPH0131024B2 (en)
JPS61157744A (en) Piston for engine
US6234134B1 (en) Internal combustion engine having integral anti-polishing ring
GB1496451A (en) Cylinder head for a reciprocating piston internal combustion engine
CN112963238B (en) Adiabatic internal combustion engine combustion system based on adiabatic combustion chamber and Miller cycle
JPH04191413A (en) Diesel engine
US5453573A (en) Engine cooling system
JPS59170446A (en) Piston for internal-combustion engine
CN219452247U (en) Engine piston gas ring
KR0138397Y1 (en) The piston with lubrication hole
KR102026480B1 (en) Piston for engine having stabled behavior of piston ring
US7225767B1 (en) Conversion of an air-cooled engine to liquid cooling
JP2785351B2 (en) Insulated engine with auxiliary combustion chamber
RU2651694C1 (en) Internal combustion engine sleeve assembly
JP2590145B2 (en) Piston for internal combustion engine
JPS6315561Y2 (en)
JPH02540B2 (en)
JPH0141870Y2 (en)
JP2559517Y2 (en) 2-cycle insulated engine
JPH0540650U (en) Second ring for internal combustion engine pistons
KR100379302B1 (en) Piston top ring