JPS61157303A - Method and apparatus for distillatory crystallization - Google Patents

Method and apparatus for distillatory crystallization

Info

Publication number
JPS61157303A
JPS61157303A JP27523684A JP27523684A JPS61157303A JP S61157303 A JPS61157303 A JP S61157303A JP 27523684 A JP27523684 A JP 27523684A JP 27523684 A JP27523684 A JP 27523684A JP S61157303 A JPS61157303 A JP S61157303A
Authority
JP
Japan
Prior art keywords
slurry
crystallization
distillation
solution
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27523684A
Other languages
Japanese (ja)
Other versions
JPH0334361B2 (en
Inventor
Tatsuyuki Kasai
河西 達之
Tatsuo Niikura
達雄 新倉
Masanori Sato
正則 佐藤
Takao Hashimoto
孝夫 橋本
Ryoya Yamashita
山下 了也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tsukishima Kikai Co Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Tsukishima Kikai Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27523684A priority Critical patent/JPS61157303A/en
Priority to US06/813,103 priority patent/US4710215A/en
Priority to CA000498625A priority patent/CA1260225A/en
Publication of JPS61157303A publication Critical patent/JPS61157303A/en
Publication of JPH0334361B2 publication Critical patent/JPH0334361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To continuously perform distillatory crystallization for a long time without adhering a crystal, by allowing distilled vapor to rise through a distillation tower having a large number of a mesh trays or slit shelf stages in such a state that said trays or stages are wetted with a solution or slurry. CONSTITUTION:In a distillation tower having a large number of mesh trays or slit shelf stages, for example, shelf stages 2a comprising 20 stages of mesh trays, distillation/crystallization operation is performed in such a state that each shelf stage 2a is wetted with the solution or slurry present thereon, pref., the solution or slurry substantially fills the whole of the distillation tower 2. By directly blowing raw steam 7 into the tower from the bottom thereof, the lower part of the tower is heated and distillation operation is performed and distilled vapor is allowed to rise through the tower through the solution or slurry. By this operation, the solution or slurry is well dispersed under stirring by rising vapor and, therefore, the adhesion of a crystal ready to precipitate to each shelf stage part is prevented. As a result, distillation to each shelf stage part is prevented. As a result, distillatory crystallization can be continuously performed for a long time without adhesion.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明は、塩基性炭酸アンモニウム亜鉛[Zn(NHx
 ) 41 COz溶液から塩基性炭酸亜鉛[2ZnC
;(h  ・3Zn(OH)z *りl*ZnC01@
3Zn(OH)z  e  H20]を蒸留法にて晶析
させる場合などにおける蒸留晶析方法とその装置に関す
る。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides basic ammonium zinc carbonate [Zn(NHx
) 41 Basic zinc carbonate [2ZnC
;(h ・3Zn(OH)z *ril*ZnC01@
The present invention relates to a distillation crystallization method and an apparatus for crystallizing 3Zn(OH)ze H20] by a distillation method.

[従来の技術J 製鉄所では、Znメッキ設備等から廃亜鉛が排出される
。しかるに、 Znは、ZnOの形で顔料や加硫促進剤
として利用されるなど、利用範囲が広いので、前記廃夏
鉛を処理して、その生成過程に由来する重金属等の不純
物を除去して回収するのが得策である。
[Conventional Technology J In steel works, waste zinc is discharged from Zn plating equipment, etc. However, since Zn has a wide range of uses, such as being used as a pigment and a vulcanization accelerator in the form of ZnO, it is necessary to treat the waste summer lead to remove impurities such as heavy metals derived from the production process. It is a good idea to collect it.

そこで1本発明者らは、Zn含有物から炭酸亜鉛として
回収する方法を、特開昭59−88319号公報により
開示した。
Therefore, the present inventors disclosed a method for recovering zinc carbonate from a Zn-containing material in Japanese Patent Laid-Open No. 59-88319.

Zn含有物から炭酸亜鉛を回収する場合、前記公報記載
発明のように、少なくともNH40)1および(NH)
4 C(hを含む液にZn含有物を溶解させ、その後炭
酸亜鉛を晶出させるのが好ましい、一方で、前述のよう
に、当初の廃亜鉛原料には重金属を含んでいるので、こ
れを除去することにより、より高品質のものとしての用
途を広げることができる。
When recovering zinc carbonate from a Zn-containing material, at least NH40)1 and (NH)
It is preferable to dissolve the Zn-containing material in a liquid containing 4C(h) and then crystallize zinc carbonate.On the other hand, as mentioned above, since the initial waste zinc raw material contains heavy metals, By removing it, it is possible to widen the range of uses for higher quality products.

本発明者らの研究では、溶解→イオン交換→晶析の工程
を採るのが不純物を可能な限り除去する点で最適である
ことが判明している。この反応は次の通りである。
According to research conducted by the present inventors, it has been found that the process of dissolution → ion exchange → crystallization is optimal in terms of removing impurities as much as possible. The reaction is as follows.

O溶解工程 Zn+ (NH4)2 GOx + 2NH40)1+
[ZN(NHi  )4 ] coff+ H2↑+2
H20、、、、(1)Oイオン交換工程 Me2+ + Zn−+ Me↓+Zn2+     
    、、、、(2)O晶析工程 ・5[Zn (NHt  )4 ] CCh +382
042ZnCOx ・3Zn(OH)z ↓+3CO□
 ↑+2ONHx ↑、、、、(3A) ・NZn (NHI  )4 ] C(h +4H20
+ZnGOz ・3211(OH)2 ・Hz O↓+
3C02↑+ 113NHゴ↑ 、、、、(3B)なお
、この場合、3Bの反応が80〜90%を占め、3Aの
反応は少ないと考えられる。
O dissolution process Zn+ (NH4)2 GOx + 2NH40)1+
[ZN(NHi)4]coff+H2↑+2
H20, (1) O ion exchange step Me2+ + Zn-+ Me↓+Zn2+
,,,, (2) O crystallization step・5[Zn(NHt)4] CCh +382
042ZnCOx ・3Zn(OH)z ↓+3CO□
↑+2ONHx ↑,,,, (3A) ・NZn (NHI)4 ] C(h +4H20
+ZnGOz ・3211(OH)2 ・Hz O↓+
3C02↑+ 113NHgo↑ ,,,, (3B) In this case, the reaction of 3B accounts for 80 to 90%, and the reaction of 3A is considered to be small.

[発明が解決しようとする問題点] 上記の晶析工程を行なう場合5通常の技術常識からすれ
ば晶析槽を一基または複数基設ける。
[Problems to be Solved by the Invention] When carrying out the above-mentioned crystallization step, according to common technical knowledge, one or more crystallization tanks should be provided.

ところで、晶析工程において、従来技術をそのまま採用
して晶析槽にて行なう場合、複数の晶析槽を多重効用的
に操作するのが有利であるが、たとえば第1効用缶にス
チームを吹込み、発生蒸気を次々に次の効用缶に導き、
アンモニアの蒸発拳蒸留し、アンモニア濃度をたとえば
1000 ppts以下にしようとすると、晶析槽をか
なり多く並べる必要があるし、かつ大量のスチームを必
要とする。しかも、操作的に単蒸留のようになるので、
バッチ方式となり1M統運転が不可能である。
By the way, in the crystallization process, when the conventional technology is adopted as it is and the crystallization process is carried out in a crystallization tank, it is advantageous to operate multiple crystallization tanks in a multi-effect manner. The generated steam is guided to the next pot one after another,
In order to achieve an ammonia concentration of, for example, 1000 ppts or less by evaporative distillation of ammonia, it is necessary to arrange a considerable number of crystallization tanks and a large amount of steam is required. Moreover, since the operation is similar to simple distillation,
Since it is a batch system, 1M integrated operation is not possible.

これに対して、本発明者らは、前記の晶析工程の反応を
蒸留塔で行い得ることを見出した。このことは、化学工
学的技術者の常識から全く外れて     1いる。
In contrast, the present inventors have discovered that the reaction in the crystallization step described above can be carried out in a distillation column. This is completely outside the common sense of chemical engineers.

しかしながら、蒸留塔にて晶析操作を行う場合、Zn濃
度として10重量%(以下%は重量%である)以上の溶
液を蒸留し晶出させると、製品スラリー中の固形分濃度
は20%以上となる。そして、蒸留塔の上部数段の範囲
は、アンモニアの蒸留特性から、アンモニアの揮発度が
高く、蒸発量が多い領域であるので、炭酸亜鉛の晶出量
が多い。その結果、蒸留塔内部の壁、棚段への結晶の付
着が激しく、わずか−日の運転で、泡鐘部分等が詰まり
、運転を停止し洗浄を要する。
However, when performing a crystallization operation in a distillation column, if a solution with a Zn concentration of 10% by weight or more (hereinafter % is by weight) is distilled and crystallized, the solid content concentration in the product slurry will be 20% or more. becomes. The upper several stages of the distillation column are a region where the volatility of ammonia is high and the amount of evaporation is large due to the distillation characteristics of ammonia, so a large amount of zinc carbonate is crystallized. As a result, crystals adhere to the internal walls and trays of the distillation column, and after only a few days of operation, the bubble bell etc. become clogged, requiring the operation to be stopped and cleaning to be performed.

たとえば、目皿板にあっては、第3図の上段に示すよう
に、泡鐘塔にあっては、第4図の上段に示すように、結
晶Xの付着が生じる。
For example, in the case of a perforated plate, as shown in the upper part of FIG. 3, and in the case of a bubble bell tower, as shown in the upper part of FIG. 4, crystals X are deposited.

本発明者らは、蒸留塔の材質や形状を種々変更して、結
晶の付着防止を図ったが、根本的な解決とはなり得ない
ことを知見した。また、その後結晶付着防止策を種々検
討した過程で、蒸留塔単独で晶析を行うのは、原液の濃
度が高いので起ることを知見し、しからば蒸留塔の前段
に好ましくは複数の晶析槽を設けて、前段である割合の
晶析操作を行うことによって、蒸留塔への供給液の濃度
を低くして結晶スラリーとしておけば、有効であるとの
結論を得た。
The present inventors attempted to prevent the deposition of crystals by variously changing the material and shape of the distillation column, but found that this could not provide a fundamental solution. In addition, in the course of investigating various measures to prevent crystal adhesion, we found that crystallization occurs when the distillation column alone is used because the concentration of the stock solution is high. It was concluded that it would be effective to provide a crystallization tank and perform a certain proportion of the crystallization operation in the first stage to lower the concentration of the liquid supplied to the distillation column to form a crystal slurry.

しかるに、一般の蒸留塔の操作は、各棚段を順次降下す
る過程でベーパーと接触させるという各棚段ごとの操作
である。しかし、このような操作では、各棚段での液保
有量は僅かであり、この状態で晶出が起ると、棚段部分
での結晶の付着を避は得ない。
However, the operation of a general distillation column is such that each tray is brought into contact with vapor as it descends in sequence. However, in such an operation, the amount of liquid retained in each tray is small, and if crystallization occurs in this state, adhesion of crystals on the tray portion is unavoidable.

したがって、本発明の主たる目的は、結晶の付着がなく
長時間連続運転可能な蒸留晶析方法とその装置を提供す
ることにある。
Therefore, the main object of the present invention is to provide a distillation crystallization method and an apparatus therefor that can be operated continuously for a long time without crystal adhesion.

[問題を解決するための手段] 前記問題点を解決するための本発明法は、複数の目皿ま
たはスリット棚段を有する蒸留塔に原溶液を供給し、蒸
留塔の下部を加熱し、溶液・スラリーが少なくとも前記
各棚段上に存在しその棚段を濡らしている状態で、蒸留
ベーパーを蒸留塔内を上昇させることを特徴とするもの
である。
[Means for Solving the Problems] The method of the present invention for solving the above problems involves supplying a raw solution to a distillation column having a plurality of perforated plates or slit trays, heating the lower part of the distillation column, and dissolving the solution. - The distillation vapor is raised in the distillation column while the slurry is present on at least each of the trays and wets the trays.

また、本発明装置は、孔の径または巾寸法が8〜20m
mである目皿またはスリットを多数有する目皿またはス
リット棚段を複数有し、塔の下部に溶液・スラリーの加
熱手段を有することを特徴とするものである。
In addition, the device of the present invention has a hole diameter or width of 8 to 20 m.
The column is characterized by having a plurality of perforated plates or slit trays having a large number of perforated plates or slits, and having means for heating the solution/slurry at the lower part of the tower.

[作用] 本発明法では、蒸留塔を用いて、蒸留、晶析を行ってい
るので、連続操作が可能となるばかりでなく、たとえ晶
析槽を蒸留塔の前に前置するとしてもその槽数はきわめ
て少なくて足りる。
[Function] In the method of the present invention, distillation and crystallization are performed using a distillation column, so not only continuous operation is possible, but even if the crystallization tank is placed in front of the distillation column, the A very small number of tanks is sufficient.

また、蒸留塔を用いる場合1通常泡鐘塔を考えるが、こ
の型式ではいかなる手段を加えても、結晶の付着を本質
的に防止することができない、これに対して、棚段を目
皿またはスリット板とすると、その孔径を適切に選定す
ることによって結晶の付着を防止でき、安定した長時間
の連続操作が可能である。
In addition, when using a distillation column, 1. Usually a bubble column is considered, but in this type, no matter what means are added, it is essentially impossible to prevent the adhesion of crystals. If a slit plate is used, by appropriately selecting the hole diameter, crystal adhesion can be prevented and stable continuous operation for a long period of time is possible.

ただ、各棚段上に溶液・スラリーが存在しそこを濡らし
ている状態にしておかないと、結晶の付着が起る。この
状態を維持するためには、原溶液の供給量などを適切に
選択することによって容易に達成できる。さらに好まし
くは、溶液・スラリーが実質的に蒸留塔内全体を充満し
ている状態で蒸留・晶析操作を行うことである。そして
、塔下部を加熱し、蒸留操作を行い、蒸留ベーパーを溶
液・スラリー中を通って塔内を上昇させると、上昇ベー
パーによって溶液・スラリーは良く撹乱、分散されるの
で、棚段部分に沈着しようとする結晶の付着が防止され
る。しかも、ある棚段についてみれば、その上の棚段ま
での領域全体の液を保持していることになるので、通常
の棚段上のわすかな液の保有量の場合に比較して、液保
有量かはるかに多く、シたがって液保有量が多い中で晶
出がなされるから、この面でも結晶の付着が防止される
However, if the solution/slurry is present on each shelf and is not kept wet, crystals will adhere to it. This state can be easily maintained by appropriately selecting the supply amount of the stock solution. More preferably, the distillation and crystallization operations are performed in a state where the solution/slurry substantially fills the entire distillation column. Then, when the lower part of the column is heated and a distillation operation is performed, the distilled vapor passes through the solution/slurry and rises inside the column.The solution/slurry is well agitated and dispersed by the rising vapor, so that it is deposited on the trays. This prevents crystals from attaching to each other. Moreover, if we look at a certain shelf, it means that it holds the liquid in the entire area up to the shelf above it, so compared to the case where there is only a small amount of liquid held on a normal shelf, the liquid is The amount of liquid retained is much larger, and therefore crystallization occurs in a large amount of liquid retained, so crystal adhesion is also prevented on this surface.

さらに付言すると、結晶晶析が起るとき、結晶粒子の生
長が行われるためには、結晶粒子は準安定域の過飽和液
中を浮遊していなくてはならず、結晶粒子の存在するス
ラリー法度により過飽和液1m”の体積当りの晶析量が
決まり、過飽和度がバ      1ランスし平衡を保
つ、したがって、結晶スラリー容量が多くなるほど、過
飽和度が低い液中で結晶生長が行なわれ、蒸留塔の壁面
への付着は少なくなる。過飽和度は、ある物質特有の性
質によりその値が異るが、ある値より低ければ、壁面塔
への付着およびその個所での結晶生長はきわめて少な゛
〈なり、連続運転が可能となる。この点で、本発明の一
例のように蒸留塔内全体を溶液りスラリーで充満させ、
過飽和度を低くすることが有効となる。また、蒸留ベー
パーによって溶液−スラリーを撹拌し濃度の偏在を防止
し、また棚段の目皿またはスリット板の透光部分に付着
しがちな結晶を排出し、閉塞を防止することが有効であ
る。
Furthermore, when crystallization occurs, in order for the crystal particles to grow, the crystal particles must be suspended in a supersaturated liquid in the metastable region, and the slurry containing the crystal particles must be suspended in the supersaturated liquid. The amount of crystallization per 1 m of supersaturated liquid is determined, and the degree of supersaturation is balanced and maintained in equilibrium. Therefore, as the crystal slurry volume increases, crystal growth occurs in a liquid with a lower degree of supersaturation, and the distillation column The degree of supersaturation differs depending on the specific properties of a certain substance, but if it is lower than a certain value, the amount of supersaturation attached to the wall column and the growth of crystals at that point will be extremely small. , continuous operation becomes possible.In this point, as in an example of the present invention, the entire interior of the distillation column is filled with the solution slurry,
It is effective to lower the degree of supersaturation. In addition, it is effective to stir the solution-slurry with a distillation vapor to prevent uneven distribution of concentration, and to discharge crystals that tend to adhere to the perforated plate of the shelf or the transparent part of the slit plate to prevent clogging. .

他方で、棚段として、目皿またはスリット板を用い、そ
の孔径を8〜20mm(スリットの場合には山径がこの
範囲で長さは201を超えてもよい)の範囲にしておけ
ば、必ずしも上記のような溶液・スラリーの充満態様を
採る必要はなく、充分に結晶の付着を防止できる。
On the other hand, if a perforated plate or a slit plate is used as the shelf and the hole diameter is in the range of 8 to 20 mm (in the case of slits, the diameter may be within this range and the length may exceed 20 mm), It is not necessarily necessary to adopt the filling mode of the solution/slurry as described above, and the adhesion of crystals can be sufficiently prevented.

[発明の具体例] 以下本発明を図面に示す炭酸亜鉛の晶析を例とした具体
例によって説明する。
[Specific Examples of the Invention] The present invention will be explained below using a specific example of crystallization of zinc carbonate shown in the drawings.

まず、第2図によって、晶析工程の全体を説明し1次い
で第1図によって1本発明例の詳細を述べる。  。
First, the entire crystallization process will be explained with reference to FIG. 2, and then details of an example of the present invention will be described with reference to FIG. .

前記(1)および(2)式による溶解、イオン交換およ
び精密濾過の各工程を経た原液3は供給液管8Aを介し
て第1晶析槽IAに導かれる。各晶析槽IA−10は、
同構造をなしており、内部にドラフトチューブ4、撹拌
羽根5およびクラッカーバイブロをそれぞれ有している
The stock solution 3 that has undergone the steps of dissolution, ion exchange, and precision filtration according to formulas (1) and (2) above is led to the first crystallization tank IA via the supply liquid pipe 8A. Each crystallization tank IA-10 is
It has the same structure and has a draft tube 4, a stirring blade 5, and a cracker vibro inside.

第1槽IAから最終の第4槽lDまで、7A留塔2の直
接吹込まれる生蒸気7の熱による晶析操作終了液は、順
次その前の槽へ供給液管8B〜8Dを通って供給液とし
て供給されるようになっている。最終の第4結晶槽lD
の底部からは、約Zn濃度2〜3%程度の低Zn供給液
がポンプ9により抜き出されて、蒸留塔2の塔頂へ供給
液管8Eを介して供給される。
From the first tank IA to the final fourth tank ID, the liquid that has been crystallized by the heat of the live steam 7 directly blown into the 7A distillation column 2 is sequentially passed through the feed liquid pipes 8B to 8D to the previous tank. It is designed to be supplied as a feed liquid. Final 4th crystal tank ID
A low Zn feed liquid having a Zn concentration of approximately 2 to 3% is extracted from the bottom of the distillation column 2 by a pump 9 and supplied to the top of the distillation column 2 via a feed liquid pipe 8E.

蒸留塔2は、たとえば20段の目皿からなる棚段2 a
、 2 a、・φ・を有し、塔底には直接生蒸気7が吹
込まれる。10は撹拌羽根である。
The distillation column 2 includes, for example, 20 trays 2 a of perforated plates.
, 2 a, ·φ·, and live steam 7 is directly blown into the bottom of the column. 10 is a stirring blade.

蒸留塔2内でも、前述の(3A)または(3B)式の反
応が生じ、晶析操作が行なわれ、成品の塩基性炭酸亜鉛
スラリーは塔底からスラリーポンプ11により抜き出さ
れ、続く、濾過・乾燥工程へと移行される。蒸留塔2内
での発生蒸気は。
Also in the distillation column 2, the reaction of the above-mentioned formula (3A) or (3B) occurs, a crystallization operation is performed, and the product basic zinc carbonate slurry is extracted from the bottom of the column by the slurry pump 11, followed by filtration.・Move on to the drying process. The steam generated in distillation column 2 is:

塔内を上昇して、塔頂から蒸気供給v12Aを通って最
終の第4晶析槽IDのクラッカーバイブロへ導かれ、同
晶析槽IDでの晶析熱源とされる。
It rises inside the tower, passes through the steam supply v12A from the top of the tower, is led to the final cracker vibro of the fourth crystallization tank ID, and is used as a crystallization heat source in the fourth crystallization tank ID.

続いて、第4晶析槽IDの発生蒸気は、蒸気供給管12
Bにより第3晶析槽tCへ導入される。
Subsequently, the steam generated in the fourth crystallization tank ID is transferred to the steam supply pipe 12.
B is introduced into the third crystallization tank tC.

このようにして、順次前の晶析槽へと蒸気供給管12C
,120を介して発生蒸気が供給され、最終的に第1晶
析槽からの発生蒸気は、溶解液調整工程へ移行される。
In this way, the steam supply pipe 12C is sequentially connected to the previous crystallization tank.
, 120, and finally the generated steam from the first crystallization tank is transferred to the solution preparation step.

このようにして、本発明例では、供給液と発生蒸気との
流れが向流とされている。
In this way, in the example of the present invention, the supply liquid and the generated steam flow in countercurrent flow.

上記例では、晶析槽を4基設けたが、1基もしくは他の
数の基数でもよい、対象液によっては、晶析槽が不要な
こともある。いずれにしても、最終の晶析槽から蒸留塔
2へ移行するZn5度とじては、1〜5%、特に2〜3
.5%程度が好ましいので、原液のZn濃度(通常的1
0%)に対してその分を各晶析槽で負担する゛ことが必
要である。また各晶析槽の晶出速度としては、330−
1O01t/m3が好ましい、さらに、4基の晶析槽の
場合、第4〜第1晶析槽の順で、アンモニア濃度は約3
%、4%、6%58%と順次高まる。
In the above example, four crystallization tanks were provided, but the number of crystallization tanks may be one or another number. Depending on the target liquid, a crystallization tank may not be necessary. In any case, the Zn5% transferred from the final crystallization tank to the distillation column 2 is 1 to 5%, especially 2 to 3%.
.. Since Zn concentration of the stock solution is preferably about 5% (normally 1
0%), it is necessary for each crystallization tank to bear that amount. In addition, the crystallization rate of each crystallization tank is 330-
1O01t/m3 is preferable.Furthermore, in the case of four crystallization tanks, the ammonia concentration is approximately 3
%, 4%, 6%, 58%.

さて、m1図を参照すると、本発明の好ましい実施態様
では、蒸留塔2への塩基性炭酸アンモニウム亜鉛溶液の
供給量と、塔底からのスラリー抜出量を制御して、塔内
の液eスラリーレベルLを、好ましくは最上の棚段より
上位に位置させ。
Now, referring to the m1 diagram, in a preferred embodiment of the present invention, the amount of basic ammonium zinc carbonate solution supplied to the distillation column 2 and the amount of slurry withdrawn from the bottom of the column are controlled to control the amount of liquid e in the column. The slurry level L is preferably located above the top shelf.

塔内を液量スラリーによって充満させておく、このため
に、塔高全体をカバーできる液面計13を設けて、レベ
ルmr1計14により、スラリー抜出量制御弁″15を
調節する。
To fill the inside of the tower with liquid slurry, a liquid level gauge 13 that can cover the entire height of the tower is provided, and a slurry withdrawal amount control valve ``15'' is adjusted by a level mr1 total 14.

この状態で生蒸気7を吹込むと・′−0は気泡と   
  1なって塔内を上昇するとともに、生蒸気7の熱に
よって発生したNlhガス、およびCOtガスが気泡と
なって上昇する。これらの気泡は、棚段の目皿のスリッ
ト孔を通る過程で、さらに細かくなったり、集合したり
して上昇するとともに、液・スラリー中に分散される。
When live steam 7 is blown in this state, ´-0 becomes bubbles.
At the same time, the Nlh gas and COt gas generated by the heat of the live steam 7 become bubbles and rise. In the process of passing through the slit holes in the perforated plate of the shelf, these bubbles become finer or aggregate, rise, and are dispersed into the liquid/slurry.

その結果、逆に液・スラリーは気泡によって撹乱され、
結晶粒子が分散される6 したがって、結晶粒子は目皿
や目皿のスリット孔、あるいは塔の内壁に付着しように
も、分散されて付着できない、かくして、塔内の結晶の
付着が防止される。
As a result, the liquid/slurry is disturbed by air bubbles,
Crystal particles are dispersed 6 Therefore, even if the crystal particles try to adhere to the perforated plate, the slit holes of the perforated plate, or the inner wall of the tower, they are dispersed and cannot adhere.Thus, the adhesion of crystals within the tower is prevented.

ところで、上記例では、生蒸気の直接吹込によったが、
通常の間接加熱でも、発生するMHzガスおよびCOz
ガスが気泡となるので作用的には同一である。ただ1間
接加熱であると、加熱面に結晶の付着が生じ、また気泡
量があまり多く期待できず撹乱効果が少ないので、本発
明の好ましい例は、前者の生蒸気の直接吹込である。
By the way, in the above example, direct injection of live steam was used,
Even with normal indirect heating, MHz gas and COz are generated.
Since the gas becomes bubbles, they are functionally the same. If only one indirect heating is used, crystals will adhere to the heating surface, and the amount of bubbles will be too large and the disturbance effect will be small, so the preferred example of the present invention is the former direct injection of live steam.

一方、結晶の付着をさらに防止したい場合、第5図のよ
うに、目皿上面を掻取る掻取羽根16を有する掻取装置
を設けたり、塔内の液・スラリーに対して脈動を与える
脈動ポンプ17を設け、液・スラリーに対してポンプ1
7により吸引−吐出の交互操作を行ない、液・スラリー
の流動化を図ると好ましい。
On the other hand, if it is desired to further prevent the adhesion of crystals, as shown in FIG. A pump 17 is provided, and pump 1 is used for liquid/slurry.
It is preferable to perform alternate suction and discharge operations in step 7 to fluidize the liquid/slurry.

本発明における棚段としては、一般の蒸留塔で用いられ
る棚段形式としての第4図に示す泡鐘方式20より、第
3図および第6図に示す目皿板21あるいは第7図に示
すスリット板22の方が結晶付着防止効果が大きい、 
目皿のスリット孔径見、l+ とじては、8腸腸〜20
m5が好適である。
The trays in the present invention include a bubble bell type 20 shown in FIG. 4 as a tray type used in general distillation columns, a perforated plate plate 21 shown in FIGS. 3 and 6, or a perforated plate plate 21 shown in FIG. 7. The slit plate 22 has a greater crystal adhesion prevention effect.
Look at the slit hole diameter of the perforated plate, l+, the end is 8 to 20
m5 is preferred.

8■履未満であると、結晶の付着があり、20■脂を超
えると、詰りはないが、気泡の分散性が悪く、塔の内壁
等に結晶の付着を生じる。スリット長さ11は20+m
を超えてもよいが、最長lOO■■程度とするのがよい
If it is less than 8 cm, crystals will adhere to it, and if it exceeds 20 cm, there will be no clogging, but the dispersibility of air bubbles will be poor and crystals will adhere to the inner wall of the tower, etc. Slit length 11 is 20+m
Although it may exceed 100%, it is preferable that the maximum length be about 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%

なお、上記例は、炭酸亜鉛の晶析についての例であるが
、その他の物質の晶析にも当然適用が可使である。
Note that although the above example is an example of crystallization of zinc carbonate, it can of course be applied to crystallization of other substances.

第8図に目皿板21およびスリット板22を用い、溶液
・スラリーを充満させることなく、各棚段上の液量のコ
ントロールのみで結晶の付着を防止した例を示した。2
3は液滴、24は気泡を示す。目皿やスリット板を用い
ると、その孔を気泡が大きな運動量で真上にそのまま抜
けて行くので、常に孔部分が洗浄されている状態となり
、結晶の付着が防止されると考えられる。そして、気泡
24がスラリー中に噴入されるとき、逆にスラリーが撹
拌され、ならびに棚板が振動せられ、さらに生長しつつ
ある結晶を剥離するようになることも結晶の付着防止効
果を示す原因であると考えられる。
FIG. 8 shows an example in which a perforated plate plate 21 and a slit plate 22 are used to prevent crystal adhesion only by controlling the amount of liquid on each shelf without filling the plate with solution/slurry. 2
3 indicates a droplet, and 24 indicates a bubble. If a perforated plate or slit plate is used, the air bubbles will pass directly upward through the holes with a large momentum, so the holes will always be in a state of being cleaned, and it is thought that the adhesion of crystals will be prevented. When the air bubbles 24 are injected into the slurry, the slurry is stirred and the shelf plate is vibrated, which also peels off the growing crystals, which also shows the effect of preventing crystal adhesion. This is thought to be the cause.

[発明の効果] 以上の通り、本発明によれば、棚段等の部位において結
晶の付着を防止でき、長時間の運転が可能となるなどの
利点がもたらされる。
[Effects of the Invention] As described above, the present invention provides advantages such as being able to prevent crystals from adhering to portions such as trays and enabling long-term operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法に係る実施装置の概要図、第2図は晶
析工程全体の概要図、第3図は目皿の棚段への結晶付着
状況の一例図、第4図は泡鐘棚段での結晶の付着状況図
、第5図は本発明法に係る他の例の概略図、第6図およ
び第7図は棚段の平面図、第8図は他の具体例の概要図
である。 IA−10,、、、晶析槽 2 、、、、蒸留塔2a 
、、、、棚段     7 、、、、生蒸気21 、、
、、目皿板    22 、、、、スリット板特許出願
人     月島機械株式会社住友金属工業株式会社 第4図      第3図 第5図
Fig. 1 is a schematic diagram of the implementation apparatus according to the method of the present invention, Fig. 2 is a schematic diagram of the entire crystallization process, Fig. 3 is an example of the state of crystal adhesion to the tray of the perforated plate, and Fig. 4 is the bubble Figure 5 is a schematic view of another example of the method of the present invention, Figures 6 and 7 are plan views of the shelves, and Figure 8 is a diagram of another specific example. It is a schematic diagram. IA-10, ..., crystallization tank 2, ..., distillation column 2a
,,,Shelf 7,,,Live steam 21,,
,, Perforated plate plate 22 ,,, Slit plate Patent applicant Tsukishima Kikai Co., Ltd. Sumitomo Metal Industries, Ltd. Figure 4 Figure 3 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)複数の目皿またはスリット棚段を有する蒸留塔に
原溶液を供給し、蒸留塔の下部を加熱し、溶液・スラリ
ーが少なくとも前記各棚段上に存在しその棚段を濡らし
ている状態で、蒸留ベーパーを蒸留塔内を上昇させるこ
とを特徴とする蒸留晶析方法。
(1) The raw solution is supplied to a distillation column having a plurality of perforated plates or slit trays, the lower part of the distillation column is heated, and the solution/slurry is present on at least each of the trays and wets the trays. A distillation crystallization method characterized by causing distilled vapor to rise inside a distillation column while
(2)溶液・スラリーは実質的に蒸留塔内全体を充満し
ている状態とする特許請求の範囲第1項記載の蒸留晶析
方法。
(2) The distillation crystallization method according to claim 1, wherein the solution/slurry substantially fills the entire distillation column.
(3)孔の径または巾寸法が8〜20mmである目皿ま
たはスリットを多数有する目皿またはスリット棚段を複
数有し、塔の下部に溶液・スラリーの加熱手段を有する
ことを特徴とする蒸留晶析装置。
(3) It is characterized by having a plurality of perforated plates or slit trays each having a large number of perforated plates or slits each having a hole diameter or width of 8 to 20 mm, and having means for heating the solution/slurry at the bottom of the column. Distillation crystallizer.
JP27523684A 1984-12-28 1984-12-28 Method and apparatus for distillatory crystallization Granted JPS61157303A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP27523684A JPS61157303A (en) 1984-12-28 1984-12-28 Method and apparatus for distillatory crystallization
US06/813,103 US4710215A (en) 1984-12-28 1985-12-24 Process for distillation-crystallization of zinc carbonate
CA000498625A CA1260225A (en) 1984-12-28 1985-12-24 Process for distillation-crystallization of zinc carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27523684A JPS61157303A (en) 1984-12-28 1984-12-28 Method and apparatus for distillatory crystallization

Publications (2)

Publication Number Publication Date
JPS61157303A true JPS61157303A (en) 1986-07-17
JPH0334361B2 JPH0334361B2 (en) 1991-05-22

Family

ID=17552592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27523684A Granted JPS61157303A (en) 1984-12-28 1984-12-28 Method and apparatus for distillatory crystallization

Country Status (1)

Country Link
JP (1) JPS61157303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020501876A (en) * 2016-11-02 2020-01-23 ポスコPosco Distillation apparatus and additive manufacturing equipment including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312982A (en) * 1976-07-19 1978-02-06 Dow Chemical Co Process for producing surfaceedistributivable high molecular electrolyte of substantially straight waterrsoluble intepolymers type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312982A (en) * 1976-07-19 1978-02-06 Dow Chemical Co Process for producing surfaceedistributivable high molecular electrolyte of substantially straight waterrsoluble intepolymers type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020501876A (en) * 2016-11-02 2020-01-23 ポスコPosco Distillation apparatus and additive manufacturing equipment including the same

Also Published As

Publication number Publication date
JPH0334361B2 (en) 1991-05-22

Similar Documents

Publication Publication Date Title
JP3093261B2 (en) Method and apparatus for crystallizing inorganic substances
KR101358204B1 (en) Method and container for filling solid organometallic compound
KR0169710B1 (en) Process and plant for crystallization of inorganic substance and crystals for sodium chloride
US2827366A (en) Crystallization apparatus
RU2531186C1 (en) Growing of crystals from solutions and device to this end
KR20030039375A (en) Method and apparatus for crystallization
JPS61157303A (en) Method and apparatus for distillatory crystallization
US5620891A (en) Biological reaction processes
US4394363A (en) Process for the granulation of precipitation products formed from ammonium compounds
US1559703A (en) Process and apparatus for crystallization
CN1169167A (en) Improved crystallization apparatus and method
US2045301A (en) Crystallizing process
CN110963596A (en) Dephosphorization reactor for struvite crystallization method and application thereof
JPS61158812A (en) Distillation and crystallization of zinc carbonate
US3994721A (en) Purifying a zinc-bearing solution by cementation
JPS61158813A (en) Distillation and crystallization of zinc carbonate
US4710215A (en) Process for distillation-crystallization of zinc carbonate
JPS6213287B2 (en)
US2346517A (en) Method of crystallizing material
US2624657A (en) Submerged blast reaction tank
JPS63104605A (en) Production of large crystal in crystallizer with crystal growth device
CN217092459U (en) System for refining tetracaine hydrochloride into salt
CN202080905U (en) Multi-tubular calcium chloride purification device
JPS6156070A (en) Method of culture using sintered metal element
IL223483A (en) Method of producing pharmacologically pure crystals