JPS6156070A - Method of culture using sintered metal element - Google Patents

Method of culture using sintered metal element

Info

Publication number
JPS6156070A
JPS6156070A JP59178822A JP17882284A JPS6156070A JP S6156070 A JPS6156070 A JP S6156070A JP 59178822 A JP59178822 A JP 59178822A JP 17882284 A JP17882284 A JP 17882284A JP S6156070 A JPS6156070 A JP S6156070A
Authority
JP
Japan
Prior art keywords
sintered metal
air
culture
oxygen
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59178822A
Other languages
Japanese (ja)
Other versions
JPH0665295B2 (en
Inventor
Kazuo Kawakami
川上 一夫
Reiji Takakuma
高熊 令志
Nobuhito Sato
佐藤 信仁
Kan Hirakawa
平川 完
Masami Kato
正見 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP59178822A priority Critical patent/JPH0665295B2/en
Publication of JPS6156070A publication Critical patent/JPS6156070A/en
Publication of JPH0665295B2 publication Critical patent/JPH0665295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel

Abstract

PURPOSE:To carry out efficient culture production, by feeding and dispersing air, air rich in oxygen or an oxygen gas as very fine bubbles into a culture tank by the use of a sintered metal element. CONSTITUTION:Air, air rich in oxygen, or an oxygen gas is fed and dispersed as very fine bubbles into a culture tank at <=500m/hr aerating line velocity. The sintered metal element is set in an ventilating pipe having a structure to discharge condensed water retaining in the ventilating pipe to the outside of the system. By the above-mentioned structure, effective culture production is made possible by with smaller energy. Loss of usable nutritive source which is scattered usually by excess aeration is reduced, and yield of product based on main and subsidiary raw materials is increased. Since a material with small thickness (about 3mm.) is used, pressure loss by aeration is reduced, this process is advantageous in terms of so-called aerating energy, washing and regeneration are easy, maintenance and control are simplified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、好気培養による培養生産を行うに際し、培養
槽への通気方法として、空気、酸素富化空気、或いは酸
素を焼結金属を通して供給することによって、効率のよ
い培養生産を実施する方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method for introducing air, oxygen-enriched air, or oxygen through a sintered metal as a method of aerating a culture tank when performing culture production by aerobic culture. The present invention relates to a method for carrying out efficient culture production by supplying

(発明が解決しようとする問題点) 好気条件下で培養生産を行なう場合、通fiK要するエ
ネルギーに対して如何に液中への酸素供給効率を高める
かソ重要な課題となる。特に、パン酵母や、単細胞蛋白
質(Single Ce1l Prot、ein )な
ど、微生物の菌体生産には、酸素供給の為の攪拌や通気
などに要するエネルギーの消費が多大であり、酸素供給
効率の向上が重要な課題であると認識されている。
(Problems to be Solved by the Invention) When performing culture production under aerobic conditions, an important issue is how to increase the efficiency of oxygen supply to the liquid relative to the energy required. In particular, the production of microorganisms such as baker's yeast and single-cell proteins (Single Cell Prot, ein) consumes a large amount of energy for stirring and aeration for oxygen supply, and it is difficult to improve oxygen supply efficiency. It is recognized as an important issue.

この為、従来醗酵槽の形状釦対する工夫、攪拌機の工夫
、スーパージャー、通気ノズルの改善、多孔性のセラミ
ック(多孔管)の利用など種々試みられてきた。
For this reason, various attempts have been made to improve the shape of conventional fermentation tanks, improve stirrers, improve super jars and ventilation nozzles, and use porous ceramics (perforated tubes).

本発明者らは、培養槽への通気方式として、焼結金属エ
レメントを用いる方法について着目し、種々検討した結
果、比較的低い通気線速度で通気を行うことによって、
極めて効率のよい培養生産が可能なことを発見して本発
明を完成したものである。
The present inventors focused on the method of using sintered metal elements as a method of aeration to the culture tank, and as a result of various studies, by performing aeration at a relatively low linear velocity,
The present invention was completed by discovering that extremely efficient culture production is possible.

(問題点を解決するための手段及び効果)即ち本発明は
、空気、酸素富化空気或いは酸素ガスを、焼結金属エレ
メントを用いて徽細な気泡として培養槽に分散供給する
ことを特徴とする好気的な培養方法を内容とする。
(Means and Effects for Solving the Problems) That is, the present invention is characterized in that air, oxygen-enriched air, or oxygen gas is distributed and supplied to the culture tank in the form of fine bubbles using a sintered metal element. The contents include aerobic culture methods.

焼結金属は、例えばブロンズ、ステンレスなどの金属を
焼結した無数の毛細管を持つエレメントであるが、耐熱
性・耐衝撃性など機械的強度の大きな多孔性金属であシ
、各種物質の一過、脱水や青泡などく利用されている。
Sintered metal is an element with countless capillary tubes made by sintering metals such as bronze and stainless steel, but it is a porous metal with high mechanical strength such as heat resistance and impact resistance, and it can be used to absorb various materials. It is used for many purposes such as dehydration and foaming.

空気酸化や活性汚泥法への応用の可能性も考えられるが
、培養生産において焼結金属を使用する方法については
まだ報告がなく、培養生産に対する効率的な使用方法に
ついては知られていない。これまでに多孔性のセラミッ
クス(陶磁器)を培養生産における通気方法として用い
た例はあるが、陶磁器の場合圧力損失が大きく、細孔へ
の目づまシや、割れやすく、交換に多大の労力と費用を
要するなどの欠点があった。
The possibility of application to air oxidation and activated sludge methods is also considered, but there are no reports yet on the use of sintered metal in culture production, and no efficient method for use in culture production is known. There have been examples of using porous ceramics as an aeration method in culture production, but ceramics have a large pressure loss, tend to clog the pores, break easily, and require a lot of effort to replace. It had drawbacks such as being expensive.

本発明の利点は、従来法にくらべて、より少いエネルギ
ーで、効率的な培養生産が可能なことがあげられる。第
2の利点として、通常過剰な通気によって飛散している
利用可能な栄養源のロスが少くなシ、主副原料に対する
生産物の収率が改善されることがあげられる。第5の利
点としては、肉厚の薄い材料(陶器製素焼きの各孔管の
場合15aam程度の肉厚に比較し、焼結金属の場合5
fl程度の肉厚)を用いる為に、通気による圧力損失が
少く、所要通気エネルギー面で有利であシ、洗浄・再生
が容易で保守管理が簡便である点があげられる。
An advantage of the present invention is that it enables efficient culture production with less energy than conventional methods. A second advantage is that there is less loss of available nutrients, which are normally dispersed due to excessive aeration, and the yield of product relative to the primary raw material is improved. The fifth advantage is that the material has a thin wall thickness (compared to about 15 aam for unglazed ceramic tubes, 5 aam for sintered metal).
Since it uses a wall with a wall thickness of about 100 fl liters, there is little pressure loss due to ventilation, which is advantageous in terms of the required ventilation energy, and it is easy to clean and regenerate, and maintenance is simple.

次K、本発明の実施方法について詳細に説明する。焼結
金属は、ブロンズやステンレスなど異った材質のエレメ
ントが知られているが、強度と硝酸洗浄の面からステン
レス製を用いる方が好ましい。形状は特に限定しないが
1例として円筒状に溶接した焼結金属の管の一方を封じ
、他方を、通気管或いは通気ノズル又は散気管の代υに
セットすることができる。焼結金属部の長さや管の径な
どについては特に限定しないが、通常円筒径40〜45
am、長さ400〜160011xが便利である。管の
方向や位置のえらび方によって、槽内の通気効率を高め
ることも可能である。
Next, a method for implementing the present invention will be described in detail. Elements made of different materials such as bronze and stainless steel are known for the sintered metal, but it is preferable to use stainless steel from the viewpoint of strength and nitric acid cleaning. Although the shape is not particularly limited, as an example, one side of a sintered metal tube welded into a cylindrical shape may be sealed, and the other may be set in place of a ventilation pipe, ventilation nozzle, or aeration pipe. There are no particular restrictions on the length of the sintered metal part or the diameter of the tube, but the cylinder diameter is usually 40 to 45 mm.
am, length 400-160011x is convenient. It is also possible to increase the ventilation efficiency within the tank by selecting the direction and position of the pipes.

焼結金属エレメントの孔径は1〜1100uの範囲で目
的に応じ使用可能であるが、通常1〜20μmの孔径を
持つエレメントの使用によって高い通気効率を得ること
ができる。
The pore size of the sintered metal element can be used in the range of 1 to 1100 μm depending on the purpose, but high ventilation efficiency can usually be obtained by using an element with a pore size of 1 to 20 μm.

以上述べたように焼結金属エレメントは、通常好気培養
に用いられる通気用スーパージャー、ノズル、散気管な
どの代りに用いることができる。
As described above, the sintered metal element can be used in place of the aeration super jar, nozzle, aeration pipe, etc. normally used in aerobic culture.

適用する培養槽としては通気攪拌型培養槽、エアリフト
型培養槽、パン醇母などの生産に用いられる散気管によ
る培養槽などの各種の培養!に用いることができる。特
に偏平型低液深の培養槽では高い効率を発揮する。好気
培養による培養生産の場合、酸素供給効率が経済的生産
上、重要な要因であるが、酸素源としては通常空気が用
いられ、目的によっては、酸XXX化空気−は純酸素を
用いることもできる。焼結金属エレメント(肉厚2〜5
z)の多孔管から空気が極めて微細な気泡となって液中
に分散される。
Applicable culture tanks include aeration stirring type culture tanks, air lift type culture tanks, and culture tanks with aeration tubes used in the production of bread mash, etc.! It can be used for. It exhibits particularly high efficiency in flat culture tanks with low liquid depth. In the case of culture production using aerobic culture, oxygen supply efficiency is an important factor for economical production, but air is usually used as the oxygen source, and depending on the purpose, pure oxygen may be used instead of acid XXX-formed air. You can also do it. Sintered metal element (thickness 2-5
Air is dispersed into the liquid as extremely fine bubbles from the porous tube of z).

本発明者らは通気する空気量と酸素供給吸収速度(効率
)との関係について検討したところ、空気供給速度を高
めれば、酸素吸収速度は高まるであろうという考え九対
し、むしろ空気流量を制限した領域に効率の高い条件が
あることを認めた。最適の空気流会は用いる焼結エレメ
ントの孔径や、培養槽の形状、攪拌や液の流動状態、酸
素富化空気、純酸素など酸素源の違いによっても異る。
The present inventors investigated the relationship between the amount of air to be ventilated and the oxygen supply and absorption rate (efficiency), and found that increasing the air supply rate would increase the oxygen absorption rate. It was recognized that there are conditions for high efficiency in the area where The optimal air flow rate also differs depending on the pore size of the sintering element used, the shape of the culture tank, the stirring and fluid flow conditions, and the oxygen source such as oxygen-enriched air or pure oxygen.

1例として、2μの孔径を持つ焼結金属エレメントを用
いた場合、+SO〜401’1m/Hrの空気線速度で
最適の酸素移動容量係数(KLa )が得られている(
後述実施例26照)本発明によって、焼結金属エレメン
トを培養生産に使用する場合、焼結金属による通気管に
通気する以前に、空気中の微小の浮遊物をプレフィルタ
ー(例えば5μのフィルター)によって除去することが
好ましい。更K、通気管中に滞留してくる凝縮水を系外
に排水する工夫が必要である。即ち、管内に凝縮してく
る水滴が焼結金属の孔をふさぎ、圧損が著しく大きくな
る現象がみられるので、凝縮水を自動排出する構造を設
けることが好ましい。
As an example, when using a sintered metal element with a pore size of 2μ, the optimum oxygen transfer capacity coefficient (KLa) was obtained at an air linear velocity of +SO~401'1 m/Hr (
(See Example 26 below) When using the sintered metal element for culture production according to the present invention, before venting to the sintered metal ventilation pipe, a pre-filter (for example, a 5μ filter) is used to remove minute suspended matter in the air. It is preferable to remove it by. Additionally, it is necessary to devise a way to drain the condensed water that accumulates in the ventilation pipes out of the system. That is, since water droplets condensing inside the pipe block the pores of the sintered metal, resulting in a significant pressure loss, it is preferable to provide a structure for automatically discharging the condensed water.

本発明は、好気条件下の培養生産に広く適用可能である
。例えば、パン酵母生産、酵母、細菌、糸状菌など単細
胞蛋白(sep)の生産、発酵法によるアミノ酸或いは
有機酸生産、核酸関連物質生産、抗生物質生産、などあ
げることができる。
The present invention is widely applicable to culture production under aerobic conditions. Examples include production of baker's yeast, production of single-cell proteins (SEP) such as yeast, bacteria, and filamentous fungi, production of amino acids or organic acids by fermentation, production of nucleic acid-related substances, and production of antibiotics.

培養生産において、終了後は通常空気供給を停止するが
、焼結金属を用いる場合、少量の通気を継続し焼結金属
筒内の圧力を陽圧に保ち、培養液の逆流による目づまシ
を防ぐ配慮が必要である。
In culture production, the air supply is usually stopped after completion, but when using sintered metal, a small amount of ventilation is continued to maintain positive pressure inside the sintered metal cylinder to prevent clogging due to backflow of culture solution. Consideration must be taken to prevent this.

(実施例) 以下実施例によって詳細に説明する。(Example) This will be explained in detail below using examples.

実施例1 !A容ft3001(高さ1.5 m )のエアリフト
型発酵槽を用い、多孔管(長さ500市、内径42間)
、ス−/<−ジャー(長さ2Q OmRs径2径間0騙
径5 aog )、スプレーノズル(Vee Jet 
)(長さ321DI、内径4.5 m ) (以上図2
)及び焼結金属管(A(長さ500#I11、内径60
朋、孔径2μ)、B(長さ200B、孔径5μ)〕(図
1)を通気ノズルとして用いた場合の酸素移動速度(K
d−Pp ’) IICついて、亜硫酸ソーダを用いる
常法によって測定した。
Example 1! Using an airlift type fermenter with a volume of 3001 ft (height 1.5 m), a perforated tube (length 500 mm, inner diameter 42 mm) was used.
, su-/<-jar (length 2Q OmRs diameter 2 spans 0 deg diameter 5 aog), spray nozzle (Vee Jet
) (length 321 DI, inner diameter 4.5 m) (Figure 2 above)
) and sintered metal tube (A (length 500#I11, inner diameter 60
Oxygen transfer rate (K
d-Pp') IIC was measured by a conventional method using sodium sulfite.

即ち、無水亜硫酸ソーダを14.77水に溶かしエアリ
フトファーメンタ−に入れ液量を2441とした。所定
量の空気を通気ノズルより供給して、充分液混合を行な
う。硫酸銅溶液(499/l)を11加え、反応を開始
する。所定時間毎に槽内液を5 mlサンプリングし、
50tn/の01Nヨード液に入れ、1%可溶性澱粉溶
液を指示薬としてQ、 I N NIL*S*Ox液で
滴定を行なった。
That is, anhydrous sodium sulfite was dissolved in 14.77 g of water and placed in an air lift fermenter to make the liquid volume 244 g. A predetermined amount of air is supplied from the ventilation nozzle to ensure sufficient liquid mixing. Add 11 parts of copper sulfate solution (499/l) to start the reaction. Sample 5 ml of the solution in the tank at predetermined intervals,
It was placed in 01N iodine solution at 50 tn/ml, and titrated with Q, IN NIL*S*Ox solution using 1% soluble starch solution as an indicator.

酸素移動速度を次式によって計算した。The oxygen transfer rate was calculated using the following equation.

2×(θ1−01)S θ1.ら:サンプリング時刻(min)CI r c、
 :θ1.θ!におけるα1Nチオ硫酸ソーダ(Nax
Sx03)の滴定 値(ml ) f : 0.I N N5LiSiChのファクターS
:サンプル量C”rzt) Kd、Pダニ酸素吸収速度(f−mo102/x//m
1n)Kd:酸素吸収速度係数 (y−molo、 /mトmin −atm )Py:
気相の酸素分圧(atm) 表1 各種通気方式のK(1,Pp値 実施例2 パン醇母生産用の発酵槽(20m’容ユ、直径2300
aIφの円筒形)において、焼結金属エレメントを通気
ノズルとして用いた場合の総括酸素移動容量係数KLa
 (S、 Miyamoto : Buユ1.、 Ch
em。
2×(θ1-01)S θ1. et al: sampling time (min) CI r c,
:θ1. θ! α1N Sodium Thiosulfate (Nax
Sx03) titration value (ml) f: 0. Factor S of I N N5LiSiCh
: Sample amount C”rzt) Kd, P tick oxygen absorption rate (f-mo102/x//m
1n) Kd: Oxygen absorption rate coefficient (y-molo, /mmin-atm) Py:
Oxygen partial pressure in gas phase (ATM) Table 1 K (1, Pp value of various aeration methods Example 2 Fermentation tank for bread yeast production (20 m' volume, diameter 2300 m)
Overall oxygen transfer capacity coefficient KLa when a sintered metal element is used as a ventilation nozzle in a cylindrical shape of aIφ
(S, Miyamoto: Buyu 1., Ch.
em.

Soc、、 (Japan ) 、 1101.7. 
P−8(1932))について、通常のj夕気管を用い
た場合との違いを通気線速度(m/hr )を変えて比
較した。焼結金属は孔径2μ、肉厚5IIIlffI、
内径40〜’5mm、長さ400〜1,600agを図
5のよう忙、散気管・D代シに設置して用いた(焼結金
属エレメント間の間隔及びエレメント先端と発醪糟壁の
間隔は共に50間)。得られた結果を図4に示す。
Soc, (Japan), 1101.7.
P-8 (1932)) was compared with the case of using a normal J-tube by changing the ventilation linear velocity (m/hr). The sintered metal has a pore diameter of 2μ, a wall thickness of 5IIIlffI,
An inner diameter of 40 to 5mm and a length of 400 to 1,600ag were used by installing them in the air diffuser pipe/D section as shown in Fig. 50 minutes together). The obtained results are shown in FIG.

実施例5 実施例2において、焼結金属エレメントを通気ノズルと
して用いた場合に、糖蜜を主原料とするパン酵母の生産
について検討した。市販パン#母(サツカロミセス拳セ
レビシェ) tFnEkとして用い、原票1.Oy/d
1.硫安0.2!/dl。
Example 5 In Example 2, the production of baker's yeast using molasses as the main raw material was studied when a sintered metal element was used as an aeration nozzle. Commercially available bread #Mother (Satsukalomyces Fist Cereviche) Used as tFnEk, original form 1. Oy/d
1. Ammonium sulfate 0.2! /dl.

75%リン酸0.9t/dlを含む基礎培地に殺菌清重
化した甘蔗糖蜜を液中のエタノール濃度500〜700
 ppmとなるように分割流加し、好気培養を行なった
。アンモニア水でpH4,7に制御した。
Sterilized and clarified cane molasses was added to a basal medium containing 0.9 t/dl of 75% phosphoric acid at an ethanol concentration of 500 to 700.
Aerobic culture was performed by dividing the mixture into ppm. The pH was controlled to 4.7 with aqueous ammonia.

培養開始後6〜8時間で通気圧損が急徴に増大する現象
がみられたので、通気ノズル及び空気導管を点検したと
ころ、凝縮水の滞留が認められたので、図6のように空
気主導管にドレン(凝縮水)を排出するi構(ドレント
ラップ)を設置し培養を行なったところ、空気圧損はo
、15kg/cm2G以下で安定的に維持し、好気培養
を実施することができた。図5に、通気線速度とパン醇
母収ユとの関係を示した。
A phenomenon in which the aeration pressure loss suddenly increased 6 to 8 hours after the start of culture was observed, so when we inspected the aeration nozzle and air conduit, we found that condensed water had accumulated. When culturing was carried out by installing an i-structure (drain trap) to discharge condensate (condensed water) into the pipe, the air pressure loss was o.
, 15 kg/cm2G or less, and aerobic culture could be carried out. FIG. 5 shows the relationship between the linear ventilation velocity and the bread yield.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、本発明の焼結金属エレメントの通気ノズルの1
例の形状を示す斜視図(AC長さ500闘、径60騙、
孔径2μ)、B(長さ200朋、孔径5μ)〕、 図2は従来の多孔管(1)、スーパージャー(2)、ス
プレーノズル(Vee Jθt)(3)の夫4の通気ノ
ズルの形状を示す斜視図(1,2)及び垂直断面図(3
)、 図5は、焼結金属エレメントの発酵槽内設%Lを示す平
面図、 図4は、通気ノズルの通気線速度と総括酸素移動容量係
数(KLa )との関係を示すグラフ(通気ノズルとし
ては、焼結金属エレメントと通常)散気管について比較
した)、 図5は、通気線速度とパン醇は収二との関係を示すグラ
フ(通気ノズルとしては図4と同じものについて比較し
た)、 図6は、発酵槽の空気主導管へのドレントラップの設置
を示す配置説明図、 〔垂直断面図(A)及び(A)図の空気主導管の良さ方
向に直角の断面図(B)〕
FIG. 1 shows one of the ventilation nozzles of the sintered metal element of the present invention.
A perspective view showing the shape of an example (AC length 500 mm, diameter 60 mm,
Figure 2 shows the shape of the ventilation nozzle of husband 4 of the conventional porous pipe (1), super jar (2), and spray nozzle (Vee Jθt) (3). Perspective views (1, 2) and vertical cross-sectional views (3) showing
), Figure 5 is a plan view showing the %L of the sintered metal element installed in the fermenter, and Figure 4 is a graph showing the relationship between the ventilation linear velocity of the ventilation nozzle and the overall oxygen transfer capacity coefficient (KLa). Figure 5 is a graph showing the relationship between linear ventilation velocity and pan liquefaction rate (compared using the same ventilation nozzle as in Figure 4). , Figure 6 is a layout explanatory diagram showing the installation of a drain trap in the air main pipe of a fermenter; ]

Claims (3)

【特許請求の範囲】[Claims] (1)空気、酸素富化空気、或いは酸素ガスを、焼結金
属エレメントを用いて微細な気泡として培養槽に分散供
給することを特徴とする好気的な培養方法。
(1) An aerobic culture method characterized by supplying air, oxygen-enriched air, or oxygen gas to a culture tank in the form of fine bubbles using a sintered metal element.
(2)空気を、通気線速度500m/hr以下で通気す
ることを特徴とする特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, characterized in that air is aerated at a linear velocity of 500 m/hr or less.
(3)焼結金属エレメントが、通気管内に滞留するドレ
ン(凝縮水)を系外に排出する構造を持つ通気管に設置
されている特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the sintered metal element is installed in a vent pipe having a structure for discharging condensate (condensed water) remaining in the vent pipe to the outside of the system.
JP59178822A 1984-08-28 1984-08-28 Culture method using sintered metal element Expired - Lifetime JPH0665295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59178822A JPH0665295B2 (en) 1984-08-28 1984-08-28 Culture method using sintered metal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59178822A JPH0665295B2 (en) 1984-08-28 1984-08-28 Culture method using sintered metal element

Publications (2)

Publication Number Publication Date
JPS6156070A true JPS6156070A (en) 1986-03-20
JPH0665295B2 JPH0665295B2 (en) 1994-08-24

Family

ID=16055265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59178822A Expired - Lifetime JPH0665295B2 (en) 1984-08-28 1984-08-28 Culture method using sintered metal element

Country Status (1)

Country Link
JP (1) JPH0665295B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181466U (en) * 1982-05-28 1983-12-03 株式会社マキタ電機製作所 bolt fastener
FR2818659A1 (en) * 2000-12-26 2002-06-28 Ajinomoto Kk Aerobic culture reactor has two pipes delivering gases to control reaction conditions and to act as reagent, with latter fed through fritted metal membrane
JP2015136310A (en) * 2014-01-21 2015-07-30 株式会社アウレオ METHOD FOR PRODUCING β-GLUCAN
JPWO2017115855A1 (en) * 2015-12-28 2018-10-18 味の素株式会社 Gas stirring type fermentation equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297948U (en) * 1976-01-20 1977-07-23
JPS54117379A (en) * 1978-03-06 1979-09-12 Tokyo Rikakikai Kk Contacting reactor
JPS5647739U (en) * 1979-09-20 1981-04-28

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297948U (en) * 1976-01-20 1977-07-23
JPS54117379A (en) * 1978-03-06 1979-09-12 Tokyo Rikakikai Kk Contacting reactor
JPS5647739U (en) * 1979-09-20 1981-04-28

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181466U (en) * 1982-05-28 1983-12-03 株式会社マキタ電機製作所 bolt fastener
JPS6231254Y2 (en) * 1982-05-28 1987-08-11
FR2818659A1 (en) * 2000-12-26 2002-06-28 Ajinomoto Kk Aerobic culture reactor has two pipes delivering gases to control reaction conditions and to act as reagent, with latter fed through fritted metal membrane
JP2015136310A (en) * 2014-01-21 2015-07-30 株式会社アウレオ METHOD FOR PRODUCING β-GLUCAN
JPWO2017115855A1 (en) * 2015-12-28 2018-10-18 味の素株式会社 Gas stirring type fermentation equipment

Also Published As

Publication number Publication date
JPH0665295B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US4654308A (en) Bioreactor
EP0327342B1 (en) A process for producing erythritol
JPS60132698A (en) Step type anaerobic reaction tank
US3969190A (en) Apparatus and method for microbial fermentation in a zero gravity environment
JP7070416B2 (en) Manufacturing method and equipment for chemical products by continuous fermentation
CN114127248A (en) Bioreactor for growing microorganisms
JP2661848B2 (en) Culture method and culture device
JPS6156070A (en) Method of culture using sintered metal element
AU778141B2 (en) Method for cultivating cells, a membrane module, utilization of a membrane module and reaction system for cultivation of said cells
WO1993016962A1 (en) Apparatus for the purification of cyanide-containing waste water
JP2500353B2 (en) Continuous alcohol production method for recycling flocculent microorganisms
JPH05292942A (en) Method for culturing using sintered metallic element and its apparatus
CN208667394U (en) A kind of low energy consumption anaerobic membrane biological reaction system
CN1310138A (en) Ceramic film tube bioreaction and separation system
JPS62168598A (en) Methane fermenting device
EP0295567B1 (en) Tubular bioreactor
CN202080905U (en) Multi-tubular calcium chloride purification device
CN220376455U (en) Pellet reactor device for inducing crystallization
JPS6027379A (en) Biochemical reactor
JPS61293380A (en) Cultivation of microorganism and apparatus therefor
CA1240631A (en) Bioreactor
RU2803177C1 (en) Apparatus for growing microorganisms
RU2537631C1 (en) Installation of bacterial leaching of metals from technogenic wastes
CN214936363U (en) Novel membrane bioreactor
JPS62224279A (en) Fermentation apparatus and method