JPS61156724A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPS61156724A
JPS61156724A JP27452284A JP27452284A JPS61156724A JP S61156724 A JPS61156724 A JP S61156724A JP 27452284 A JP27452284 A JP 27452284A JP 27452284 A JP27452284 A JP 27452284A JP S61156724 A JPS61156724 A JP S61156724A
Authority
JP
Japan
Prior art keywords
chamber
gas
reaction gas
valves
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27452284A
Other languages
Japanese (ja)
Inventor
Shigeo Kodama
児玉 茂夫
Hideki Yamawaki
秀樹 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27452284A priority Critical patent/JPS61156724A/en
Publication of JPS61156724A publication Critical patent/JPS61156724A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To improve the yield by causing the reaction gas to continuously flow out of an epitaxial growth apparatus simultaneously with stopping the supply for replacement of the reaction gas, thereby decreasing the pressure at the reaction gas supply means side for reducing the foreign bodies adhering to a wafer. CONSTITUTION:For replacing the reaction gas, a pump is operated to close valves 7, 1, 2 and open valve 8, evacuating a chamber 21. At this time, valves 1a, 2b open so that the gas flows to the evacuation side, and the pressure at the inlet side is kept at 0.1 kg/cm<2> or less. The valve 8 is closed, the valves 1, 2 are opened, the valves 1a, 2b are closed, and N2 is indroduced into the chamber. After the chamber is filled with N2, the contents of the chamber are replaced with H2 by valve operation, and the valve 7 is opened when the atmospheric pressure is reached. A wafer 1 is heated 9 through a supporting plate 2, with H2 as a carrier SiCl4 is fed, and it is mixed with clear H2 and fed into the chamber to perform vapor phase epitaxy. With this structure, since the introduction speed of the reaction gas can be made lower after vacuum evacuation of the chamber, the foreign bodies adhering to the wafer decrease, and the defects in the epitaxial layer decrease, thereby improving the yield.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体基板の製造方法に係シ、特にガス置換に
真空引きを利用した気相エピタキシャル成長における半
導体基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor substrate, and more particularly to a method for manufacturing a semiconductor substrate in vapor phase epitaxial growth using vacuum evacuation for gas replacement.

従来の技術 近年半導体基板(ウェハ)の大口径化に伴ない半導体基
板製造装置も大型化されている。
2. Description of the Related Art In recent years, as semiconductor substrates (wafers) have become larger in diameter, semiconductor substrate manufacturing equipment has also become larger.

特に気相エピタキシャル成長装置においては1パツチで
処理されるウェハの枚数も多く、そのチェンバーの内容
積も非常に大きい。気相エピタキシャル成長(以下気相
エビと称す)においてウェハチャージ後のチェンバー内
の空気から清浄窒素への置換及び清浄窒素から清浄水素
への置換等の工程は気相エビ層の結晶品質に重要な影響
を与える。
In particular, in a vapor phase epitaxial growth apparatus, the number of wafers processed in one batch is large, and the internal volume of the chamber thereof is also very large. In vapor phase epitaxial growth (hereinafter referred to as vapor phase epitaxial growth), processes such as replacing the air in the chamber with clean nitrogen after wafer charging and replacing clean nitrogen with clean hydrogen have important effects on the crystal quality of the vapor phase shrimp layer. give.

そこでこのようなガス置換を良好に行なうため、更にス
ルーグツトの向上を図るために大型の気相エビ装置では
通常真空Iングを用いてチェンバー内の真空引きを行な
っている。
Therefore, in order to perform such gas replacement well and to further improve the throughput, large-scale gas phase shrimp apparatuses usually use a vacuum I ring to evacuate the inside of the chamber.

従来のエビ装置を用いた真空引きの方法を説明する。A method of vacuuming using a conventional shrimp device will be explained.

@2図は従来技術を説明するだめの気相エピタキシャル
装置及びガス配管系を示す断面図である。
Figure 2 is a sectional view showing a gas phase epitaxial apparatus and a gas piping system to explain the prior art.

第2図において、まずメインガスライン5、及びパージ
がクライン6共にそれぞれバルブ1.2によって閉じら
れる。この時パルプ1,20入ロ側の圧力は供給される
清浄キャリアガスの圧力まで上昇する。通常供給される
清浄ガスの圧力は3〜8 kg/cm2(この場合、圧
力は大気圧との差で示す)であり、この時チェンバー内
の圧力は一1’rc910n2であり、その圧力差は4
〜9 kg/cm2と大きい。そのために次の工程で真
空ポンプを停止しパルプ1,2を開はチェンバー内に清
浄ガスを導入する際、ガスの流速は非常に大きくなる〇
発明が解決しようとする問題点 上記の如く、清浄ガス圧力とチェンバー内の圧力との差
による大きな清浄ガス流速のために、反応により装置内
に生じたシリコンの微粉末あるいは石英治具類の微細な
破片等が吹き上げられウェハに付着する。その結果次の
気相エビ工程において積層欠陥等の結晶欠陥あるいはウ
エノ・表面突起物を生成する。この様に従来の気相エピ
タキシャル成長における真空引き方法では結晶欠陥等の
発生により、半導体基板の製造歩留が低下する問題があ
った。
In FIG. 2, first the main gas line 5 and the purge line 6 are both closed by the respective valves 1.2. At this time, the pressure on the input side of the pulps 1 and 20 rises to the pressure of the supplied clean carrier gas. The pressure of the normally supplied clean gas is 3 to 8 kg/cm2 (in this case, the pressure is expressed as the difference from atmospheric pressure), and at this time the pressure inside the chamber is -1'rc910n2, and the pressure difference is 4
It is large at ~9 kg/cm2. Therefore, in the next step, when the vacuum pump is stopped and the pulps 1 and 2 are opened, the flow rate of the gas becomes extremely large.Problems to be solved by the invention Due to the large clean gas flow rate due to the difference between the gas pressure and the pressure inside the chamber, fine silicon powder or minute fragments of quartz jigs generated in the apparatus due to the reaction are blown up and attached to the wafer. As a result, crystal defects such as stacking faults or surface protrusions are generated in the next vapor phase shrimp process. As described above, the conventional vacuum evacuation method in vapor phase epitaxial growth has a problem in that the production yield of semiconductor substrates is reduced due to the occurrence of crystal defects and the like.

問題点を解決するだめの手段 上記問題点は本発明によれば、半導体基板の気相エピタ
キシャル成長装置内へ反応ガスを供給し、次に反応ガス
置換のために前記反応ガスの該供給を停止し前記気相エ
ピタキシャル成長装置内の残存反応ガスを排気する工程
を含む半導体基板の製造方法において、前記反応ガス置
換のために前記反応ガスの該供給を停止すると同時に該
供給反応ガスが前記反応ガス供給手段内に滞溜しないよ
うに該反応ガスを前記気相エピタキシャル成長装置内以
外に流し続けることを特徴とする半導体基板の製造方法
によって解決される。
Means for Solving the Problems According to the present invention, the above problems can be solved by supplying a reactive gas into a vapor phase epitaxial growth apparatus for semiconductor substrates, and then stopping the supply of the reactive gas to replace the reactive gas. In the method for manufacturing a semiconductor substrate, the method includes the step of exhausting the remaining reactive gas in the vapor phase epitaxial growth apparatus, wherein the supply of the reactive gas is stopped for replacing the reactive gas, and at the same time, the supplied reactive gas is discharged from the reactive gas supplying means. This problem is solved by a semiconductor substrate manufacturing method characterized in that the reaction gas continues to flow outside the vapor phase epitaxial growth apparatus so as not to accumulate inside the vapor phase epitaxial growth apparatus.

作用 すなわち本発明によれば反応ガスが反応ガス供給手段内
に滞溜しないように気相エピタキシャル成長装置内以外
に流し続けられるので反応ガス供給手段内の圧力が減少
せしめられる。
In other words, according to the present invention, the reaction gas continues to flow outside the vapor phase epitaxial growth apparatus so as not to accumulate in the reaction gas supply means, so that the pressure within the reaction gas supply means is reduced.

実施例 以下、本発明の実施例を図面に基づいて説明す。 る。Example Embodiments of the present invention will be described below based on the drawings. 

第1図は本発明の一実施例を説明するための断面図であ
る。
FIG. 1 is a sectional view for explaining one embodiment of the present invention.

(1)  第1図に示すように、シリコンウエノ・1を
SICをコートしたカーぎンサセプタ2上にセットする
。次に石英ペルジャー3、水冷ステンレスペルジ1−4
をかぶせる。清浄キャリアガスどしてはN2ガスが流れ
ている。メインガスライ15及びノ臂−ジがスライン6
のガスバルブの入口側にはそれぞれパルプ11及び2a
を介して排気配管20が接続されている。パルプ1,2
゜1m、及び2aは空気圧作動バルブであり、特にパル
プ1,2はNC(ノーマリ−クローズ:常時閉)、パル
プ1 m + 2 aはNO(ノーマリ−オープン:常
時開)で構成されており、1と1&及び2と2aはそれ
ぞれ同一の電磁弁からの空気圧で作動する。通常は空気
圧がかかり、1と2が開、1aと2aが閉となシ反応ガ
スはチェンバー21内に供給される。
(1) As shown in FIG. 1, a silicon wafer 1 is set on a carburetor receptor 2 coated with SIC. Next, quartz Pelger 3, water-cooled stainless steel Pelger 1-4
cover. N2 gas is flowing as a clean carrier gas. Main gas lie 15 and armpit are line 6
Pulp 11 and 2a are placed on the inlet side of the gas valve, respectively.
An exhaust pipe 20 is connected via. Pulp 1, 2
゜1m and 2a are pneumatically operated valves, in particular, pulps 1 and 2 are composed of NC (normally closed), pulp 1m + 2a is composed of NO (normally open), 1 and 1& and 2 and 2a are each operated by air pressure from the same solenoid valve. Normally, air pressure is applied, 1 and 2 are open, and 1a and 2a are closed, and the reaction gas is supplied into the chamber 21.

次に反応ガス置換のために、真空ポンプを動かし、排気
パルプ7を閉じパルプ1と2を閉じるために電磁弁から
の空気を0にし排気バルブ8を開はチェンバー21を排
気する。この時パルプ1aと2bが開きがスは排気側に
流れ、パルプの入口側での圧力は、0.1kg/crn
以下であった。従来方法では、3〜8 kg/αである
Next, in order to replace the reaction gas, the vacuum pump is operated, the exhaust pulp 7 is closed, and the air from the electromagnetic valve is set to 0 to close the pulps 1 and 2, and the exhaust valve 8 is opened to exhaust the chamber 21. At this time, pulps 1a and 2b are opened and gas flows to the exhaust side, and the pressure at the pulp inlet side is 0.1 kg/crn.
It was below. In the conventional method, it is 3 to 8 kg/α.

(n)  次に排気バルブ8を閉め空気圧をパルプ1゜
2+1m+2bにかけると1,2が開き、1m+2aが
閉ま9チエンバー内に清浄N2ガスが導入される。
(n) Next, when the exhaust valve 8 is closed and air pressure is applied to the pulp 1°2+1m+2b, 1 and 2 are opened, and 1m+2a is closed, and clean N2 gas is introduced into the chamber 9.

(至)チェンバー21内がN2ガスで満された後、清浄
キャリアガスをN2ガスに切り換え(II)から(至)
の1冑を繰り返し、チェンバー内にN2ガスを満たし、
大気圧になった時排気パルプ7を開ける。
(To) After the chamber 21 is filled with N2 gas, switch the clean carrier gas to N2 gas (II) to (To)
Repeat step 1 to fill the chamber with N2 gas,
When the pressure reaches atmospheric pressure, the exhaust pulp 7 is opened.

朔 ワークコイル9からの高周波による誘導加熱でサセ
プタ2を加熱し、ウェハ1を1150℃に加熱する。
The susceptor 2 is heated by induction heating using high frequency from the work coil 9, and the wafer 1 is heated to 1150°C.

(7)エビ成長材料である5tcz4をN2ガスをキャ
リアがスとして反応ガスライン10から送り、清浄H2
がスと混合しチェンバー内に導入し、気相エビ成長を行
なった。エピシリコン層は、30μm形成した。エビ成
長終了後、降温し清浄キャリアガスをN2からN2に切
り換えた。
(7) 5tcz4, which is a shrimp growth material, is sent from the reaction gas line 10 using N2 gas as a carrier, and cleaned H2
The mixture was mixed with gas and introduced into the chamber, and vapor phase shrimp growth was performed. The episilicon layer was formed to have a thickness of 30 μm. After shrimp growth was completed, the temperature was lowered and the clean carrier gas was switched from N2 to N2.

以上の本実施例で形成されたエピタキシャルシリコン層
を従来の方法で形成されたエピタキシャルシリコン層と
比較すると、従来方法で形成されたエピタキシャルシリ
コン層には、シリコンの微粉末や石英治具類の破片の影
響と思われる積層欠陥や突起状の表面欠陥が一平方セン
チメートル当たり20〜50個もみられたが本実施例に
よるものでは1個以下となシ大きな効果が見られた。
Comparing the epitaxial silicon layer formed in this example described above with the epitaxial silicon layer formed by the conventional method, it is found that the epitaxial silicon layer formed by the conventional method contains fine silicon powder and debris from quartz jigs. As many as 20 to 50 stacking faults and protruding surface defects were observed per square centimeter, which may be due to the effects of the above, but in this example, the number was less than 1, and a great effect was seen.

本実施例でパルプ1と1a、2と2aをそれぞれ同一の
電磁弁を用いて制御したがそれぞれ独立に制御すれば真
空引き時にすべてのパルプを閉めチェンバーへのガス導
入直前にパル’;+”la*2mを開けがスラインの圧
力を下げることもできる。
In this example, pulps 1 and 1a, and pulps 2 and 2a were controlled using the same solenoid valve, but if they were controlled independently, all the pulps would be closed when vacuuming, and the valves would close immediately before gas is introduced into the chamber. It is also possible to lower the pressure on the line by opening la*2m.

この応用には、ガスの消費量を減少できるという効果が
ある。
This application has the effect of reducing gas consumption.

なお、本実施例では、ガスラインのチェンバー側、排気
側の切り換えを空気圧作動パルプのNo。
In addition, in this example, switching between the chamber side and the exhaust side of the gas line was performed using the pneumatically operated pulp no.

NCの組み合わせで行なったが、三方向パルプを用いて
もよい。
Although a combination of NC was used, a three-way pulp may also be used.

発明の詳細 な説明したように、本発明によればチェンバー内の真空
引き後、チェンバー内への反応ガス導入速度を減少し得
るので、ウェハに付着する異物減少させることができ、
その結果、その後の気相エピタキシャル成長層の欠陥を
減少させ半導体素子作成時の歩留を向上させる効果があ
る。
As described in detail, according to the present invention, after the chamber is evacuated, the speed of introducing the reaction gas into the chamber can be reduced, so that foreign matter adhering to the wafer can be reduced.
As a result, there is an effect of reducing defects in the subsequent vapor phase epitaxial growth layer and improving the yield when manufacturing semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するだめの断面図であ
シ、第2図は従来技術を説明するだめの断面図である。 1・・・シリコンウェハ、2・・・カーゼンサセグタ、
5・・・メインガスライン、6・・りぐ−ジがスライン
、20・・・排気配管、21・・・チェンバー。
FIG. 1 is a cross-sectional view for explaining an embodiment of the present invention, and FIG. 2 is a cross-sectional view for explaining a conventional technique. 1...Silicon wafer, 2...Casensa segment,
5...Main gas line, 6...Rigid line, 20...Exhaust piping, 21...Chamber.

Claims (1)

【特許請求の範囲】 1、半導体基板の気相エピタキシャル成長装置内へ反応
ガスを供給し、次に反応ガス置換のために前記反応ガス
の該供給を停止し前記気相エピタキシャル成長装置内の
残存反応ガスを排気する工程を含む半導体基板の製造方
法において、 前記反応ガス置換のために前記反応ガスの該供給を停止
すると同時に該供給反応ガスが前記反応ガス供給手段内
に滞溜しないように該反応ガスを前記気相エピタキシャ
ル成長装置内以外に流し続けることを特徴とする半導体
基板の製造方法。
[Claims] 1. A reactive gas is supplied into a vapor phase epitaxial growth apparatus for a semiconductor substrate, and then the supply of the reactive gas is stopped to replace the reactive gas, and the remaining reactive gas in the vapor phase epitaxial growth apparatus is removed. In the method of manufacturing a semiconductor substrate, the method includes the step of evacuating the reactant gas, and at the same time when the supply of the reactant gas is stopped for replacing the reactant gas, the reactant gas is evacuated so that the supplied reactant gas does not accumulate in the reactant gas supply means. A method for manufacturing a semiconductor substrate, characterized in that the vapor phase epitaxial growth apparatus continues to flow into a region other than the vapor phase epitaxial growth apparatus.
JP27452284A 1984-12-28 1984-12-28 Manufacture of semiconductor substrate Pending JPS61156724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27452284A JPS61156724A (en) 1984-12-28 1984-12-28 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27452284A JPS61156724A (en) 1984-12-28 1984-12-28 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS61156724A true JPS61156724A (en) 1986-07-16

Family

ID=17542872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27452284A Pending JPS61156724A (en) 1984-12-28 1984-12-28 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS61156724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258051A (en) * 2009-04-22 2010-11-11 Fujitsu Semiconductor Ltd Vapor growth device, and method for manufacturing semiconductor device
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
US8186077B2 (en) 2007-01-22 2012-05-29 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
JP2010258051A (en) * 2009-04-22 2010-11-11 Fujitsu Semiconductor Ltd Vapor growth device, and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JPH021116A (en) Heat treatment apparatus
JPH0322523A (en) Vapor growth device
JP2670515B2 (en) Vertical heat treatment equipment
JPS61156724A (en) Manufacture of semiconductor substrate
US20030175426A1 (en) Heat treatment apparatus and method for processing substrates
JPS63291895A (en) Reactor for vapor surface treatment
JP2006186015A (en) Substrate processor
US7972961B2 (en) Purge step-controlled sequence of processing semiconductor wafers
JPH02226721A (en) Treating apparatus and treating method
JPS6252200A (en) Device for gaseous-phase epitaxial growth
US5175019A (en) Method for depositing a thin film
JP3070130B2 (en) Vertical vacuum deposition equipment
JP3147868U (en) Substrate processing equipment
JPH1192280A (en) Silicon epitaxial vapor-phase growth apparatus
JPH08274033A (en) Vapor growth method and device
JPH10223620A (en) Semiconductor manufacturing device
JP2579166B2 (en) Plasma CVD apparatus and film forming method
JPH06232054A (en) Manufacture of susceptor
JP2000260712A (en) Apparatus for manufacturing semiconductor
JPH06208991A (en) Method and apparatus for treating semiconductor substrate
JP2007258221A (en) Substrate-treating device
JPS6132511A (en) Processing device for vapor growth and the like
JPH0337187A (en) Apparatus for vapor growth under reduced pressure
JPH02255594A (en) Vapor growth device
JPH045262B2 (en)