JPS63291895A - Reactor for vapor surface treatment - Google Patents

Reactor for vapor surface treatment

Info

Publication number
JPS63291895A
JPS63291895A JP12857787A JP12857787A JPS63291895A JP S63291895 A JPS63291895 A JP S63291895A JP 12857787 A JP12857787 A JP 12857787A JP 12857787 A JP12857787 A JP 12857787A JP S63291895 A JPS63291895 A JP S63291895A
Authority
JP
Japan
Prior art keywords
gas
valve
flow rate
reaction chamber
piping system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12857787A
Other languages
Japanese (ja)
Inventor
Junichi Sakamoto
淳一 坂本
Satoru Nakayama
中山 了
Kaoru Ikegami
池上 薫
Eiryo Takasuka
英良 高須賀
Katsufumi Goto
後藤 勝文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12857787A priority Critical patent/JPS63291895A/en
Publication of JPS63291895A publication Critical patent/JPS63291895A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To reproducibly control a dopant concentration in epitaxial membrane, by combining piping system for feeding a mixed gas with a vacuum evacuation device and piping system for feeding conveying gas so as to work specifically. CONSTITUTION:Hydrogen chloride gas, silicon raw material gas and dopant raw material gas are stored in vessels 27, 27a and 27b equipped with a pressure adjusting equipment and adjusted in flow rate and hydrogen gas which is a conveying gas is united to piping P1 each at uniting points 6, 6a and 6b and poured from a gas feed nozzle 1c provided in a reaction chamber 1 into the reaction chamber 1. The range connected in the piping pump and surrounded with valves 26, 13, 13a, 13b, 12 and 10 are constituted to be able to carry out vacuum evacuation as well as range R1, range R3, range R4 are each constituted to be able to carry out vacuum evacuation. On one hand, hydrogen gas and nitrogen gas which are conveying gas is made to flow from vessels 24 and 23 in the piping from a branched point 5 to a united point 2. The piping is not connected to a vacuum pump 20 and feeding of conveying gas to the reaction chamber 1 is carried out while vacuum evacuation of each range R1, R2, R3 or R4 is carried out.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、化学気相表面処理反応を基板に施すための装
置に関し、更に詳述すれば、極微量の添加反応(ドーピ
ング)を行う際に、添加されるべき物質(ドーパント)
の内の反応ガス供給系内に残留している分により惹起さ
れる添加反応(バックグラウンドドーピング)を抑制し
、より微量の添加反応を制御性、再現性良〈実施し得る
気相表面処理反応装置を提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for subjecting a substrate to a chemical vapor phase surface treatment reaction. Substance (dopant) to be added to
It suppresses the addition reaction (background doping) caused by the amount remaining in the reaction gas supply system, and enables even smaller addition reactions with good controllability and reproducibility. It provides equipment.

[従来の技術] 半導体素子製造等に用いる基板の表面処理を行う方法と
して化学気相反応法く以下CVR:ChemicalV
apor Reaction法という)が知られている
。この方法は基板を含む反応系に反応ガスを供給し、化
学反応により反応ガスの分子を分解して化学反応を行わ
せる方法であり、この際の化学反応に必要なエネルギを
供給する方式により、熱CVR法、プラズマCVR法、
光CVR法に分類される。
[Prior Art] As a method for surface treatment of substrates used in semiconductor device manufacturing, etc., a chemical vapor phase reaction method (hereinafter referred to as CVR: Chemical V) is used.
The apor reaction method) is known. This method is a method in which a reaction gas is supplied to a reaction system including a substrate, and the molecules of the reaction gas are decomposed by a chemical reaction to cause a chemical reaction to occur.By supplying the energy necessary for the chemical reaction, Thermal CVR method, plasma CVR method,
It is classified as an optical CVR method.

このようなCVR法を実施するための反応ガス供給系は
従来の装置では第2図に示す構成となっている。
A reaction gas supply system for carrying out such a CVR method has a configuration shown in FIG. 2 in a conventional apparatus.

ところでシリコンエピタキシャル薄膜を基盤上に成長さ
せる場合の工程は。
By the way, what is the process for growing a silicon epitaxial thin film on a substrate?

(A)エピタキシャル成長及び。(A) Epitaxial growth and.

(B)サセプタクリーニング との2工程があり、各々独立した熱処理バッチである。(B) Susceptor cleaning There are two steps, each with an independent heat treatment batch.

実操業では、工程(A)による反応室1内の汚染度に応
じて工程(B)を工程(A)に交え、あるいは両工程を
交互に実施して進められる。
In actual operation, step (B) is added to step (A) or both steps are performed alternately depending on the degree of contamination in the reaction chamber 1 due to step (A).

工程(A)は以下のような処理により実行される。Step (A) is performed by the following processing.

■ サセプタlb上に基板1aを載置して反応室1を大
気から遮断し、弁16.排気弁22a1を開き、窒素ガ
スを図示しない圧力調整器を具備した容器23から流量
調整器3にて所定流量に調整した後ガス供給口ICから
反応室lへ供給し2反応室l内の残留大気を窒素ガスに
より置換する。
(2) Place the substrate 1a on the susceptor lb, isolate the reaction chamber 1 from the atmosphere, and close the valve 16. The exhaust valve 22a1 is opened, nitrogen gas is adjusted to a predetermined flow rate by the flow rate regulator 3 from the container 23 equipped with a pressure regulator (not shown), and then supplied from the gas supply port IC to the reaction chamber 1 to remove the remaining gas in the reaction chamber 2. The atmosphere is replaced with nitrogen gas.

この間工程■−1までは、弁28及び14が開いて後述
の塩化水素ガス混合系を、弁28a及び14aが開いて
シリコン原料ガス混合系をそれぞれ窒素ガスで置換する
。上記以外のバルブは全て閉じている・ ■ 弁16を閉じて弁17を開き、水素ガスを図示しな
い圧力調整器を具備した容器24から流量調整器4にて
所定流量に調整した後、ガス供給口1cから反応室lに
供給し2反応室lの窒素ガスを水素ガスにより置換する
During this period, up to Step 1-1, the valves 28 and 14 are opened to replace the hydrogen chloride gas mixture system, which will be described later, and the valves 28a and 14a are opened to replace the silicon source gas mixture system with nitrogen gas. All valves other than the above are closed. ■ Valve 16 is closed, valve 17 is opened, and hydrogen gas is supplied from a container 24 equipped with a pressure regulator (not shown) after adjusting the flow rate to a predetermined flow rate with the flow regulator 4. Hydrogen gas is supplied to the reaction chamber 1 from the port 1c, and nitrogen gas in the second reaction chamber 1 is replaced with hydrogen gas.

■−1水素ガスを供給しつつ基板1a及びサセプタ1b
を約1100℃まで加熱昇温した後、弁28を閉じ弁1
9を開いて塩化水素ガスを図示しない圧力調整器を具備
した容器27から流量調整器18に流し流量調整器18
の制御が安定するのを待つと共に、弁28.19,13
.14及び15て囲まれる範囲R1に残留する窒素ガス
を塩化水素ガスで置換する。
■-1 Substrate 1a and susceptor 1b while supplying hydrogen gas
After heating to approximately 1100°C, valve 28 is closed and valve 1
9 is opened to allow hydrogen chloride gas to flow from the container 27 equipped with a pressure regulator (not shown) to the flow rate regulator 18.
While waiting for the control of the valves 28, 19, 13 to become stable,
.. The nitrogen gas remaining in the range R1 surrounded by 14 and 15 is replaced with hydrogen chloride gas.

■−2弁14を閉じて弁13を間き、流量調整器18に
て流量の調整された塩化水素ガスを水素ガスに混合して
反応室に供給し、基板1a表面の残留物。
(2) Close the valve 14, close the valve 13, mix hydrogen chloride gas with the flow rate adjusted by the flow rate regulator 18, and supply the mixture to the reaction chamber to remove the residue on the surface of the substrate 1a.

不純物を基盤表面単結晶膜と共に食刻反応により除去す
る。
Impurities are removed together with the single crystal film on the substrate surface by an etching reaction.

■ 弁13を閉じて反応室1へ水素ガスのみを供給して
反応室1内の反応ガスを水素ガスにて置換し、サセプタ
1bの温度を約1050℃にする。弁13を閉じるのと
同時に弁19を閉じ、同時に弁28及び14を開き、弁
28,19,13.14及び15で囲まれる範囲R1に
残留する塩化水素ガスを窒素ガスで置換する。
(2) Close the valve 13, supply only hydrogen gas to the reaction chamber 1, replace the reaction gas in the reaction chamber 1 with hydrogen gas, and bring the temperature of the susceptor 1b to about 1050°C. The valve 19 is closed at the same time as the valve 13 is closed, and the valves 28 and 14 are opened at the same time, and the hydrogen chloride gas remaining in the range R1 surrounded by the valves 28, 19, 13, 14, and 15 is replaced with nitrogen gas.

■−1弁28aを閉じ弁19aを開いてシリコン原料ガ
ス(Si)12cI+、 5iHCh等シリコンと水素
と塩素の化合物または5iC1a等シリコンと塩素の化
合物。
-1 Close the valve 28a and open the valve 19a to prepare silicon source gas (Si) 12cI+, a compound of silicon, hydrogen, and chlorine such as 5iHCh, or a compound of silicon and chlorine such as 5iC1a.

5iHn等シリコンと水素の化合物等)を図示しない圧
力調整器を具備した容器27aから流量調整器18aに
流す、流量調整器t8aの制御が安定するのを待つと共
に弁28a 、19a、13a、14a及び15aで囲
まれる範囲R2に残留する窒素ガスをシリコン原料ガス
で置換する。同時に弁19bを開いて基板la上に形成
される膜の導電型、抵抗率制御ために添加される微量の
キャリア不純物(ドーパントと呼ばれる)の原料ガス(
ジボラン(B2H8)あるいはホスフィン(PH3)の
何れか)を弁19bから流量調整器18bに流し、流量
調整器18bの制御が安定するのを待つ。
5iHn, etc.) from a container 27a equipped with a pressure regulator (not shown) to the flow regulator 18a.While waiting for the control of the flow regulator t8a to become stable, the valves 28a, 19a, 13a, 14a and The nitrogen gas remaining in the range R2 surrounded by 15a is replaced with silicon source gas. At the same time, the valve 19b is opened, and a raw material gas (
Either diborane (B2H8) or phosphine (PH3) is allowed to flow through the valve 19b to the flow rate regulator 18b, and wait until the control of the flow rate regulator 18b becomes stable.

■−2弁14aを閉じて弁13aを開き、流量の調整さ
れたシリコン原料ガスを水素ガスに混合し。
(2) Close the valve 14a, open the valve 13a, and mix the silicon raw material gas whose flow rate has been adjusted with the hydrogen gas.

同時に弁14bを閉じて弁13bを開き、流量の調整さ
れたドーパント原料ガスも水素ガスに混合して反応室1
に供給しつつ熱処理し、成膜反応により基板1aの表面
にシリコン単結晶薄膜を形成するとともに、その膜中に
添加反応(ドーピングと呼ばれる)によりドーパント(
燐または朧械素)を一定範囲の濃度で配合する。
At the same time, the valve 14b is closed and the valve 13b is opened, and the dopant raw material gas whose flow rate has been adjusted is also mixed with the hydrogen gas to form the reaction chamber 1.
A silicon single-crystal thin film is formed on the surface of the substrate 1a by a film-forming reaction, and a dopant (
Phosphorus (phosphorus or oborokaisu) is blended in a certain range of concentrations.

■ 弁13a及び13bを閉じて水素ガスのみを反応室
1へ供給して反応室1内の反応ガスを置換し。
(2) Close the valves 13a and 13b and supply only hydrogen gas to the reaction chamber 1 to replace the reaction gas in the reaction chamber 1.

加熱の度合を徐々に停止後2反応室1を冷却する。 。After gradually stopping the heating, the two reaction chambers 1 are cooled. .

弁13a及び13bを閉じると同時に弁19a、 19
bを閉じ、同時に弁28a、14a、28b及び14b
を開き、弁28a。
At the same time as closing valves 13a and 13b, valves 19a and 19
b, and at the same time valves 28a, 14a, 28b and 14b.
Open the valve 28a.

19a、13a、14a及び15aで囲まれる範囲R2
及び弁28b。
Range R2 surrounded by 19a, 13a, 14a and 15a
and valve 28b.

19b、 13b、 14b及び15bで囲まれる範囲
R3を窒素ガスで置換する。
A range R3 surrounded by 19b, 13b, 14b and 15b is replaced with nitrogen gas.

■ 弁17を閉じて、弁16を開き、供給ガスを窒素ガ
スに切替え、窒素ガスにて水素ガスを置換する。
(2) Close valve 17, open valve 16, switch the supply gas to nitrogen gas, and replace hydrogen gas with nitrogen gas.

■ 反応室1を大気に接続し、基板1aを搬出する。(2) Connect the reaction chamber 1 to the atmosphere and take out the substrate 1a.

次に工程(B)は以下のような処理により実行される。Next, step (B) is performed by the following process.

但し、工程(A)との相違は基板1aを処理しないこと
と、ドーピングを実施しないことである。
However, the difference from step (A) is that the substrate 1a is not processed and doping is not performed.

なお、弁13b、14b及び19bは閉じたままである
Note that the valves 13b, 14b, and 19b remain closed.

■ サセプタlb上に基板1aを載置しない状態で反応
室lを大気から遮断し2反応室1内の大気を窒素ガスに
より置換する。
(2) The reaction chamber 1 is isolated from the atmosphere without the substrate 1a placed on the susceptor lb, and the atmosphere in the reaction chamber 1 is replaced with nitrogen gas.

■ 水素ガスを供給し、窒素ガスを置換する。■ Supply hydrogen gas and replace nitrogen gas.

■ 水素ガスを供給しつつサセプタ1bを約1100℃
まで加熱昇温した後、塩化水素を含有する水素ガスを反
応ガスとして供給しつつ熱処理してサセプタlb表面の
残留物、不純物を食刻反応により除去する。
■ Heat the susceptor 1b to approximately 1100°C while supplying hydrogen gas.
After heating the susceptor 1b to a temperature of 100.degree. C., heat treatment is performed while supplying hydrogen gas containing hydrogen chloride as a reaction gas to remove residues and impurities on the surface of the susceptor lb by an etching reaction.

■ 水素ガスのみを供給して反応ガスを置換し。■ Supply only hydrogen gas to replace the reaction gas.

サセプタ1b温度を約1050℃にする。The temperature of the susceptor 1b is set to about 1050°C.

■ シリコンの原料(SiH2CI2+ 5iHC13
等シリコンと水素と塩素の化合物または5iCla等シ
リコンと塩素の化合物、 5iHa等シリコンと水素の
化合物。
■ Silicon raw material (SiH2CI2+ 5iHC13
Compounds of silicon, hydrogen and chlorine such as 5iCla, silicon and hydrogen compounds such as 5iHa.

等)を供給しつつ熱処理して、サセプタ1b表面に低不
純物濃度のシリコン薄膜を形成する。
etc.) is heat-treated to form a silicon thin film with a low impurity concentration on the surface of the susceptor 1b.

■ 水素ガスのみを供給して反応ガスを置換し。■ Supply only hydrogen gas to replace the reaction gas.

加熱の度合を徐々に減少後停止して反応室lを冷却する
The degree of heating is gradually reduced and then stopped to cool the reaction chamber 1.

■ 供給ガスを窒素ガスに切替え、水素ガスを置換する
■ Switch the supply gas to nitrogen gas and replace hydrogen gas.

[発明が解決しようとする問題点] 従来このような装置では、新たに供給しようとするガス
により残留ガスを押し出す手法にて反応ガス供給系内の
ガス置換を行っているので、配管系の分岐部に連なる袋
状部分に大気あるいは雰囲気置換に使用される窒素ガス
が極微量ながらも残留する。このためこれらの窒素ガス
は反応ガスに混合し、この状態でエピタキシャル成長が
行われるので、基板表面に形成された単結晶膜中のドー
パント濃度が所期の量より増加(バックグラウンドドー
ピングと称される)シ、低ドーパント濃度のエピタキシ
ャル膜が形成できないといった問題があった。
[Problems to be Solved by the Invention] Conventionally, in such devices, gas replacement in the reaction gas supply system is performed by pushing out residual gas with the newly supplied gas, so branching of the piping system is required. Atmospheric air or nitrogen gas used for atmosphere replacement remains in the bag-shaped part connected to the part, albeit in a very small amount. For this reason, these nitrogen gases are mixed with the reaction gas, and epitaxial growth is performed in this state, so that the dopant concentration in the single crystal film formed on the substrate surface increases from the desired amount (referred to as background doping). ), there was a problem that an epitaxial film with a low dopant concentration could not be formed.

このような問題の対策として9本願発明者等は反応ガス
を反応室1に供給する直前に反応ガス供給系を真空排気
することを試みたが、真空排気中に反応室1へのガス供
給が中断すると、基板表面近傍のガス流れが変化してド
ーパントで汚染された部分からの逆流が生じ、これによ
りバックグラウンドドーピングが増大する他、既に10
50℃ないし1100℃に加熱されている基板面内の温
度差が急激に拡大し、基板が熱応力により変形するとい
った問題があった。
As a countermeasure to this problem, the present inventors attempted to evacuate the reaction gas supply system immediately before supplying the reaction gas to the reaction chamber 1, but the gas supply to the reaction chamber 1 was interrupted during evacuation. The interruption alters the gas flow near the substrate surface and causes backflow from the dopant-contaminated areas, which increases background doping and
There was a problem in that the temperature difference within the surface of the substrate heated to 50° C. to 1100° C. rapidly expanded, causing the substrate to deform due to thermal stress.

本発明は斯かる事情に鑑みてなされたものであり、バッ
クグラウンドドーピングを抑制して、エピタキシャル膜
中のドーパント濃度をより低い値で、かつ再現性良く制
御し得る気相表面処理反応装置の提供を目的とする。
The present invention has been made in view of the above circumstances, and provides a gas phase surface treatment reaction device capable of suppressing background doping and controlling the dopant concentration in an epitaxial film to a lower value and with good reproducibility. With the goal.

[問題点を解決するための手段] 本発明は、搬送ガスを供給するための第1の配管系とは
別に、搬送ガスのみを反応室1に供給するための中間に
分岐部のない第2の配管系を具備し、第1の配管系内部
の残留成分を真空排気装置により排気除去する間は第2
の配管系からそれ以前と等しい流量の搬送ガスを供給す
ることにより。
[Means for Solving the Problems] The present invention provides, in addition to the first piping system for supplying the carrier gas, a second piping system without a branch part in the middle for supplying only the carrier gas to the reaction chamber 1. The second piping system is equipped with a second piping system, and while the remaining components inside the first piping system are exhausted and removed by a vacuum
by supplying the same flow rate of carrier gas from the piping system as before.

ガス流量に依存するガス流れ、温度分布等の反応室1内
の状態量に変化を来さないように構成している。
It is configured so that the state quantities in the reaction chamber 1, such as gas flow and temperature distribution, which depend on the gas flow rate, do not change.

[実施例] 以下本発明を図面に基づき具体的に説明する。[Example] The present invention will be specifically explained below based on the drawings.

第1図は本発明装置の実施例を示す模式図であり9図中
1は気相表面処理を実施する反応室である。基板1aは
本発明に係る気相表面処理装置の反応室1内に設けられ
たサセプタlb上に載置されており2図示しない加熱機
構により表面処理反応に必要な温度にまで加熱される。
FIG. 1 is a schematic diagram showing an embodiment of the apparatus of the present invention, and numeral 1 in FIG. 9 is a reaction chamber in which gas phase surface treatment is carried out. A substrate 1a is placed on a susceptor lb provided in a reaction chamber 1 of a gas phase surface treatment apparatus according to the present invention, and is heated to a temperature necessary for a surface treatment reaction by a heating mechanism (not shown).

塩化水素ガス、シリコン原料ガス、ドーパント原料ガス
は各々図示しない圧力調整器を具備した容器27 、2
7a 、 27bに蓄えられ、各々弁19,19a、1
9bから各々流量調整器18,18a、18bにて流量
調整されて各々弁13.13a、 13bから搬送ガス
である水素ガスが分岐点5から流れる配管P1に各々合
流点6.6a、6bで合流し、バルブ10を介して反応
室1に設けられたガス供給ノズルlcから反応室1内へ
注入される。
Hydrogen chloride gas, silicon raw material gas, and dopant raw material gas are each stored in containers 27 and 2 equipped with pressure regulators (not shown).
7a and 27b, and are stored in valves 19, 19a, 1, respectively.
9b, the flow rate is adjusted by flow rate regulators 18, 18a, 18b, respectively, and hydrogen gas, which is a carrier gas, flows from valves 13.13a, 13b, respectively, and joins pipe P1 flowing from branch point 5 at confluence points 6.6a, 6b, respectively. The gas is injected into the reaction chamber 1 from a gas supply nozzle lc provided in the reaction chamber 1 via the valve 10.

そして、この配管PIにはバルブ11を介して真空ポン
プ20が接続されていて、弁26.13.13a、 1
3b、 12及び10で囲まれる範囲を真空に排気可能
に構成されている他、弁15.15a、 15bを介し
て各流量調整器18.18a、18bを中心とする弁2
8,19,13,14及び15にて囲まれる範囲R1,
弁28a、 19a、 13a、 14a、及び15a
で囲まれる範囲R3,弁28b、 19b、 13b、
 14b及び15bて囲まれる範囲R4をそれぞれ真空
排気可能に構成されている。
A vacuum pump 20 is connected to this pipe PI via a valve 11, and valves 26.13.13a, 1
In addition to being configured to be able to evacuate the area surrounded by 3b, 12 and 10, the valve 2 is connected to each flow regulator 18.18a, 18b via valves 15.15a, 15b.
Range R1 surrounded by 8, 19, 13, 14 and 15,
Valves 28a, 19a, 13a, 14a, and 15a
Range R3 surrounded by valves 28b, 19b, 13b,
The range R4 surrounded by 14b and 15b is configured to be able to be evacuated.

一方9分岐点5からバルブ25.流量調整器3及びバル
ブ9を介して合流点2に至る配管P2には。
On the other hand, from the 9 branch point 5 to the valve 25. In the pipe P2 which reaches the confluence point 2 via the flow regulator 3 and the valve 9.

搬送ガスである水素ガス及び窒素ガスが容器24及び2
3から流される。この配管P2には真空ポンプ20は接
続されておらず、上述の各範囲R1,R2,R3,R4
の真空排気が行われている間に反応室1へ搬送ガスの供
給が行える。
Hydrogen gas and nitrogen gas, which are carrier gases, are in containers 24 and 2.
It is washed away from 3. The vacuum pump 20 is not connected to this piping P2, and each of the above ranges R1, R2, R3, R4
The carrier gas can be supplied to the reaction chamber 1 while the vacuum evacuation is being performed.

以下9分岐点5から合流点2までの間を第2の配管系B
、他の部分を第1の配管系Aと呼ぶ。
The following 9 sections from branch point 5 to confluence point 2 are covered by the second piping system B.
, the other parts are called the first piping system A.

このような本発明装置による気相表面処理の実際の処理
について説明する。
The actual process of vapor phase surface treatment using such an apparatus of the present invention will be explained.

まず、工程(A)について以下説明する。First, step (A) will be explained below.

■ サセプタ1b上に基板1aを載置して2反応室1を
大気から遮断し、弁16.25.26.9.to及び排
気弁22a1を開き、窒素ガスを図示しない圧力調整器
を具備した容器23から流量調整器3及び4にて所定流
量に調整した後ガス供給口ICから反応室1内へ供給し
2反応室1内の残留大気を窒素ガスにより置換する。こ
の際第1の配管系Aへの流量調整器4は総ガス流量の9
0%、第2の配管系Bへの流量調整器3は総ガス流量の
10%を流すよう調整し、第1及び第2の配管系A及び
B内部も窒素ガスで置換する。
(2) The substrate 1a is placed on the susceptor 1b, the two reaction chambers 1 are isolated from the atmosphere, and the valves 16.25.26.9. to and the exhaust valve 22a1 are opened, nitrogen gas is adjusted to a predetermined flow rate using the flow rate regulators 3 and 4 from the container 23 equipped with a pressure regulator (not shown), and then supplied into the reaction chamber 1 from the gas supply port IC for 2 reactions. The residual atmosphere in chamber 1 is replaced with nitrogen gas. At this time, the flow rate regulator 4 to the first piping system A adjusts the total gas flow rate to 9
The flow rate regulator 3 to the second piping system B is adjusted to flow 10% of the total gas flow rate, and the insides of the first and second piping systems A and B are also replaced with nitrogen gas.

この間■−1までは、弁28及び14が開いて後述の塩
化水素ガス混合系を、弁28a及び14aが開いてシリ
コン原料ガス混合系を、弁28b及び14bが開いてド
ーパントガス混合系をそれぞれ窒素ガスで置換する。上
記以外のバルブは全て閉じている。
During this time, up to ■-1, the valves 28 and 14 are open to supply the hydrogen chloride gas mixture system (to be described later), the valves 28a and 14a are open to supply the silicon raw material gas mixture system, and the valves 28b and 14b are open to supply the dopant gas mixture system. Replace with nitrogen gas. All valves other than those listed above are closed.

■ 弁16を閉じて弁17を開き、水素ガスを図示しな
い圧力調整器を具備した容器24から流量調整器3及び
4にて所定流量に調整した後ガス供給口lcから反応室
1内へ供給し9反応室1内の窒素ガスを水素ガスにより
置換する。この際、第1の配管系Aへの流量調整器4は
総ガス流量の90%、第2の配管系Bへの流量調整器3
は総ガス流量の10%をそれぞれ流すように調整し、第
1及び第2の配管系A及びB内部も水素ガスで置換する
- Close the valve 16, open the valve 17, and supply hydrogen gas from the container 24 equipped with a pressure regulator (not shown) into the reaction chamber 1 from the gas supply port lc after adjusting the flow rate to a predetermined flow rate using the flow rate regulators 3 and 4. Then, the nitrogen gas in the reaction chamber 1 is replaced with hydrogen gas. At this time, the flow rate regulator 4 to the first piping system A accounts for 90% of the total gas flow rate, and the flow rate regulator 3 to the second piping system B
are adjusted so that 10% of the total gas flow rate flows through each, and the insides of the first and second piping systems A and B are also replaced with hydrogen gas.

■−1容器24から水素ガスを供給しつつサセプタib
を約1100℃まで加熱昇温した後、真空ポンプ20を
起動して弁28及び14を閉じ、弁15を開いて。
■-1 While supplying hydrogen gas from the container 24, the susceptor ib
After heating to about 1100° C., the vacuum pump 20 is started, valves 28 and 14 are closed, and valve 15 is opened.

弁28.19.13.14及び15で囲まれる範囲R1
に残留する窒素ガスを弁15から真空に排気した後、弁
15を閉じ、弁19を開いて塩化水素ガスを図示しない
圧力調整器を具備した容器27から弁28.19.13
゜14及び15で囲まれる範囲R2に大気圧以上の圧力
まで充填する。その後、弁14を開いて塩化水素ガスを
排出しつつ流量調整器18に流しつつ流ffi調整器1
8の制御が安定するのを待つ。
Area R1 surrounded by valves 28.19.13.14 and 15
After evacuating the remaining nitrogen gas from the valve 15, the valve 15 is closed, the valve 19 is opened, and the hydrogen chloride gas is discharged from the container 27 equipped with a pressure regulator (not shown) through the valves 28, 19, and 13.
The range R2 surrounded by 14 and 15 is filled to a pressure equal to or higher than atmospheric pressure. Thereafter, the valve 14 is opened to discharge hydrogen chloride gas while flowing it to the flow rate regulator 18, and the flow ffi regulator 1
Wait until the control of 8 becomes stable.

真空ポンプ20の起動後、弁15を閉じるまでの間に流
量調整器3の流量が総ガス流量の100%に。
After the vacuum pump 20 is started and until the valve 15 is closed, the flow rate of the flow rate regulator 3 reaches 100% of the total gas flow rate.

流量調整器4の流量が総ガス流量00%になるよう、総
ガス流量を変化させずに流量調整器3及び4を連携させ
て調節する。即ち第2の配管系Bからのみガス供給を行
う。
The flow rate regulators 3 and 4 are adjusted in cooperation without changing the total gas flow rate so that the flow rate of the flow rate regulator 4 becomes 00% of the total gas flow rate. That is, gas is supplied only from the second piping system B.

弁15を閉じるのと同時に弁26.10を閉じ、弁11
を開いて、弁26.13.13a、 13b、 12.
10て囲まれる範囲R2を弁11から真空に排気した後
弁11.14を閉じ、弁26を開き流量調整器4の流量
を徐々に100%まで増加させて、弁26.13.13
a、 13b。
At the same time as closing valve 15, valve 26.10 is closed and valve 11 is closed.
Open the valves 26.13.13a, 13b, 12.
After evacuating the range R2 surrounded by the valve 11 through the valve 11, the valve 11.14 is closed, the valve 26 is opened, and the flow rate of the flow rate regulator 4 is gradually increased to 100%.
a, 13b.

12、10で囲まれる範囲R2に水素ガスを大気圧以上
の圧力まで充填する。その後、弁12及び13を開いて
水素ガスと塩化水素ガスを合流点6で混合しつつこれを
弁12から排出し流量調整器4及び18の制御が安定す
るのを待つ、弁12を閉じた時点で真空ポンプ20は停
止する。なお真空ポンプ20の停止中は図示しない窒素
ガス供給配管からポンプのケーシング内に窒素ガスを供
給し、ケーシング内部を窒素ガスで置換する。
A region R2 surrounded by 12 and 10 is filled with hydrogen gas to a pressure equal to or higher than atmospheric pressure. Thereafter, valves 12 and 13 were opened to mix hydrogen gas and hydrogen chloride gas at confluence point 6, and the mixture was discharged from valve 12, and the valve 12 was then closed. At this point, the vacuum pump 20 stops. Note that while the vacuum pump 20 is stopped, nitrogen gas is supplied into the casing of the pump from a nitrogen gas supply pipe (not shown) to replace the inside of the casing with nitrogen gas.

■−2弁9を閉じて弁10を開き、流量の調整された塩
化水素ガスと水素ガスの混合ガスを反応室1に供給つつ
熱処理し、基板1a表面の残留物、不鈍物を基盤表面単
結晶膜と共に食刻反応により除去する。
■-2 Close the valve 9 and open the valve 10, heat-treat while supplying a mixed gas of hydrogen chloride gas and hydrogen gas with an adjusted flow rate to the reaction chamber 1, and remove residues and dull substances from the surface of the substrate 1a. It is removed together with the single crystal film by an etching reaction.

■ 弁13を閉じて水素ガスのみを供給して反応ガスを
置換し、サセプタ温度を約1050℃にする。
(2) Close the valve 13, supply only hydrogen gas to replace the reaction gas, and bring the susceptor temperature to about 1050°C.

弁13を閉じるのと同時に弁9を間き、流量調整器4は
総ガス流量の90%、流量調整器3は総ガス流量の10
%が流れるように流量を調整する。
At the same time as closing the valve 13, the valve 9 is closed, the flow rate regulator 4 is set to 90% of the total gas flow rate, and the flow rate regulator 3 is set to 10% of the total gas flow rate.
Adjust the flow rate so that % is flowing.

また弁13を閉じるのと同時に弁28及び14を開き。Also, at the same time as valve 13 is closed, valves 28 and 14 are opened.

弁28.19.13.14及び15で囲まれる範囲R1
に残留する塩化水素ガスを窒素ガスで置換する。
Area R1 surrounded by valves 28.19.13.14 and 15
Replace the remaining hydrogen chloride gas with nitrogen gas.

■−1真空ポンプ20を起動し、弁28a及び14aを
閉じ、弁15aを問いて、弁28a、19a、13a。
(1) Start the vacuum pump 20, close the valves 28a and 14a, open the valve 15a, and close the valves 28a, 19a, and 13a.

14a及び15aて囲まれる範囲R3に残留する窒素ガ
スを真空に排気した後左15aを閉じ、弁19aを開い
てシリコン原料ガスを図示しない圧力調整器を具備した
容器27aから弁28a、19a、13a、14a及び
15aで囲まれる範囲R3に大気圧以上の圧力まで充填
する。その後、弁14aを開いて容器7aからのシリコ
ン原料ガスを排出しつつ流量調整器18aに流しながら
流量調整器18aの制御が安定するのを待つ。
After evacuating the nitrogen gas remaining in the area R3 surrounded by 14a and 15a, the left side 15a is closed, the valve 19a is opened, and the silicon source gas is transferred from the container 27a equipped with a pressure regulator (not shown) to the valves 28a, 19a, 13a. , 14a and 15a is filled to a pressure equal to or higher than atmospheric pressure. Thereafter, the valve 14a is opened to discharge the silicon raw material gas from the container 7a and flow it to the flow rate regulator 18a, waiting for the control of the flow rate regulator 18a to become stable.

弁15aを閉じるのと同時に弁28b及び14bを閉じ
、弁15bを開いて、弁28b、19b、13b、14
b及び15bて囲まれる範囲に残留する窒素ガスを真空
に排気した後左15bを閉じ、弁19bを開いてドーパ
ント原料ガスを図示しない圧力調整器を具備した容器2
7bから弁19b、13b、14b及び15bで囲まれ
る範囲R4に大気圧以上の圧力まで充填する。その後、
弁14bを開いて容器2?bからのドーパント原料ガス
を排出しつつ流量調整器18bに流しながら流ffi調
整器18bの制御が安定するのを待つ。
At the same time as closing valve 15a, valves 28b and 14b are closed, valve 15b is opened, and valves 28b, 19b, 13b, 14 are closed.
After evacuating the nitrogen gas remaining in the area surrounded by b and 15b, the left side 15b is closed, and the valve 19b is opened to supply the dopant raw material gas to the container 2 equipped with a pressure regulator (not shown).
7b to the range R4 surrounded by valves 19b, 13b, 14b, and 15b is filled to a pressure equal to or higher than atmospheric pressure. after that,
Open the valve 14b and open the container 2? While discharging the dopant raw material gas from b, it is allowed to flow through the flow regulator 18b and waits for the control of the flow ffi regulator 18b to become stable.

真空ポンプ20の起動後、弁15bを閉じるまでの間に
流量調整器3の流量が総ガス流量の100%に。
After the vacuum pump 20 is started and until the valve 15b is closed, the flow rate of the flow rate regulator 3 reaches 100% of the total gas flow rate.

流量調整器4の流量が総ガス流量の0%になるように、
総ガス流量を変化させないように流量調整器3及び4を
連携させて調節する。
So that the flow rate of the flow rate regulator 4 is 0% of the total gas flow rate,
The flow rate regulators 3 and 4 are adjusted in coordination so as not to change the total gas flow rate.

弁15bを閉じるのと同時に弁26.10を閉じ、弁1
1を開いて、弁26.13.13a、 13b、 12
.10で囲まれる範囲R2を真空に排気した後左11.
14を閉じ。
At the same time as closing valve 15b, valve 26.10 is closed, and valve 1
1 open, valves 26.13.13a, 13b, 12
.. After evacuating the area R2 surrounded by 10, the left 11.
Close 14.

弁26を開き流量調整器4の流量を徐々に100%まで
増加させて、弁26.13.13a、 13b、 12
.10で囲まれる範囲R2に水素ガスを大気圧以上の圧
力まで充填する。その後、弁12及び13を開いて水素
ガスとシリコン原料ガスを合流点6aで混合し、さらに
ドーパント原料ガスを合流点6bで混合しつつこの混合
ガスを弁12から排出し、流量調整器4゜18a及び1
8bの制御が安定するのを待つ、弁13を閉じた時点で
真空ポンプ20は停止し、前述のようにポンプのケーシ
ング内に窒素ガスを供給し、ケーシング内部を窒素ガス
で置換する。
The valves 26.13.13a, 13b, 12 are opened by opening the valve 26 and gradually increasing the flow rate of the flow rate regulator 4 to 100%.
.. A range R2 surrounded by 10 is filled with hydrogen gas to a pressure equal to or higher than atmospheric pressure. Thereafter, the valves 12 and 13 are opened to mix the hydrogen gas and the silicon source gas at the confluence point 6a, and while mixing the dopant source gas at the confluence point 6b, this mixed gas is discharged from the valve 12, and the flow rate regulator 4° 18a and 1
The vacuum pump 20 is stopped when the valve 13 is closed, and nitrogen gas is supplied into the pump casing as described above to replace the inside of the casing with nitrogen gas.

■−2弁9を閉じて弁10を開き、流量の調整されたシ
リコン原料ガス、ドーパント原料ガス及び水素ガスの混
合ガスを反応室1に供給しながら熱処理し、成膜反応に
より基板表面1aにシリコン単結晶薄膜を形成するとと
もに、その膜中に添加反応(ドーピングと呼ばれる)に
よりドーパント(燐または耀素)を一定範囲の濃度で配
合する。
■-2 Close the valve 9 and open the valve 10. Heat treatment is performed while supplying a mixed gas of silicon raw material gas, dopant raw material gas, and hydrogen gas with adjusted flow rates to the reaction chamber 1, and the film forming reaction is performed on the substrate surface 1a. A silicon single-crystal thin film is formed, and a dopant (phosphorus or phosphorus) is mixed into the film at a concentration within a certain range by an addition reaction (called doping).

■ 弁13a及び13bを閉じて水素ガスのみを供給し
て反応ガスを置換し、加熱の度合を徐々に減少した後停
止して反応室lを冷却する。
(2) Close the valves 13a and 13b, supply only hydrogen gas to replace the reaction gas, gradually reduce the degree of heating, and then stop to cool the reaction chamber l.

弁13a及び13bを閉じるのと同時に弁9を開き。Valve 9 is opened at the same time as valves 13a and 13b are closed.

流量調整器4は総ガス流量の90%、流量調整器3は総
ガス流量の10%が流れるように流量を調整する。
The flow rate regulator 4 adjusts the flow rate so that 90% of the total gas flow rate flows, and the flow rate regulator 3 adjusts the flow rate so that 10% of the total gas flow rate flows.

弁13aを閉じるのと同時に弁28a及び14aを開き
、弁28a、19a、13a、14a及び15aで囲ま
れる範囲R3に残留するシリコン原料ガスを窒素ガスで
置換する。
At the same time as closing the valve 13a, the valves 28a and 14a are opened to replace the silicon source gas remaining in the range R3 surrounded by the valves 28a, 19a, 13a, 14a, and 15a with nitrogen gas.

■ 弁17を閉じて、弁16を間き、供給ガスを窒素ガ
スに切替え、水素ガスを置換する。
(2) Close valve 17, open valve 16, and switch the supplied gas to nitrogen gas to replace hydrogen gas.

■ 反応室1を大気に接続し、基板1aを搬出する。(2) Connect the reaction chamber 1 to the atmosphere and take out the substrate 1a.

以上のような動作により本発明装置は気相表面処理を行
うが、このような本発明装置のドーピング制御性の比較
のために2本発明装置と従来の装置とについて、特に工
程(A)にてドーピングせずにエピタキシャル成長させ
た結果について、横軸に表面からの深ざ(μm)、縦軸
にドーバンl”1度(原子数/cc)を取って、基板面
内各点のうち最もドーパント濃度の高いドーバントプロ
ファイルを第3図に示す、またドーピング再現性の比較
のために、第4図に、横軸にドーピングを行わない工程
(A)のみを反復した場合の処理反応バッチ数(回)、
縦軸にエピタキシャル薄膜表面での面内最高ドーバン)
[度(原子数/cc)をとって示す。
The apparatus of the present invention performs vapor phase surface treatment through the above-described operations, but in order to compare the doping controllability of the apparatus of the present invention, we will compare the two apparatuses of the present invention and a conventional apparatus, particularly in step (A). Regarding the results of epitaxial growth without doping, the horizontal axis shows the depth from the surface (μm), and the vertical axis shows the dopant l"1 degree (number of atoms/cc), and the most dopant at each point on the substrate surface. Figure 3 shows a dopant profile with a high concentration, and for comparison of doping reproducibility, Figure 4 shows the number of processing reaction batches when only step (A) without doping is repeated on the horizontal axis ( times),
The vertical axis is the maximum in-plane dovan on the surface of the epitaxial thin film)
[It is shown in degrees (number of atoms/cc).

従来装置による場合は、第3図(a)の破線にてドーパ
ントプロファイルを示すように、エピタキシャル薄膜表
面(深さ0)のドーパント濃度が平均8X 1013原
子/am’と高い、また、第4図(d)に示すように、
ドーピングを行っていないにも拘らず、配管内に残留す
るドーパントの影響で表面ドーパント濃度はバッチ毎に
増大して再現性が無<(100バッチ処理後4倍増加)
、バックグラウンドドーピングが多いことを示している
In the case of the conventional device, the dopant concentration at the epitaxial thin film surface (depth 0) is as high as 8×1013 atoms/am' on average, as shown by the dopant profile shown by the broken line in FIG. 3(a). As shown in (d),
Even though no doping is performed, the surface dopant concentration increases with each batch due to the influence of the dopant remaining in the piping, and there is no reproducibility (4 times increase after 100 batches)
, indicating a large amount of background doping.

これに対し2本発明による場合は、第3図(b)の実線
に示すように表面ドーパントa度も平均8×1012原
子1C113と従来の(a)より一桁小さい、また第4
図(e)に示すように2表面ドーパント濃度は処理バッ
チ数に対し比較的再現性良好(100バッチ処理後1.
2倍)である、換言すれば、配管内でのドーパントの残
留が極めて少ないということである。また、基板の変形
等従来例に比べ品質の劣る点は認められていない。
On the other hand, in the case of the second invention, as shown by the solid line in FIG.
As shown in Figure (e), the dopant concentration on the two surfaces has relatively good reproducibility with respect to the number of processing batches (1.
In other words, there is extremely little dopant remaining in the pipe. Furthermore, no inferiority in quality compared to the conventional example, such as deformation of the substrate, was observed.

なお比較例として9本発明装置により工程(A)の■−
1及び■−1を、第1の配管系Bの弁9及び25を閉じ
たまま実施したところ、第3図(C)の破線に示すよう
に表面ドーパント濃度は平均2×1014に増加し、ま
た基板1aに熱応力変形を生じた。
As a comparative example, step (A) ■-
When Steps 1 and 1-1 were carried out with the valves 9 and 25 of the first piping system B closed, the surface dopant concentration increased to an average of 2 x 1014, as shown by the broken line in Figure 3(C). Further, thermal stress deformation occurred in the substrate 1a.

[発明の効果コ 以上詳述した如く本発明の装置は9反応ガスの供給のた
めの第1の配管系を真空排気して配管系内の残留不純物
を除去することにより、ドーピングの制御性、再現性を
向上せしめ、しかも第1の配管系の真空排気により惹起
されるガス供給遮断を搬送ガスのみを供給することによ
り、配管系Bにより防止するようにしており、ガス遮断
に起因する被処理物の品質劣化が防止される等、優れた
特性を有する。
[Effects of the Invention] As detailed above, the apparatus of the present invention improves doping controllability by evacuating the first piping system for supplying the reaction gas to remove residual impurities in the piping system. In addition to improving reproducibility, piping system B prevents the gas supply cutoff caused by evacuation of the first piping system by supplying only the carrier gas, and prevents the gas supply cutoff caused by the vacuum evacuation of the first piping system. It has excellent properties such as preventing deterioration of product quality.

なお、上記実施例ではエピタキシャル成長を行わせる工
程(A)についてのみ述べたが、工程(B)実施する場
合にも同様の効果が奏せられることは言うまでもない。
In the above embodiment, only the step (A) of performing epitaxial growth has been described, but it goes without saying that the same effect can be achieved when performing the step (B).

また、上記実施例ではシリコンのエピタキシャル成長プ
ロセスを例にとって説明したが2例えば有機金属化合物
を原料とする等反応機構が類似の熱化学気相表面処理反
応に適用できる。
In addition, although the above embodiments have been described using a silicon epitaxial growth process as an example, the same reaction mechanism using, for example, an organometallic compound as a raw material can be applied to a similar thermochemical vapor phase surface treatment reaction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例の配管系統図。 第2図は従来装置の配管系統図、第3図は本発明の実施
例及び従来例によるドーパントプロファイル、第4図は
実施例及び従来例による表面ドーパント濃度の工程(A
)のみの処理バッチ数依存性を示すグラフである。 l:反応室  1a:基板  Ib:サセブタ2:第1
の配管系Aと第2の配管系Bの合流点6:水素ガスと塩
化水素ガスの混合点  6a:水素ガスとシリコン原料
ガスの混合点  6b:水素が須とドーパント原料ガス
の混合点  8:第1の配管系Aから真空排気管への分
岐点  9:第2の配管系Bから反応室への供給弁  
10:第1の配管系Aから反応室への供給弁排気管  
13:塩化水素ガス混合弁  13a:シリコン原料ガ
ス混合弁  13bニド−バント原料ガス混合弁14:
塩化水素ガス混合配管系と真空排気管との締切弁  1
4a:シリコン原料ガス混合配管系と真空排気管との締
切弁  14b ニド−バント原料ガス混合配管系と真
空排気管との締切弁排気口15:塩化水素ガス混合配管
系と排出管(大気圧)との締切弁  15a:シリコン
原料ガス混合配管系と排出管との締切弁  15b=ド
一パント原料ガス混合配管系と排出管(大気圧)との締
切弁16:供給配管への窒素ガス供給弁  17:供給
配管への水素ガス供給弁  23:窒素ガス容器24:
水素ガス容器  25:第2の配管系Bへの供給弁  
26:第1の配管系Aへの供給弁  27:塩化水素ガ
ス容器  27a:シリコン原料ガス容器  27b=
ドーパント原料ガス容器  28:塩化水素ガス混合配
管系への窒素ガス供給弁28a:シリコン原料ガス混合
配管系への窒素ガス供給弁  28bニド−パント原料
ガス混合配管系への窒素ガス供給弁 特 許 出願人 住友金属工業株式会社代理人 弁理士
 河  野  登  夫43 ロ バ・ 十 回数           (0&)第4図
FIG. 1 is a piping system diagram of an embodiment of the apparatus of the present invention. Fig. 2 is a piping system diagram of a conventional device, Fig. 3 is a dopant profile according to an embodiment of the present invention and a conventional example, and Fig. 4 is a surface dopant concentration process (A
) is a graph showing the dependence on the number of processing batches. l: reaction chamber 1a: substrate Ib: susceptor 2: first
Confluence point of piping system A and second piping system B 6: Mixing point of hydrogen gas and hydrogen chloride gas 6a: Mixing point of hydrogen gas and silicon raw material gas 6b: Mixing point of hydrogen gas and dopant raw material gas 8: Branch point from the first piping system A to the vacuum exhaust pipe 9: Supply valve from the second piping system B to the reaction chamber
10: Supply valve exhaust pipe from the first piping system A to the reaction chamber
13: Hydrogen chloride gas mixing valve 13a: Silicon raw material gas mixing valve 13b Nido-Vant raw material gas mixing valve 14:
Shutoff valve between hydrogen chloride gas mixing piping system and vacuum exhaust pipe 1
4a: Shutoff valve between silicon raw material gas mixing piping system and vacuum exhaust pipe 14b Shutoff valve between Nido-Band raw material gas mixing piping system and vacuum exhaust pipe Exhaust port 15: Hydrogen chloride gas mixing piping system and discharge pipe (atmospheric pressure) 15a: Shutoff valve between silicon raw material gas mixing piping system and discharge pipe 15b = Shutoff valve between dopant raw material gas mixing piping system and discharge pipe (atmospheric pressure) 16: Nitrogen gas supply valve to supply pipe 17: Hydrogen gas supply valve to supply pipe 23: Nitrogen gas container 24:
Hydrogen gas container 25: Supply valve to second piping system B
26: Supply valve to first piping system A 27: Hydrogen chloride gas container 27a: Silicon raw material gas container 27b=
Dopant raw material gas container 28: Nitrogen gas supply valve to hydrogen chloride gas mixing piping system 28a: Nitrogen gas supply valve to silicon raw material gas mixing piping system 28b Nitrogen gas supply valve to dopant raw material gas mixing piping system Patent application Person Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Norio Kono 43 Donkey 10 times (0 &) Figure 4

Claims (1)

【特許請求の範囲】 1、基板の処理反応に必要な成分を含有する原料ガスを
搬送ガスと混合して反応室へ供給する工程と、搬送ガス
のみを反応室へ供給する工程とにより前記基板表面に前
記成分の結晶を成長させるべくなした気相表面処理反応
装置において、 前記原料ガスと搬送ガスとを混合して前記反応室へ供給
するための第1の配管系と、 該第1の配管系に接続されてこれを真空に排気する排気
装置と、 該排気装置にて前記第1の配管系の排気を行う間に搬送
ガスを前記反応室へ供給する第2の配管系と を備えたことを特徴とする気相表面処理反応装置。
[Scope of Claims] 1. A step of supplying a raw material gas containing components necessary for a processing reaction of the substrate with a carrier gas to the reaction chamber, and a step of supplying only the carrier gas to the reaction chamber. A gas phase surface treatment reaction apparatus designed to grow crystals of the components on the surface, comprising: a first piping system for mixing the source gas and carrier gas and supplying the mixture to the reaction chamber; an evacuation device connected to a piping system to evacuate the piping system; and a second piping system that supplies a carrier gas to the reaction chamber while the evacuation device is evacuating the first piping system. A gas phase surface treatment reaction device characterized by:
JP12857787A 1987-05-26 1987-05-26 Reactor for vapor surface treatment Pending JPS63291895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12857787A JPS63291895A (en) 1987-05-26 1987-05-26 Reactor for vapor surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12857787A JPS63291895A (en) 1987-05-26 1987-05-26 Reactor for vapor surface treatment

Publications (1)

Publication Number Publication Date
JPS63291895A true JPS63291895A (en) 1988-11-29

Family

ID=14988192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12857787A Pending JPS63291895A (en) 1987-05-26 1987-05-26 Reactor for vapor surface treatment

Country Status (1)

Country Link
JP (1) JPS63291895A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000633A1 (en) * 1988-07-08 1990-01-25 Tadahiro Ohmi Gas supply pipeline system for process equipment
US5313982A (en) * 1988-07-08 1994-05-24 Tadahiro Ohmi Gas supply piping device for a process apparatus
EP0671484A1 (en) * 1994-03-10 1995-09-13 Gi Corporation Gas flow system for CVD reactor
US5591267A (en) * 1988-01-11 1997-01-07 Ohmi; Tadahiro Reduced pressure device
EP0818565A2 (en) * 1996-07-12 1998-01-14 Shin-Etsu Handotai Company Limited Gas supplying apparatus and vapor-phase growth plant
US5789086A (en) * 1990-03-05 1998-08-04 Ohmi; Tadahiro Stainless steel surface having passivation film
US5906688A (en) * 1989-01-11 1999-05-25 Ohmi; Tadahiro Method of forming a passivation film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591267A (en) * 1988-01-11 1997-01-07 Ohmi; Tadahiro Reduced pressure device
WO1990000633A1 (en) * 1988-07-08 1990-01-25 Tadahiro Ohmi Gas supply pipeline system for process equipment
US5313982A (en) * 1988-07-08 1994-05-24 Tadahiro Ohmi Gas supply piping device for a process apparatus
US5906688A (en) * 1989-01-11 1999-05-25 Ohmi; Tadahiro Method of forming a passivation film
US5789086A (en) * 1990-03-05 1998-08-04 Ohmi; Tadahiro Stainless steel surface having passivation film
EP0671484A1 (en) * 1994-03-10 1995-09-13 Gi Corporation Gas flow system for CVD reactor
EP0818565A2 (en) * 1996-07-12 1998-01-14 Shin-Etsu Handotai Company Limited Gas supplying apparatus and vapor-phase growth plant
EP0818565A3 (en) * 1996-07-12 2000-03-15 Shin-Etsu Handotai Company Limited Gas supplying apparatus and vapor-phase growth plant

Similar Documents

Publication Publication Date Title
US5352636A (en) In situ method for cleaning silicon surface and forming layer thereon in same chamber
US20170160012A1 (en) Semiconductor annealing apparatus
US6773749B1 (en) Method of controlling gas flow to a semiconductor processing reactor
JPH02225399A (en) Method for epitaxial growth and apparatus therefor
KR20120126012A (en) Gas supply apparatus, thermal treatment apparatus, gas supply method, and thermal treatment method
CN101379214A (en) Epitaxial deposition process and apparatus
KR20140128240A (en) Method of cleaning film forming apparatus and film forming apparatus
US10672617B2 (en) Etching method and etching apparatus
JP2014216540A (en) Method for cleaning film-forming device and film-forming device
KR20100057585A (en) Manufacturing method of semiconductor apparatus, film forming method and substrate processing apparatus
JPS63291895A (en) Reactor for vapor surface treatment
US7244667B2 (en) Method and device for the production of thin epitaxial semiconductor layers
US7972961B2 (en) Purge step-controlled sequence of processing semiconductor wafers
JP2012069844A (en) Method of manufacturing semiconductor device and substrate processing apparatus
JPH10154702A (en) Manufacturing method of semiconductor device
US20230295837A1 (en) Method of processing substrate, method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
JPH10223620A (en) Semiconductor manufacturing device
JPH0323624A (en) Method and apparatus for vapor growth
JPS61156724A (en) Manufacture of semiconductor substrate
KR20230007949A (en) Chemical vapor deposition furnace with a cleaning gas system to provide a cleaning gas
TW202311553A (en) Method for manufacturing group iii nitride semiconductor
JP2014033143A (en) Deposition method and deposition apparatus of compound semiconductor film
CN111696848A (en) Film forming apparatus and film forming method
JP2018160487A (en) Method and device for forming gallium nitride film
JPH03195016A (en) Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus