JPS61156638A - Cooling-system controller for fuel cell power generation system - Google Patents

Cooling-system controller for fuel cell power generation system

Info

Publication number
JPS61156638A
JPS61156638A JP59274711A JP27471184A JPS61156638A JP S61156638 A JPS61156638 A JP S61156638A JP 59274711 A JP59274711 A JP 59274711A JP 27471184 A JP27471184 A JP 27471184A JP S61156638 A JPS61156638 A JP S61156638A
Authority
JP
Japan
Prior art keywords
cooling water
steam
temperature
separator
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59274711A
Other languages
Japanese (ja)
Inventor
Reiji Mitarai
御手洗 礼治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59274711A priority Critical patent/JPS61156638A/en
Publication of JPS61156638A publication Critical patent/JPS61156638A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To facilitate operation of a fuel reformation system by improving the control of cell operation temperature by directly detecting the temperature of cooling water flowing near the inlet of a cell stack and controlling the pressure of steam in a steam separator so as to control the influence of the variation in the heating value in the stack on the temperature of cooling water. CONSTITUTION:The heat exchanger 7 of a cooling-system controller is installed parallel to a main line of cooling water. It is controlled by separating cooling water. while cooling water separated from steam in a steam separator 1 is fed to a cell stack 2 by means of a circulation pump 6, part of the cooling water is cooled by being fed through the exchanger 7 before passing through a three-way control valve 8. The control valve 8 is operated by using a thermometer 5 to measure the temperature of cooling water flowing near the inlet of the stack 2 and then using a PI computing element 10B to compute the difference between the measure temperature and set temperature (To). A flow-ratecontrolling valve 4 is installed near the outlet of a heat exchanger 3 attached to the upper portion of the separator 1. A pressure detector 9 is used to measure the internal pressure of the separator 1 and then the difference between the measured internal pressure and set pressure (Po) is obtained to operate the valve 4, thereby improving the control of cell operation temperature.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、燃料電池発電システムにおける電池冷却系制
御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a battery cooling system control device in a fuel cell power generation system.

〔発明の技術的背景〕[Technical background of the invention]

燃料電池発電システムにおいて、電池冷却系は電池スタ
ック内で発生する熱エネルギーを冷却水を通すことによ
り電池スタック内から吸収し、電池動作温度を均一に保
つためのサブシステムである。電池スタック内の熱を吸
収した冷却水は、蒸気と水の二相流状態となって気水分
離器に戻される。このうち液相部分は冷却水として再循
環し、気相部分は燃料供給系における燃料改質用の蒸気
として利用される。このように電池冷却系は、電池の冷
却と共に燃料改質用蒸気の供給源としてのサブシステム
でもある。
In a fuel cell power generation system, the battery cooling system is a subsystem that absorbs thermal energy generated within the battery stack from within the battery stack by passing cooling water through it, thereby maintaining a uniform battery operating temperature. The cooling water that has absorbed the heat in the battery stack becomes a two-phase flow of steam and water and is returned to the steam-water separator. The liquid phase portion is recirculated as cooling water, and the gas phase portion is used as steam for fuel reforming in the fuel supply system. In this way, the battery cooling system is a subsystem that not only cools the battery but also serves as a source of fuel reforming steam.

従来技術を示したものが第2図である。電池スタック2
内で発生する熱エネルギーは、燃料改質用の蒸気の持っ
ているエネルギーを差引いても大きく余るものであり、
このために冷却水温度の上昇が起シ、冷却能力の低下へ
とつながる。従ってこの余剰エネルギーは系外に排出し
なくてはならない。この点において、従来技術では気水
分離器1内の蒸気を熱交換器3に通すことにより液化さ
せ、このときの潜熱’1i−2次冷却水に奪わすことに
よって、系内エネルギーの蓄積、即ち冷却水温度の上昇
を防ごうとする考え方であった。制御系は温度検出器5
によシスタック入口の冷却水温度を検出し、この信号を
もとに気水分離器1から抜かれる蒸気量、即ち系外へ排
出するエネルギー量を調節しようとするものであった。
FIG. 2 shows the prior art. battery stack 2
The thermal energy generated within the fuel is in excess of the energy contained in the steam for reforming the fuel.
This causes an increase in the temperature of the cooling water, leading to a decrease in cooling capacity. Therefore, this surplus energy must be discharged outside the system. In this respect, in the conventional technology, the steam in the steam separator 1 is passed through the heat exchanger 3 to liquefy it, and the latent heat '1i at this time is taken away by the secondary cooling water, thereby accumulating energy in the system. In other words, the idea was to prevent the temperature of the cooling water from rising. Control system is temperature detector 5
The temperature of the cooling water at the inlet of the gas stack is detected, and based on this signal, the amount of steam extracted from the steam separator 1, that is, the amount of energy discharged outside the system, is adjusted.

〔背景技術の問題点〕[Problems with background technology]

一般に、温度と圧力はそれらのダイナミクスにおいて速
さは大きく異なるものである。このように時定数の異な
るダイナミクスの混在した系において、例えば動きの速
い要素を操作することにより動きの遅い要素を制御しよ
うとしても、操作側は大幅に動き良い制御性は望めない
。そればかりか不安定な現象を招いたりするととKなる
。従来の電池冷却系の場合、応答の遅い冷却水温度を見
て、気水分離器から抜かれる蒸気流量を直接に制御しよ
うとするものであシ、この蒸気流量の変動はそのtま気
水分離器1内蒸気圧力の変動に結びつく。この蒸気流量
と蒸気圧力とは非線形関係ではあるが等価であシ、いず
れも冷却水温度に比べてはるかに速い応答を示すもので
ある。今、冷却水温度が与えられた設定値より上がった
場合を考えてみる。制御系は冷却水温度を設定値に合わ
せるよう動作するものである。温度の上昇が検出される
と、流量制御弁4は蒸気流量を増やす方向に操作される
。これによシ気水分離器1内蒸気は抜けていき、蒸気圧
力は速やかに低下することになる。このとき系外へ排出
されるエネルギーは平衡点を上回シ、冷却水温度は低下
する方向に向か゛うが、温度の変動は遅いため、気水分
離器1内蒸気圧力は行き過ぎのtま低下の状態が続く。
In general, temperature and pressure have very different speeds in their dynamics. In such a system in which dynamics with different time constants are mixed, for example, even if an attempt is made to control a slow-moving element by manipulating a fast-moving element, the operator cannot expect significantly better controllability. Not only that, but it would also lead to unstable phenomena. In the case of conventional battery cooling systems, the steam flow rate extracted from the steam water separator is directly controlled by looking at the cooling water temperature, which has a slow response. This leads to fluctuations in the steam pressure inside the separator 1. Although the steam flow rate and steam pressure have a nonlinear relationship, they are equivalent, and both exhibit a much faster response than the cooling water temperature. Now, let's consider a case where the cooling water temperature rises above a given set value. The control system operates to adjust the cooling water temperature to a set value. When a rise in temperature is detected, the flow control valve 4 is operated to increase the steam flow rate. As a result, the steam inside the steam water separator 1 escapes, and the steam pressure quickly decreases. At this time, the energy discharged outside the system exceeds the equilibrium point, and the cooling water temperature tends to decrease, but since the temperature changes slowly, the steam pressure inside the steam separator 1 reaches an excessive point. The decline continues.

蒸気圧力が平衡点に戻るためには、冷却水温度が設定値
に戻るのをしばらく待たねばならない。このとき問題と
なるのは、冷却水温度へのフィードバック効果が遅いこ
とのみならず、気水分離器内蒸気は燃料改質用蒸気の供
給源であるので、この蒸気圧の低下は直接に燃料改質系
に、更には電池系にまで影響を与えることである。燃料
改質系を安定した状態で運転するためには、気水分離器
内の蒸気圧力が一定に保たれていることが必要とされる
In order for the steam pressure to return to the equilibrium point, it is necessary to wait for a while for the cooling water temperature to return to the set value. The problem at this time is not only that the feedback effect on the cooling water temperature is slow, but also that the steam in the steam separator is the source of fuel reforming steam, so this drop in steam pressure directly affects the fuel. This affects the reforming system and even the battery system. In order to operate the fuel reforming system in a stable state, it is necessary that the steam pressure in the steam separator is kept constant.

第2図に示される従来技術では、この点に関しての考慮
は全くなされていないと言える。簡単に言えば、電池冷
却系をマクロに捉えて系内の蓄熱エネルギーを制御して
いるものである。これは冷却水温度制御としては直接的
ではなく、気水分離器内圧力にはそのt″!大きな変動
を与えてしまう結果となる。従って従来技術における問
題点は、電池スタック冷却水温度の制御性能に関してと
気水分離器内蒸気圧力の安定化という点にあるものと言
える。
It can be said that the prior art shown in FIG. 2 does not take this point into consideration at all. Simply put, it takes a macro view of the battery cooling system and controls the thermal energy stored within the system. This is not a direct method of cooling water temperature control, and results in large fluctuations in the pressure inside the steam/water separator.Therefore, the problem with the conventional technology is the control of the battery stack cooling water temperature. In terms of performance, this can be said to be due to the stabilization of the steam pressure inside the steam separator.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決するためになされたものであ
り、気水分離器内蒸気圧力の安定化と電池スタック入口
冷却水温度の制御性能を向上させるようにした燃料電池
発電システムの電池冷却系制御装置を提供することを目
的としている。
The present invention has been made to solve the above problems, and is a battery cooling system for a fuel cell power generation system that improves the stabilization of steam pressure in a steam separator and the control performance of the cooling water temperature at the inlet of a battery stack. The purpose is to provide a system control device.

〔発明の概要〕[Summary of the invention]

本発明では、蒸気潜熱を吸収するための熱交換器と冷却
水を直接通しこの温度を調節するための熱交換器とを備
え、前者は気水分離器内蒸気圧力検出器から、後者は電
池スタック入口冷却水温度の検出器からの信号をそれぞ
れ演算装置を通すことによ〕被冷却流量を制御するよう
にしたものである。
The present invention is equipped with a heat exchanger for absorbing steam latent heat and a heat exchanger for regulating the temperature through direct passage of cooling water. The flow rate to be cooled is controlled by passing the signals from the stack inlet cooling water temperature detectors through arithmetic units.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して実施例を説明する。第1図は本発明
の一実施例を示す構成図である。図中の符号は第2図に
対応している。7は熱交換器であって冷却水の主ライン
に対して並列にもう′1/f−c、冷却水を分離するこ
とによ#)#J御する。気水分離器1で蒸気と分離され
た冷却水は循環ポンプ6に引かれて電池スタック2に送
られる。この間、冷却水は主ラインに対して並列に設け
られた熱交換器7に分流して冷却され九後、三方制御弁
8において合流する。温度調節はこのとき高温側と低温
側の流量配分を三方制御弁8で行うことによシなされる
。5は温度検出器であシ、と九によシ検出された電池ス
タック入口冷却水温度は、温度設定値’roとの差t−
PI演算器10Bによシ演算して三方制御弁8の操作信
号としている。電池スタックを通った冷却水は再び気水
分離器1に戻る。
Examples will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. The symbols in the figure correspond to those in FIG. 7 is a heat exchanger which is parallel to the main cooling water line and is controlled by separating the cooling water. The cooling water separated from steam by the steam separator 1 is drawn by a circulation pump 6 and sent to the battery stack 2. During this time, the cooling water is cooled by being divided into a heat exchanger 7 installed in parallel with the main line, and then merges at a three-way control valve 8. At this time, the temperature is adjusted by distributing the flow rates between the high temperature side and the low temperature side using the three-way control valve 8. The temperature of the battery stack inlet cooling water detected by 5 and 9 is the difference t- from the temperature set value 'ro.
This is calculated by the PI calculator 10B and used as an operation signal for the three-way control valve 8. The cooling water that has passed through the battery stack returns to the steam/water separator 1 again.

一方、熱交換器3は気水分離器1の上部に取り付けられ
た蒸気管から冷却水管を結ぶライン忙設置され、熱交換
器出口には流量制御弁4を備える。
On the other hand, the heat exchanger 3 is installed in a line connecting a steam pipe attached to the upper part of the steam-water separator 1 to a cooling water pipe, and a flow rate control valve 4 is provided at the outlet of the heat exchanger.

9は圧力検出器であシ、気水分離器内の圧力は圧力設定
値との差をPI演算器10Aで演算することによシ、制
御弁4の操作信号とする。このように構成された装置の
動作を説明すれば以下のとおりである。
Reference numeral 9 denotes a pressure detector, and the difference between the pressure inside the steam and water separator and the pressure setting value is calculated by a PI calculator 10A, and the result is used as an operation signal for the control valve 4. The operation of the device configured as described above will be explained as follows.

先ず電池スタック2の入口の冷却水は設定温度に保たれ
るよう制御弁8によシP■制御される。
First, the cooling water at the inlet of the battery stack 2 is controlled by the control valve 8 to maintain it at a set temperature.

なお、制御弁8は三方向弁であシ、高温側と低温側の流
量配分がなされるので、循環ボンデ6への冷却水の合計
流量は一定となシ、キャビテーション等のポンプに与え
る悪影響も避けられる構成となっている。一方、気水分
離器1内の蒸気圧力制御に関しては熱交換器3及び流量
制御弁4によりPI制御がなされて設定値に保たれる。
Furthermore, since the control valve 8 is a three-way valve and the flow rate is distributed between the high-temperature side and the low-temperature side, the total flow rate of cooling water to the circulation bonder 6 is constant, and there is no adverse effect on the pump such as cavitation. It is configured so that it can be avoided. On the other hand, regarding steam pressure control in the steam separator 1, PI control is performed by the heat exchanger 3 and the flow rate control valve 4 to maintain it at a set value.

圧力の応答は速いため、電池スタック内の発熱量におけ
る外乱はまず蒸気圧力や変動として表われる。したかっ
て、この変動を抑制することは冷却水温度制御を先行的
に行うことの意味にもなる。
Since the pressure response is fast, disturbances in the amount of heat generated within the battery stack first appear as vapor pressure and fluctuations. Therefore, suppressing this fluctuation also means performing cooling water temperature control in advance.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り本発明によれば、電池スタック入口の
冷却水温度を直接検出している上、気水分離器内蒸気圧
力制御によって電池スタック内発熱量の変動の冷却水温
度に与える影響を速やかに抑制するため、電池動作温度
の制御性能は一段と向上する。更に気水分離器内の蒸気
圧力が定値側゛御される次め、燃料改質系の運転を容易
にすることが可能である。
As explained above, according to the present invention, the temperature of the cooling water at the inlet of the battery stack is directly detected, and the influence of fluctuations in the amount of heat generated in the battery stack on the cooling water temperature can be quickly compensated for by controlling the steam pressure in the steam separator. Therefore, the control performance of battery operating temperature is further improved. Furthermore, since the steam pressure in the steam separator is controlled to a constant value, it is possible to facilitate the operation of the fuel reforming system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料電池発電システムの電池冷却
系制御装置の一実施例構成図、第2図は従来の電池冷却
系の概略図である。
FIG. 1 is a block diagram of an embodiment of a battery cooling system control device for a fuel cell power generation system according to the present invention, and FIG. 2 is a schematic diagram of a conventional battery cooling system.

Claims (1)

【特許請求の範囲】[Claims] 電池スタック内で発生する熱エネルギーを冷却水を通し
て冷却して、これを気水分離器に戻すと共に、気水分離
器内の蒸気を熱交換器に導入して液化量を調整すること
により再循環させる燃料電池発電システムの電池冷却系
において、電池スタック入口の冷却水ラインに対して並
列に第2の熱交換器を設置し、前記液化量を調整する第
1の熱交換器は気水分離器内の蒸気圧力に応じて制御す
ると共に、前記第2の熱交換器は電池スタック入口の冷
却水温度に応じて制御することを特徴とする燃料電池発
電システムの電池冷却系制御装置。
The thermal energy generated within the battery stack is cooled through cooling water and returned to the steam/water separator, and the steam in the steam/water separator is introduced into a heat exchanger to adjust the amount of liquefaction for recirculation. In the battery cooling system of the fuel cell power generation system, a second heat exchanger is installed in parallel to the cooling water line at the inlet of the battery stack, and the first heat exchanger for adjusting the amount of liquefaction is a steam separator. A battery cooling system control device for a fuel cell power generation system, characterized in that the second heat exchanger is controlled according to the temperature of cooling water at an inlet of the battery stack.
JP59274711A 1984-12-28 1984-12-28 Cooling-system controller for fuel cell power generation system Pending JPS61156638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274711A JPS61156638A (en) 1984-12-28 1984-12-28 Cooling-system controller for fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274711A JPS61156638A (en) 1984-12-28 1984-12-28 Cooling-system controller for fuel cell power generation system

Publications (1)

Publication Number Publication Date
JPS61156638A true JPS61156638A (en) 1986-07-16

Family

ID=17545499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274711A Pending JPS61156638A (en) 1984-12-28 1984-12-28 Cooling-system controller for fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPS61156638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271681A2 (en) * 2001-06-27 2003-01-02 Nissan Motor Co., Ltd. Fuel cell system and method for controlling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271681A2 (en) * 2001-06-27 2003-01-02 Nissan Motor Co., Ltd. Fuel cell system and method for controlling
EP1271681A3 (en) * 2001-06-27 2005-11-23 Nissan Motor Co., Ltd. Fuel cell system and method for controlling
US7282288B2 (en) 2001-06-27 2007-10-16 Nissan Motor Co., Ltd. Fuel cell system and method

Similar Documents

Publication Publication Date Title
US4824740A (en) Fuel cell stack cooling system
JP7266400B2 (en) Cooling system, its control method, control program, and waste heat utilization system
JPH0549076B2 (en)
JPS59231305A (en) Method and device for controlling flow rate of liquid to steam generator
JPS61156638A (en) Cooling-system controller for fuel cell power generation system
JPH05222906A (en) Controller for power plant utilizing exhaust heat
EP0295629A1 (en) Fuel cell stack cooling system
JPS62223975A (en) Heat exchanger of fuel cell
KR860000505B1 (en) Method for regulating the pressure of the primary circuit during the shut-down phases of a pressurized water nuclear reactor
JPH0529013A (en) Fuel cell power generation system
JPH0821402B2 (en) Fuel cell
JPH08222255A (en) Steam separator pressure control device of fuel cell power generation device
JP3577539B2 (en) Control device for gas turbine power plant
JP3388320B2 (en) Container level control method and apparatus
JP3888563B2 (en) Fuel cell power generator
JP2005197120A (en) Fuel cell power generation system
JPS6140591A (en) Controller for recirculation flow rate of nuclear reactor
US3296029A (en) Fuel cell system for the automatic control of cell temperature
JPS61267273A (en) Control method for power generation plant of fuel cell and its apparatus
JPH0676843A (en) Fuel cell power generating system
JPH08250141A (en) Steam-separator pressure controller for fuel-cell generating system
JPS60216468A (en) Fuel cell device
JPH0821409B2 (en) Fuel cell generator
JPS6029501A (en) Steam generator for recovering waste heat
JPS6262197A (en) Waste heat recovery device for electric equipment