JPS61155905A - Distance detector - Google Patents

Distance detector

Info

Publication number
JPS61155905A
JPS61155905A JP27868284A JP27868284A JPS61155905A JP S61155905 A JPS61155905 A JP S61155905A JP 27868284 A JP27868284 A JP 27868284A JP 27868284 A JP27868284 A JP 27868284A JP S61155905 A JPS61155905 A JP S61155905A
Authority
JP
Japan
Prior art keywords
distance
observation
measured
lens
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27868284A
Other languages
Japanese (ja)
Inventor
Masanori Idesawa
正徳 出澤
Genichiro Kinoshita
木下 源一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP27868284A priority Critical patent/JPS61155905A/en
Publication of JPS61155905A publication Critical patent/JPS61155905A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect the distance up to an object to be measured and the surface state such as surface inclination of the object to be measured by a single distance detector, by detecting the distance from the optical axis of the light image formed on the surface of the object to be measured and projected onto the observation surface thereof. CONSTITUTION:Laser beam 2 generated from a laser diode 1 being a laser beam generation means is splitted into two laser beams 2, 2' by a biprism 3. Laser beams 2, 2' pass the point separated by a distance Ro from the optical axis 4 of an observation lens L at the part where said observation lens L is positioned and respectively projected to the direction forming an angle alpha with respect to the optical axis of the observation lens L to form bright spots T1, T2 on the surface of an article 5 to be measured. The light image formed by said bright points is projected onto an observation surface 6 by the observation lens L to form bright spots I1, I2. The distances (X1, X2) from the optical axes of the bright spots I1, I2 are detected by photosensitive elements P1, P2 for detecting an image arranged on the observation surface 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学的に被測定書体面までの距離および被測定
書体面の傾きを検出する距離検出器、特にo、fットの
指などに組込むセンナあるいは表面追跡用グローブとし
て有用な距離検出器に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a distance detector that optically detects the distance to a typeface surface to be measured and the inclination of the typeface surface to be measured, and in particular to a distance detector for detecting the distance to a typeface surface to be measured and the inclination of the typeface surface to be measured. The present invention relates to a distance detector useful as a senna or surface tracking glove incorporated into a vehicle.

(従来の技術) 3次元空間内で柔軟に作業を行える機械、即ちロアにッ
トは対象物の位置、姿勢、形状、変形等の計測を必要と
するが、この計測においては距離情報の取得が不可欠で
ある。この場合、対象物の運動を拘束するあるいは対象
物に変形を起すなどの影響を最少限として距離情報を取
得できることが肝要である。この丸め、非接触で離れた
場所から計測できる光学的距離検出法が考えられている
(Prior art) A machine that can flexibly work in a three-dimensional space, that is, a lower unit, needs to measure the position, posture, shape, deformation, etc. of an object, but in this measurement, it is necessary to acquire distance information. is essential. In this case, it is important to be able to obtain distance information while minimizing the effects of restricting the movement of the object or causing deformation of the object. An optical distance detection method is being considered that can measure this distance from a distance without contact.

ロピット用のセンナあるいは形状計測用のグローブとし
ては、できるだけ小型、軽量かつ高安定であることを必
要とされる。光学的な距離検出には3角測量の原理が用
いられている。この3角測量の原理によると、距離情報
が幾何学的な条件によつて決定でき安定な距離計測が可
能となる。近年のマイクロエレクトロニクス、オグトエ
レクトロニクスの発展によシ、小型、軽量な距離検出器
も開発され始めているが、いずれも現実の要求を満足す
るほど十分に小型、軽量ではなかった。しかしながら、
最近本発明者が提案した特願昭jg−/670g♂号明
細書く記載の距離検知装置はa、fット用のセンサ等と
して現実の要求を満足するけど十分に小型、軽量かつ高
安定であり、高性能な距離検出器として期待されている
。前記特願昭明細書に記載される距離検出器は、被測定
力体表面の一点までの距離を測定するものである。
A senna for rope pits or a glove for shape measurement is required to be as small, lightweight, and highly stable as possible. The principle of triangulation is used for optical distance detection. According to this principle of triangulation, distance information can be determined based on geometric conditions, and stable distance measurement becomes possible. With the recent development of microelectronics and electronics, compact and lightweight distance detectors have begun to be developed, but none of them have been small enough and lightweight enough to satisfy actual requirements. however,
The distance detection device described in the specification of Japanese Patent Application No. Shojg-/670g♂ recently proposed by the present inventor satisfies the actual requirements as a sensor for A and F, but is sufficiently small, lightweight, and highly stable. It is expected to be a high-performance distance detector. The distance detector described in the specification of the above-mentioned patent application measures the distance to a single point on the surface of the force to be measured.

(発明が解決しようとする問題点) ロボットあるいは表面追跡においては、!jl?!II
定妨体面の一定言体面距離だけではなく、被測定置体面
の状B(傾斜等)を検出することが必要とされる。前記
特願昭明細書に記載の距離検出器を複数個配列すれば傾
斜の検出も可能とはなるが、距離検出装置が大型かつ高
価になるという問題が生じる。
(Problem to be solved by the invention) In robot or surface tracking,! jl? ! II
It is necessary to detect not only the constant surface distance of the constant obstacle surface, but also the condition B (inclination, etc.) of the surface of the object to be measured. Although it is possible to detect inclinations by arranging a plurality of distance detectors as described in the above-mentioned Japanese Patent Application Specification, the problem arises that the distance detection device becomes large and expensive.

本発明の目的は、表面を追跡するような場合に必要とさ
れる傾斜等の検出も単体で可能であり、小型、軽量かつ
高安定な距離検出器を提供することにある。
An object of the present invention is to provide a compact, lightweight, and highly stable distance detector that is capable of detecting inclinations, etc., which are required when tracking a surface, by itself.

(問題点を解決するための手段) 上記目的は、被測定対象1体面上に作られた光像を観測
面上に投影するta測レンズ、前記被測定対象吻体面の
相異なる箇所に前記観測レンズの光軸に対して対称な面
に沿って光ビームを投射して前記光像を形成する光ビー
ム発生手段、および前記観測面上に配置されこのvl測
面上に投影された前記光像の光軸からの距離を検出する
光検出器を備えて成る本発明の距離検出器によって達成
される。
(Means for Solving the Problems) The above purpose is to provide a TA measurement lens that projects an optical image formed on one body surface of the object to be measured onto an observation surface, and a TA measurement lens that projects the optical image formed on the surface of one body of the object to be measured onto the observation surface at different points on the body surface of the object to be measured. a light beam generating means for forming the light image by projecting a light beam along a plane symmetrical with respect to the optical axis of the lens, and the light image disposed on the observation surface and projected onto the VL measurement surface. This is achieved by the distance detector of the present invention, which comprises a photodetector that detects the distance from the optical axis.

(作 用) 本発明は基本的には3角測量の原理に基づし・ているが
、本発明の基本的な作用を第1図を用し・て説明する。
(Function) The present invention is basically based on the principle of triangulation, and the basic function of the present invention will be explained using FIG. 1.

光ビーム発生手段であるレーデダイオード1かに発生さ
れた光ビーム2はノ(イf +7ズム3によって、二本
の光ビーム2.2′  に分割される。これら光ビーム
2.2′は観測し/ズLの位置する部分において観測レ
ンズLの光軸4からRoの距離の点を通過し、各々観測
レンズLの光軸4に対してαO角をなす方向へ投射され
、被測定物体50面上に輝点T工、T2が生成される。
The light beam 2 generated by the radar diode 1, which is the light beam generating means, is split into two light beams 2.2' by the f+7 principle 3. These light beams 2.2' are The object to be measured passes through a point at a distance Ro from the optical axis 4 of the observation lens L in the part where the observation lens L is located, and is projected in a direction forming an αO angle with respect to the optical axis 4 of the observation lens L. A bright spot T, T2, is generated on the 50th surface.

これら輝点によって作られる光像は、観測レンズしによ
り観測面6上に投影され、輝点1.、+2が生成される
The light images created by these bright spots are projected onto the observation surface 6 by the observation lens, and the bright spots 1. , +2 are generated.

これら輝点1□、12の光軸4からの距離(Xよ、X、
)が、観測面6上に配置された像位置検出用の光感素子
P工、P2により検出される。
The distance of these bright spots 1□, 12 from the optical axis 4 (Xyo,
) is detected by a photosensitive element P2 arranged on the observation surface 6 for detecting the image position.

輝点下0.T2の位置は次式で与えられる。Bright spot below 0. The position of T2 is given by the following equation.

また、検体表面の平均傾斜(Δ2/ΔR)は、次式で与
えられる。
Further, the average slope (Δ2/ΔR) of the specimen surface is given by the following equation.

(実施例) 第1図によって説明された距離検出器は被測定対象物面
の2点のみの距離を検出する2次元的な距離検出器の実
施例であるが、3点以上の距離を検出する3次元的なも
のに拡張することができる。
(Example) The distance detector explained in Fig. 1 is an example of a two-dimensional distance detector that detects the distance of only two points on the object surface to be measured, but it detects the distance of three or more points. It can be expanded to three-dimensional objects.

この場合第1図を、光軸4t−含む平面に関する断面図
と考えることもできる。また、光軸に対称な面としても
傾々のものを考えることができる。代表的なものとして
は四角錐面、円筒面あるいは円錐面などがある。a目−
ソト等に用いられる場合等方向性の検出性能を有するこ
とが囁ましく、この場合対称な面を円筒面あるいは円錐
面にすることが好ましい。以下、光軸に対称な面が円筒
面あるいは円錐面である3次元的な不発明の距離検出器
について説明する。42図は本発明の別の実施例の斜視
図である。レーデダイオード21から絞出されたレーデ
光“22は、円錐レンズ23によって円錐面状の光ビー
ム22′ に変形される。この光ビーム22′  は被
測定物体50面上に投射され光像が形成される。この光
像は観測レンズLにより観測面6上へ投影され像1が形
成され、この像10位置が観測面6上に配置された像位
置検出用光感素子P3によって検出されるように構成さ
れている。この像位置検出用光感素子P3は、各角度に
おいて観測面上における像10半径方向位置rを検出す
るような構成とされる。角度方向θについては連続的に
検出できることが好ましいが、実際にはCOD等の1次
元の像位置検出光感素子を複数個第2図に示すように等
角度間隔で配置した構造とするのが実際的である。被測
定対象物体3上の光像を形成する輝点T3の位置<2<
θ)、R(す)は、この輝点T3に対応する観測面6上
の輝点13の位置をr(θ)とすると次式で与えられる
In this case, FIG. 1 can also be considered to be a sectional view of a plane including the optical axis 4t. Furthermore, a surface that is tilted can also be considered as a surface that is symmetrical with respect to the optical axis. Typical examples include a square pyramidal surface, a cylindrical surface, and a conical surface. A-th
When used for sotographs, etc., it is desirable to have isodirectional detection performance, and in this case, it is preferable that the symmetrical surface be a cylindrical surface or a conical surface. Hereinafter, a three-dimensional distance detector in which the surface symmetrical to the optical axis is a cylindrical surface or a conical surface will be described. FIG. 42 is a perspective view of another embodiment of the invention. The Rade light "22" squeezed out from the Rade diode 21 is transformed into a conical light beam 22' by the conical lens 23. This light beam 22' is projected onto the surface of the object to be measured 50 and an optical image is formed. This light image is projected onto the observation surface 6 by the observation lens L to form an image 1, and the position of this image 10 is detected by the image position detection photosensitive element P3 arranged on the observation surface 6. The image position detection photosensitive element P3 is configured to detect the radial position r of the image 10 on the observation surface at each angle.The angular direction θ is continuously detected. However, in reality, it is practical to have a structure in which a plurality of one-dimensional image position detection photosensitive elements such as COD are arranged at equal angular intervals as shown in Fig. 2.Object to be measured The position of the bright spot T3 forming the optical image on 3<2<
θ) and R(su) are given by the following equations, where r(θ) is the position of the bright spot 13 on the observation surface 6 corresponding to this bright spot T3.

2(θ)の最大方向あるいは最小方向を検出することK
よシ、被測定対象1体面の最大傾斜方向の検出なども可
能となり、ロボット倣い制御などにはきわめて好都合で
ある。(4)式から得られる被測定対象切体面上の輝点
の位置は、通常レンズや光学系の歪、各素子の配置誤差
などにより、多少すれた値となる。このため、実際上は
、(4)式を用いるのではなく予めレンズや光学系の歪
などを含めた距離検出特性を、Wit!lしておき、各
半径位置に対する正確な距離を、表に格納しておくこと
によシ、より正確な距離検出が可能となる。この場合、
光学系および電気系を含んだ総合的な歪誤差のうちで再
現性のあるものは、総合的に蒲正されることになるも第
一図に示された実施例においては、円錐状ビーム22′
  がd tRレン、eLの環状スリット24を通じて
投射されてしごるが、光ビームの投射方法に社、これ以
外にも様々な方法が可能である。例えば第3図に示すよ
うに、円錐し/ズ23によって光ビーム22が一旦一点
に収束されるクロスオーバ一点Cが観測レンズLの集魚
位置Fに一致するように光学部品を配置すると、実線の
ように円筒面状(α=O)の光ビームを投射することが
できるが、このクロスオーバ一点(C) を集魚位置F
よシ近くしたシ、遠ざけたりすることにより、光ビーム
22′の形状を点線で示されるように末広がシの円錐面
(α〉0)あるいは一点鎖線で示されるように収束する
円錐面(α<0>に変えることができる。また、円錐レ
ンズの代りに、角錐レンズを使用することによシ光ビー
ム22′を角柱面状あるいは角錐面状の形態にすること
もできる。
Detecting the maximum or minimum direction of 2(θ) K
Additionally, it is also possible to detect the maximum inclination direction of a surface of a single object to be measured, which is extremely convenient for robot tracing control. The position of the bright spot on the cut surface of the object to be measured obtained from equation (4) usually has a slightly different value due to distortion of the lens or optical system, placement error of each element, etc. Therefore, in practice, instead of using equation (4), Wit! By storing accurate distances for each radial position in a table, more accurate distance detection becomes possible. in this case,
Among the total distortion errors including the optical system and the electrical system, those that are reproducible are to be comprehensively corrected.In the embodiment shown in FIG. 1, the conical beam 22 ′
is projected through the annular slit 24 of the dtR lens and eL, but various other methods are possible depending on the method of projecting the light beam. For example, as shown in FIG. 3, if the optical components are arranged so that the crossover point C, where the light beam 22 is once converged to a single point by the conical lens 23, coincides with the fish gathering position F of the observation lens L, then the solid line A light beam with a cylindrical surface shape (α=O) can be projected as shown in FIG.
By moving the light beam closer or farther away, the shape of the light beam 22' can be changed to a conical surface (α>0) that widens toward the end, as shown by the dotted line, or a conical surface that converges (α <0>.Also, by using a pyramidal lens instead of a conical lens, the light beam 22' can be shaped into a prismatic or pyramidal surface.

第5図は、観測レンズLの周囲にリング状レンズ25を
配置し、円錐レンズ23で生成された円錐面状ビーム2
6をこのリング状し/ズ25を通して所望の方向へ投射
するようにした場合である。
In FIG. 5, a ring-shaped lens 25 is arranged around the observation lens L, and a conical beam 2 is generated by a conical lens 23.
6 is projected in a desired direction through this ring-shaped lens 25.

第2図から第≠図に示された実施例においては光ビーム
としては被測定対象1体面に環状の光像が形成されるも
のが使用されたが、第5図に示されるように複数個のレ
ーデダイオード21.21’を観測レン、eL周囲に配
置し、これによって細く絞られた線状の光ビーム27を
ある特定角度方向に投射し、この投射された方向に対応
する観測面に像位置検出用光感素子P、を配置した構成
をとってもよい。
In the embodiments shown in Figures 2 to ≠, a light beam was used that formed an annular optical image on the surface of one object to be measured, but as shown in Figure 5, a plurality of light beams were used. The radar diodes 21 and 21' are placed around the observation lens eL, which projects a narrowly focused linear light beam 27 in a certain specific angular direction onto the observation surface corresponding to the projected direction. A configuration may also be adopted in which a photosensitive element P for image position detection is arranged.

また、第6図に示されているように、光ビームの投射あ
るいは像の観測を牛透鏡27を用し・て行ない、レーデ
ダイオード21を観測面6と分離して配置することも可
能である。
Furthermore, as shown in FIG. 6, it is also possible to project the light beam or observe the image using a cow-transparent mirror 27, and to arrange the radar diode 21 separately from the observation surface 6. be.

なお、被測定対象物体面の相異なる箇所に光ビームが同
時に投射されるのではなく、第7図に示されるように、
7個のレーデダイオード21と7個の光感素子P を光
軸4の回シに回転することによって全周をカバーするこ
とも可能である。本発明の特ffgM求の範囲にはこの
様な態様も含まれるものとする。
Note that the light beams are not projected simultaneously onto different locations on the surface of the object to be measured, but as shown in FIG.
It is also possible to cover the entire circumference by rotating the seven radar diodes 21 and the seven photosensitive elements P around the optical axis 4. The scope of the present invention is intended to include such embodiments.

また、本発明においては光ビーム発生手段としてはレー
デダイオード以外の公知のものを使用することができる
。要は観測レンズの光軸に対して対称な面に沿った光ビ
ームを形成(同時的でなくてよい)することができるも
のであればよい。また、光検出器としてもCCDやPS
D(位置検出素子)等の光感素子以外の像の位置情報(
ピーク・位置や重心位置等)をとらえることができるも
のであればいかなるものをも使用できる。さらに、観測
レンズとしても図示されるような車検のものまたはiJ
!数枚のレンズが複合して構成されるものいずれのもの
を使用し得ることは言うまでもない。
Furthermore, in the present invention, known means other than a Raded diode can be used as the light beam generating means. In short, any material that can form a light beam along a plane that is symmetrical with respect to the optical axis of the observation lens (does not have to be simultaneous) may be used. Also, CCD and PS can be used as photodetectors.
Position information of images other than photosensitive elements such as D (position detection element) (
Any device can be used as long as it can capture the peak position, center of gravity, etc.). Furthermore, a vehicle inspection lens or an iJ lens, which is also illustrated as an observation lens.
! Needless to say, any lens constructed by combining several lenses can be used.

(発明の効果) 本発明の距離検出器は単体で被測定対象物までの距離と
被測定対象物体面の傾斜等の状態を検出でき、かつ小型
、軽量かつ高安定である。従って、0&ツト用のセンサ
等として極めて有用である。
(Effects of the Invention) The distance detector of the present invention can detect the distance to the object to be measured and the state of the inclination of the object to be measured by itself, and is small, lightweight, and highly stable. Therefore, it is extremely useful as a 0&T sensor, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例であり、2次元的な距離検出器
を示す平面図、 第2図は3次元的な本発明め実施例を示す斜視図、 第3図ないし第7図は本発明の別の実施例を示す平面図
である。 1.21・・・レーザダイオード、 2・・・光ビーム、 3・・・パイプリズム、 4・・・光 軸、 5・・・被測定物体、 6・・・観測面、 P・・・光感素子、 L・・・観測レンズ。 図面の浄書(内容に変更なし) 第1図 第3図 第4図 第7図 1 Gi ?ffi″E * (R< ) 60.5.
23昭和  年  月  日 特許庁長官  志 賀   学  5   適1、事件
の表示   昭和59年特許願第278682号2、発
明の名称     距 離 検 出 器3、補正をする
者 事件との関係  出願人 名称 (679)理化学研究所 46代理人
Fig. 1 shows an embodiment of the present invention, and is a plan view showing a two-dimensional distance detector, Fig. 2 is a perspective view showing a three-dimensional embodiment of the invention, and Figs. 3 to 7 are FIG. 3 is a plan view showing another embodiment of the present invention. 1.21...Laser diode, 2...Light beam, 3...Pipe rhythm, 4...Optical axis, 5...Measurement object, 6...Observation surface, P...Light Sensing element, L... Observation lens. Engraving of drawings (no changes in content) Figure 1 Figure 3 Figure 4 Figure 7 Figure 1 Gi? ffi″E * (R< ) 60.5.
23 Manabu Shiga, Director General of the Japan Patent Office, 1985, 1, Indication of the case 1982 Patent Application No. 278682 2, Title of the invention Distance detector 3, Person making the amendment Relationship with the case Applicant name ( 679) RIKEN 46 agent

Claims (1)

【特許請求の範囲】 被測定対象物体面上に作られた光像を観測面上に投影す
る観測レンズ、 前記被測定対象物体面の相異なる箇所に、前記観測レン
ズの光軸に対して対称な面に沿って光ビームを投射して
、前記光像を形成する光ビーム発生手段、および 前記観測面上に配置され、この観測面上に投影された前
記光像の前記光軸からの距離を検出する光検出器をり備
えて成る距離検出器。
[Scope of Claims] An observation lens that projects a light image formed on a surface of an object to be measured onto an observation surface; a light beam generating means that projects a light beam along a plane to form the light image; and a light beam generating means disposed on the observation surface and a distance from the optical axis of the light image projected onto the observation surface; A distance detector comprising a photodetector for detecting.
JP27868284A 1984-12-28 1984-12-28 Distance detector Pending JPS61155905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27868284A JPS61155905A (en) 1984-12-28 1984-12-28 Distance detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27868284A JPS61155905A (en) 1984-12-28 1984-12-28 Distance detector

Publications (1)

Publication Number Publication Date
JPS61155905A true JPS61155905A (en) 1986-07-15

Family

ID=17600699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27868284A Pending JPS61155905A (en) 1984-12-28 1984-12-28 Distance detector

Country Status (1)

Country Link
JP (1) JPS61155905A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242810A (en) * 1986-04-15 1987-10-23 Hamamatsu Photonics Kk Tilt sensor
EP0279347A2 (en) * 1987-02-10 1988-08-24 Okada Inc. Optical axis displacement sensor
JPS63255610A (en) * 1987-04-12 1988-10-21 Hamamatsu Photonics Kk Distance detector
EP0470825A2 (en) * 1990-08-10 1992-02-12 Stanley Electric Corporation Optical gauging apparatus
JP2007278951A (en) * 2006-04-10 2007-10-25 Alpine Electronics Inc Car body behavior measuring device
JP2009092535A (en) * 2007-10-10 2009-04-30 Ono Sokki Co Ltd Optical displacement gauge
JP2013181758A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Normal line detection method, normal line detection device and processor provided with normal line detection function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189005A (en) * 1981-05-18 1982-11-20 Mitsubishi Electric Corp Detector for angle of inclination of plane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189005A (en) * 1981-05-18 1982-11-20 Mitsubishi Electric Corp Detector for angle of inclination of plane

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242810A (en) * 1986-04-15 1987-10-23 Hamamatsu Photonics Kk Tilt sensor
EP0279347A2 (en) * 1987-02-10 1988-08-24 Okada Inc. Optical axis displacement sensor
US4897536A (en) * 1987-02-10 1990-01-30 Okada Inc. Optical axis displacement sensor with cylindrical lens means
JPS63255610A (en) * 1987-04-12 1988-10-21 Hamamatsu Photonics Kk Distance detector
EP0470825A2 (en) * 1990-08-10 1992-02-12 Stanley Electric Corporation Optical gauging apparatus
JP2007278951A (en) * 2006-04-10 2007-10-25 Alpine Electronics Inc Car body behavior measuring device
JP2009092535A (en) * 2007-10-10 2009-04-30 Ono Sokki Co Ltd Optical displacement gauge
JP2013181758A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Normal line detection method, normal line detection device and processor provided with normal line detection function
US9619433B2 (en) 2012-02-29 2017-04-11 Mitsubishi Heavy Industries, Ltd. Normal-line detection method, normal-line detection device, and machine tool having normal-line detection function

Similar Documents

Publication Publication Date Title
JP2738995B2 (en) Optical positioning system
US4893025A (en) Distributed proximity sensor system having embedded light emitters and detectors
US7180607B2 (en) Method and device for calibrating a measuring system
CA1272406A (en) Three dimensional imaging device
JPS60185108A (en) Method and device for measuring body in noncontacting manner
RU2007107922A (en) METHOD AND DEVICE FOR RESEARCH OF SURFACE VIBRATIONS BY MEANS OF A MOVING SPEKL INTERFEROMETER
JP2002506976A (en) Optical sensor system for detecting the position of an object
US5363185A (en) Method and apparatus for identifying three-dimensional coordinates and orientation to a robot
CN102538679A (en) Image correlation displacement sensor
CN114509005A (en) Coordinate measuring device with automatic target identification function and identification method thereof
US4760269A (en) Method and apparatus for measuring distance to an object
JPS61155905A (en) Distance detector
CA1312755C (en) Synchronous optical scanning apparatus
Park et al. Measurement of fine 6-degrees-of-freedom displacement of rigid bodies through splitting a laser beam: experimental investigation
US11031277B2 (en) Processing apparatus
US20200408914A1 (en) Static six degree-of-freedom probe
US4789243A (en) Orientation determining system for a device
JPH10506180A (en) Apparatus and method for measuring and calculating geometric parameters of an object
JPH05164519A (en) Measuring instrument for three-dimensional shape of structure surrounding railroad track
JPH06207812A (en) Measurement point indicator for three-dimensional measurement
JP3065367B2 (en) Shape measurement device for structures around railway tracks
US7212294B2 (en) Method for determination of the level of two or more measurement points, and an arrangement for this purpose
JPS63225109A (en) Distance and inclination measuring instrument
Kanade et al. A noncontact optical proximity sensor for measuring surface shape
JPH02278113A (en) Optical distance sensor