JPS61155216A - Molding method of zeolite - Google Patents

Molding method of zeolite

Info

Publication number
JPS61155216A
JPS61155216A JP27401684A JP27401684A JPS61155216A JP S61155216 A JPS61155216 A JP S61155216A JP 27401684 A JP27401684 A JP 27401684A JP 27401684 A JP27401684 A JP 27401684A JP S61155216 A JPS61155216 A JP S61155216A
Authority
JP
Japan
Prior art keywords
zeolite
granulation
water
granulated
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27401684A
Other languages
Japanese (ja)
Other versions
JPH0544408B2 (en
Inventor
Seiichi Asano
精一 浅野
Yoichi Matsuda
洋一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP27401684A priority Critical patent/JPS61155216A/en
Publication of JPS61155216A publication Critical patent/JPS61155216A/en
Publication of JPH0544408B2 publication Critical patent/JPH0544408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To make the shape uniform and to enhance the mechanical strength and abrasion resistance of a molded product by kneading and roughly granulating the mixture of a zeolite, binder, etc., to make lumps having a prescribed particle diameter and by extrusion-granulating said lumps. CONSTITUTION:The mixture of a zeolite, binder and granulating agent is kneaded and roughly granulated to adjust the particle diameter to 1-50mm. These granular lumps are extrusion-granulated to obtain the molded product of zeolite. The shape of the molded product is always made uniform, and the mechanical strength and abrasion resistance of the molded product are enhanced.

Description

【発明の詳細な説明】 詳細には造粒工程の安定した操業管理及び安定した品質
管理を可能にした高強度,耐摩耗性,ゼオライト成形品
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION In particular, the present invention relates to a method for producing a zeolite molded product with high strength and wear resistance, which enables stable operational control of the granulation process and stable quality control.

〈産業上の利用分野〉 ゼオライトは、その優れた吸着特性.イオン交換特性,
触媒特性等の機能を応用され、乾燥,精製.分離,イオ
ン交換,触媒及び触媒担体など数多くの用途が開発され
、石油精製,化学及び石油化学工業,ガス精製業,天然
ガス工業,電気工業。
<Industrial Application Fields> Zeolite has excellent adsorption properties. Ion exchange properties,
Application of functions such as catalytic properties, drying, purification. Numerous applications have been developed for separation, ion exchange, catalysts and catalyst supports, and are used in petroleum refining, chemical and petrochemical industry, gas refining industry, natural gas industry, and electrical industry.

塗料工業,その他4mガラス用,分析用等で利用されて
いる。
It is used in the paint industry, other 4m glass applications, analysis applications, etc.

ここでゼオライトとは、天然に産する天然ゼオライト及
び合成により製造される合成ゼオライトがあり、一般式 %式% (式中Mはアルカリ金属またはアルカリ土金属で、nは
それらの原子価である) で表わ摂れる組成を持つ結晶性アルミノシリケートある
。一。
Here, zeolite includes naturally occurring natural zeolite and synthetic zeolite produced by synthesis, and has the general formula % (in the formula, M is an alkali metal or alkaline earth metal, and n is their valence). There is a crystalline aluminosilicate with the composition expressed by . one.

本発明におけるゼオライトは天然ゼオライト及び合成ゼ
オライトのいずれをも特定するものではない。また、ゼ
オライトに含まれるカチオンは容易に他のカチオンにイ
オン交換できるが、本発明でのゼオライトはこのカチオ
ンを特定するものではない。
The zeolite in the present invention does not specify either natural zeolite or synthetic zeolite. Furthermore, although the cations contained in zeolite can be easily ion-exchanged into other cations, the zeolite used in the present invention does not specify this cation.

ゼオライトのなかでも合成ゼオライトはそれ自体はCL
1〜50μの範囲の微細な結晶又は結晶の凝集体で、し
かも結着性の無い粉末である。これを工業的に利用する
為には使用目的に適した何らかの成形品とする必要があ
る。成形品の形状として、一般的には柱状(ベレット)
1球状(ビーズ)。
Among zeolites, synthetic zeolite itself is CL.
It is a fine crystal or aggregate of crystals in the range of 1 to 50 microns, and is a non-binding powder. In order to use this product industrially, it is necessary to make it into some kind of molded product suitable for the purpose of use. The shape of the molded product is generally columnar (bellet).
1 spherical (bead).

顆粒、細粒で、その他特殊用途用としてハニカム状、管
状、板状、コア等の形状のものがある。
There are granules and fine particles, and for special purposes there are shapes such as honeycomb, tube, plate, and core shapes.

〈従来の技術〉 ゼオライトを造粒する為には、一般的にバインダーがゼ
オライト無水重量100部に対して10〜30部添加さ
れる。バインダーとしては、カオリン、アタパルガイド
、モンモリロナイト、ベントナイト、アロフェン、セビ
オライト等の粘土が単独または2種以上組み合わせで使
用される。粘土以外のバインダーとして、アルミナ、シ
リカ等も単独または粘土をも含めた組み合わせで使用さ
れている。またバインダー以外に造粒助剤として各種の
有機系、無機系添加剤がゼオライト無水重量100部に
対し0.01〜5部の範囲で単独あるいは組み合わせで
用いられることが多い。造粒助剤の例としてメチルセル
ローズ、カルボキシメチルセルローズ、ポリビニルアル
コール、結晶性セルローズ、リグニン、ステアリン酸、
澱粉、アラビアゴム、珪酸ソーダ、ポリリン酸ソーダ等
がある。
<Prior Art> In order to granulate zeolite, generally 10 to 30 parts of a binder is added to 100 parts by weight of the dry zeolite. As the binder, clays such as kaolin, attapulgide, montmorillonite, bentonite, allophane, and seviolite are used alone or in combination of two or more. As binders other than clay, alumina, silica, etc. are also used alone or in combination with clay. In addition to the binder, various organic and inorganic additives are often used alone or in combination as granulation aids in the range of 0.01 to 5 parts per 100 parts of the dry weight of the zeolite. Examples of granulation aids include methylcellulose, carboxymethylcellulose, polyvinyl alcohol, crystalline cellulose, lignin, stearic acid,
These include starch, gum arabic, sodium silicate, and sodium polyphosphate.

ゼオライトの造粒方法としては、例えば転勤造粒、押出
造粒、噴霧造粒、流動造粒、圧縮造粒等の方式があるが
、本発明は押出造粒に関するものである。押出造粒によ
りゼオライト成形品を製造する場合、あらかじめゼオラ
イト粉末とバインダー及び造粒助剤の粉末とをリボンブ
レンダー、コニカルブレンダ−等の公知の混合機を用い
て乾粉混合し、ニーダ−等の公知の混線機を用いて加液
Zeolite granulation methods include, for example, transfer granulation, extrusion granulation, spray granulation, fluidized granulation, and compression granulation, and the present invention relates to extrusion granulation. When producing a zeolite molded product by extrusion granulation, the zeolite powder and the powder of the binder and granulation aid are dry-mixed in advance using a known mixer such as a ribbon blender or a conical blender. Add liquid using a mixer.

加水後混練した後押出造粒するのが一般的である。It is common to add water, knead, and then extrude and granulate.

造粒助剤はあらかじめ水溶液として添加することもある
The granulation aid may be added in advance as an aqueous solution.

〈発明が解決しようとする問題点〉 ゼオライト成形品の製品特性として具備しなければなら
ないいくつかの項目の中で、機械的強度。
<Problems to be solved by the invention> Among the several characteristics that zeolite molded products must have, mechanical strength is one of them.

耐摩耗性及び形状の均一性があげられる。押出造粒によ
りゼオライトを成形する場合これらの製品特性に影響を
及ぼす支配因子としては非常に数多く、またそれらの支
配因子が各々相乗的に影響をもたらすので造粒メカニズ
ム等を体系的に解明されていないのが現状である。ゼオ
ライトを造粒する上で考えられる支配因子としては大き
く分けて1)原材料、2)前工程、3)造粒工程がある
Examples include wear resistance and uniformity of shape. When molding zeolite by extrusion granulation, there are a very large number of governing factors that affect these product properties, and since each of these governing factors has a synergistic effect, the granulation mechanism has not been systematically elucidated. The current situation is that there is no such thing. The controlling factors that can be considered in granulating zeolite can be roughly divided into 1) raw materials, 2) pre-processes, and 3) granulation steps.

まず原材料で考えた場合粒子形状、物性1粒度分布、含
有水分、温度、バインダーの種類及びその添加割合等が
ある。粒子形状は、ゼオライトの種類やその合成方法(
よっても異なり、バインダーとして用いる粘土はその種
類により異なる。物性としてはゼオライトは一般的にダ
イラタンシー性を有し、粘土はチクソトロピー性を示す
。またゼオライトの種類、バインダー用粘土の種類によ
りその粉体特性は千差万別である。含有水分は、ゼオラ
イト粉末の乾燥度合により、またゼオライトの種類によ
り、付着水量及び結晶水量が異なる。
First, when considering raw materials, there are particle shape, physical properties, particle size distribution, moisture content, temperature, type of binder and its addition ratio, etc. The particle shape depends on the type of zeolite and its synthesis method (
The type of clay used as a binder also varies depending on the type of binder. In terms of physical properties, zeolites generally have dilatancy, and clays exhibit thixotropy. Furthermore, the powder characteristics vary widely depending on the type of zeolite and the type of binder clay. The amount of attached water and the amount of crystallized water differ depending on the degree of dryness of the zeolite powder and the type of zeolite.

また粘土にういても、結晶水1層間水、付着水があり、
粘土の種類、乾燥程要、保存雰囲気等で変化する。
Also, even in clay, there is crystallized water, interlayer water, and attached water.
It varies depending on the type of clay, drying time, storage atmosphere, etc.

次に前工程については、乾粉混合時間、加液・加水時間
及びその添加方法、可塑性の有無、練加機型式、練加時
間、温度等が代表的な支配因子である。造粒工程におけ
る支配因子としては、造粒形状、造粒硬軟、付着、ダイ
ス又はスクリーンの開口比及びその厚さ、押出速度、ス
クリーー型式等がある。
Next, regarding the pre-process, typical controlling factors include dry powder mixing time, liquid/water addition time and method of addition, presence or absence of plasticity, kneading machine type, kneading time, temperature, etc. Controlling factors in the granulation process include granulation shape, granulation hardness and softness, adhesion, aperture ratio of a die or screen and its thickness, extrusion speed, and screen type.

これらの数多い支配因子の中で、使用装置及びゼオライ
ト、バインダー、造粒助剤の組み合わせを特定した場合
、造粒性に最も支配する因子は加液、・加水量である。
Among these many controlling factors, when the equipment used and the combination of zeolite, binder, and granulation aid are specified, the factor that most controls the granulation property is the amount of liquid added and the amount of water added.

すなわち総合的な水分管理が最大の問題である。前記し
た様に、ゼオライトには結晶水が含まれており、ゼオラ
イト粉末の乾燥条件によって結晶水量の多少及び付着水
の有無がある。一方バインダーに使用する粘土について
も結晶水9層間水、伺着水の各々が変化する。また乾粉
混合、練加、造粒の各工程では必ず発熱現象があり1そ
の工程雰囲気の温度、湿度により蒸発水分量が変化する
ことになる。この様なことから、造粒における総合的な
水分管理が難しく、従来は練加後の水分量:をその都度
測定し、最適条件に調整し直す方法で管理されていた。
In other words, comprehensive moisture management is the biggest problem. As described above, zeolite contains water of crystallization, and depending on the drying conditions of the zeolite powder, the amount of water of crystallization and the presence or absence of attached water may vary. On the other hand, regarding the clay used in the binder, crystallization water, interlayer water, and interlayer water each vary. In addition, heat generation occurs in each process of dry powder mixing, kneading, and granulation, and the amount of evaporated water changes depending on the temperature and humidity of the process atmosphere. For these reasons, it is difficult to comprehensively control moisture during granulation, and conventionally, the moisture content after kneading has been measured each time and the moisture content has been adjusted to the optimum conditions.

水分管理が必要である理由を具体的に述べると、練加後
の水分が結果的に最適水分量より低い場合には押出造粒
機にかかる負荷量が増大し、ダイス又はスクリーン部で
の発熱が増加し、造粒の安定性はなく、成形品の形状は
ササフレやヒビ割れとなる。一方練加後の水分が結果的
に最適水分量より高い場合には、押出造粒後に成形品は
相互付着し均一な形状は保たれないし、成形品の機械的
強度も低下する。この最適水分量に対する許容幅は極め
て低く±0.5%で、この範囲外の水分量の練加品を押
出造粒した場合前述した操業の不安定及び製品特性が低
下する。この様なことから、造粒における工程管理の上
で、この水分管理には細心の注意を払い、膨大な労力を
費していた。
Specifically speaking, the reason why moisture management is necessary is that if the moisture content after kneading is lower than the optimum moisture content, the load on the extrusion granulator will increase, causing heat generation in the die or screen section. increases, the granulation becomes unstable, and the shape of the molded product becomes sasafure or cracked. On the other hand, if the water content after kneading is higher than the optimum water content, the molded products will adhere to each other after extrusion granulation, and a uniform shape will not be maintained, and the mechanical strength of the molded product will also decrease. The allowable range for this optimum water content is extremely low, ±0.5%, and if a kneaded product with a water content outside this range is extruded and granulated, the aforementioned operational instability and product properties will deteriorate. For this reason, in the process control of granulation, careful attention has been paid to moisture control and a huge amount of effort has been expended.

本発明はこの水分管理に関して常に最適値にコントロー
ルする方法について鋭意検討した結果、前工程における
混練粗造粒塊の形状をコントロールすることにより常に
最適条件下で造粒が行なえることを見い出し、造粒の安
定性、成形品の品質の安定性加えて機械的強度の高い成
形品の製造方法を提供するにいたった。
As a result of intensive study on a method for constantly controlling this moisture content to the optimum value, the present invention has discovered that granulation can always be carried out under optimum conditions by controlling the shape of the kneaded coarse granulated mass in the previous step. We have now provided a method for producing molded products with high mechanical strength as well as grain stability and quality stability.

111題点を解決する為の手段〉 本発明は、ゼオライト、バインダー及び造粒助剤の一部
又は全部を混合機で乾粉混合12、その混合粉を同−機
内又は別の機内で旋回運動下で加水し又は造粒助剤の一
部もしくは全部を溶解もしくは分散した溶液を加液し、
ゼオライト、バインダー、造粒助剤及び水から成る混練
粗造粒塊の粒径が1〜50市の範囲望ましくは1〜30
門の範囲となる様調整し、この混練粗造粒塊を押出造粒
することを特徴とする。
Means for Solving Problems 111> The present invention provides dry powder mixing of some or all of the zeolite, binder, and granulation aid in a mixer 12, and the mixed powder being subjected to rotating motion in the same machine or in another machine. Add water or add a solution in which part or all of the granulation aid is dissolved or dispersed,
The particle size of the kneaded coarse granulated mass consisting of zeolite, binder, granulation aid and water is in the range of 1 to 50, preferably 1 to 30.
The kneaded coarse granulated mass is then granulated by extrusion.

ゼオライト成形品を製造する練加工程では、ゼオライト
、バインダー及び造粒助剤の各々の固体と主に水及び一
部造粒助剤溶液の液体と主に空気の気体との三相が何ら
かの充填様式をもって形成される。押出造粒を安定的に
行なわせる為の理想的な湿潤粉体すなわち混練腕の充填
様式は固体。
In the kneading process for producing zeolite molded products, the three phases of the solid zeolite, binder, and granulation aid, the liquid (mainly water and a part of the granulation aid solution), and the gas (mainly air) are filled in some way. Formed with style. In order to stably perform extrusion granulation, the ideal wet powder, that is, the filling mode of the kneading arms, is solid.

液体、気体の三相形成が固体相は連続、液体相は連続、
気体相は無い状態である。すなわち固体相表面及び固体
間空隙を充満するに足る液体のみが存在し、気体が存在
する空隙の無い状態が理想的で、この状態での混練腕を
造粒した場合、成形品の機械的強度は高く、且つ耐摩耗
性に富む。この理想状態の混練腕を作る為には、旋回運
動下で粉体な凝集付着させる力を加え、且つ空隙を充填
するに足る液体を加えてやれば良い。ここで空隙を充填
するに足る液体量の目安としては、混練腕が球形化し、
その粒径が1〜50mの範囲望ましくは1〜30騙の範
囲に粗造粒された状態である。
Formation of three phases: liquid and gas; solid phase is continuous; liquid phase is continuous;
There is no gas phase. In other words, the ideal state is that there is only enough liquid to fill the solid phase surface and the voids between the solids, and there are no voids where gas exists, and if the kneading arms are granulated in this state, the mechanical strength of the molded product will decrease. is high and has high wear resistance. In order to create a kneading arm in this ideal state, it is sufficient to apply force to cause the powder to coagulate and adhere under a rotating motion, and to add sufficient liquid to fill the voids. Here, as a guideline for the amount of liquid sufficient to fill the voids, the kneading arms are spherical,
The particles are coarsely granulated to have a particle diameter of 1 to 50 m, preferably 1 to 30 m.

例えば混線後に1間以下のいわゆる粉状での混線粉を押
出造粒した場合、水分不足の兆候すなわち、造粒機のス
クリーン又はダイス部での発熱が増加し、造粒の安定性
はなく、成形品形状としてササフレ又はワレが目立つ。
For example, if mixed wire powder is extruded and granulated in powder form for less than 1 hour after mixing, there will be signs of moisture deficiency, that is, heat generation will increase in the screen or die part of the granulator, and the granulation will not be stable. There are noticeable cracks or cracks in the shape of the molded product.

一方混線後に50騙以上の混線粗造粒塊となった場合、
これを押出造粒すると、水分過多の兆候すなわち成形品
は相互付着し、その機械的強度も低下する。
On the other hand, if the crosstalk becomes a coarse granulated mass with more than 50 lines after crosstalk,
When this is extruded and granulated, signs of excessive water content, i.e., the molded products adhere to each other, and their mechanical strength also decreases.

混線粗造粒塊の大きさは、旋回時間、旋回速度にも起因
するが、加水量又は加液量により最も変化する割合が大
きい。バインダー及び造粒助剤はゼオライトを含めた全
成分を凝集し易い様な組み合わせを選定しており、混線
における凝集最少単位は水分存在下で相互付着し、雪だ
るま式に成長する。この状態での水分の多少が混練粗造
粒塊の大きさを支配し、凝集最少単位内に浸透する程度
の水分量が適正値で、それ以上の加水を行なった場合水
分は凝集表面に停滞し、相互間付着を助長し、混線粗造
粒塊の大きさを急速に大きくしてしまう。
Although the size of the cross-wire coarse granulation mass depends on the swirling time and swirling speed, it changes the most depending on the amount of water added or the amount of liquid added. The binder and granulation aid are selected in a combination that facilitates agglomeration of all components including zeolite, and the minimum agglomeration units in the cross-wire adhere to each other in the presence of moisture and grow in a snowballing manner. The amount of water in this state controls the size of the kneaded coarse granules, and the appropriate amount of water is the amount that permeates into the minimum unit of agglomeration, and if more water is added, the water stagnates on the surface of the agglomeration. However, this promotes mutual adhesion and rapidly increases the size of the coarsely granulated lumps.

以上のことから、造粒に最適な水分をもたらす為には前
工程での粗造粒塊の大きさを1〜5Qmmの範囲、望ま
しくは1〜60關の範囲となる様加水又は加液すればよ
いことが分かる。以下その詳細について説明する。
From the above, in order to bring the optimum moisture content for granulation, it is necessary to add water or add liquid so that the size of the coarse granulated lumps in the previous step is in the range of 1 to 5 Qmm, preferably in the range of 1 to 60 Qmm. I know it's good. The details will be explained below.

〈作用〉 本発明による押出造粒法はその前工程におけるゼオライ
ト、バインダー、造粒助剤との混合物の混練において、
混練粗造粒塊の粒径が1〜5Qmm、さらに望ましくは
1〜3Qmwの範囲になる様加水又は加液する方法であ
る。上記範囲の混練粗造粒塊を押出造粒すれば、造粒工
程の操業は常に安定し、加えて成形製品の形状は均一化
し、機械的強度が高められ、また耐摩耗性も高くなる。
<Function> In the extrusion granulation method according to the present invention, in the previous step of kneading the mixture with zeolite, binder, and granulation aid,
This is a method of adding water or liquid so that the particle size of the kneaded coarsely granulated mass becomes in the range of 1 to 5 Qmm, more desirably in the range of 1 to 3 Qmw. If the kneaded coarse granulated mass in the above range is extruded and granulated, the operation of the granulation process will always be stable, and in addition, the shape of the molded product will be uniform, mechanical strength will be increased, and wear resistance will also be increased.

さらに混練途中又は混練後に水分の測定を行なう必要が
無くなり工程管理は非常に簡略化できる。
Furthermore, there is no need to measure moisture during or after kneading, and process control can be greatly simplified.

〈発明の効果〉 以上の説明から明らかな様に、本発明によれば(1) 
 ゼオライト成形品の形状が常に均一化できろ。
<Effects of the Invention> As is clear from the above explanation, according to the present invention, (1)
The shape of zeolite molded products should always be uniform.

(2)ゼオライト成形品の機械的強度及び耐摩耗性を高
めることができる。
(2) The mechanical strength and abrasion resistance of zeolite molded products can be improved.

(3)ゼオライト成形品の造粒工程が常に安定化し、操
業管理が容易となる。
(3) The granulation process of zeolite molded products is always stabilized, making operational management easier.

(4)  ゼオライト成形品の造粒前工程における水分
調整が容易となり、水分測定等の工程管理が省ける。
(4) Moisture adjustment in the pre-granulation process of zeolite molded products becomes easy, and process control such as moisture measurement can be omitted.

〈実施例〉 以下実施例により本発明の詳細な説明をする。<Example> The present invention will be explained in detail below with reference to Examples.

なお本発明は、実施例に記載するゼオライト、・クイン
ダー、造粒助剤及び使用装置に特定するものではない。
Note that the present invention is not limited to the zeolite, kinder, granulation aid, and equipment used in the Examples.

〔実施例1〕 4A型ゼオライト粉末有姿5〜(無水として4.14に
9)酸性白土粉末有姿1.22 kg及びカルボキシル
メチルセルローズ粉末40gを各々秤量し、竪型混合攪
拌機ヘンシェルミキサーFM750型(三井三池製作所
製)に投入し、周速2G、2??に/日θCで10分間
乾粉混合を行なった。その後純水2.25kgを周速1
α7 m / secの旋回条件下で50秒間で添加後
、回転数を周速20.2m/sθCに上げ、5分間混線
を続けた。ヘンシェルミキサーから取り出した混練粗造
粒塊の粒径分布を測定した結果、10関以下5チ、10
〜20++ll+!8チ、20〜30m85 %、  
30+Xl1以上2チであった。この混練粗造粒塊を押
出造粒機11!!XDF−100型(不二パウダル製)
で造粒した。取付ダイスは穴径3+++s、ダイス厚さ
10朋である。造粒は非常にスムーズで形状の良いペレ
ットが得られた。これを熱風温度120°Cの流動層式
乾燥機で30分間乾燥後、静置式電気焼成炉で550°
C22時間焼成した。焼成ペレットの機械的強度を本屋
式硬度計で20点測定しその平均値は92に9であった
[Example 1] Weighed 1.22 kg of 4A type zeolite powder (as anhydrous 4.14 to 9), 1.22 kg of acid clay powder, and 40 g of carboxymethyl cellulose powder, and used a vertical mixing stirrer Henschel mixer FM750 model. (manufactured by Mitsui Miike Seisakusho), peripheral speed 2G, 2? ? Dry powder mixing was performed for 10 minutes at θC/day. After that, 2.25 kg of pure water was applied at a circumferential speed of 1
After addition for 50 seconds under the rotating condition of α7 m/sec, the rotational speed was increased to a circumferential speed of 20.2 m/sθC, and crosstalk was continued for 5 minutes. As a result of measuring the particle size distribution of the kneaded coarse granulated mass taken out from the Henschel mixer, it was found that
~20++ll+! 8chi, 20-30m85%,
It was 30+Xl1 or more and 2ch. This kneaded coarse granulated mass is extruded into the granulator 11! ! XDF-100 type (manufactured by Fuji Paudal)
It was granulated with The mounting die has a hole diameter of 3+++s and a die thickness of 10mm. Granulation was very smooth and well-shaped pellets were obtained. After drying this in a fluidized bed dryer with hot air temperature of 120°C for 30 minutes, it was heated to 550° in a static electric firing oven.
It was fired for 22 hours. The mechanical strength of the fired pellets was measured at 20 points using a bookstore type hardness tester, and the average value was 92.9.

〔比較例1〕 実施例1と同様のゼオライト、酸性白土、カルボキシメ
チルセルローズを同量秤量し、ニーダ−FM−NW−2
0型(富士捏加機製)に投入し、10分間乾粉混合を行
なった。その後純水2−25権を1分間で添加後50分
間混練した。ニーダ−から取り出した混練物は粉状で混
線粗造粒塊の存在は認められなかった。この混練物を実
施例1と同様に造粒、乾燥、焼成を行ない、ペレットの
機械的強度を測定した結果、平均値は5.5に9であっ
た。なお造粒時にはダイス全面からペレットが押出され
ず、目詰まり穴があり、またペレットの表面がササフレ
しているものが目立った。
[Comparative Example 1] The same amounts of zeolite, acid clay, and carboxymethyl cellulose as in Example 1 were weighed, and kneader-FM-NW-2 was prepared.
The mixture was placed in a Model 0 (manufactured by Fuji Kikaki) and mixed for 10 minutes. Thereafter, 2-25% pure water was added over 1 minute, and the mixture was kneaded for 50 minutes. The kneaded material taken out from the kneader was in powder form and no cross-wire coarse granule agglomerates were observed. This kneaded product was granulated, dried, and fired in the same manner as in Example 1, and the mechanical strength of the pellets was measured, and the average value was 5.5 to 9. During granulation, the pellets were not extruded from the entire surface of the die, and there were some clogged holes and rough edges on the surface of the pellets.

〔実施例2〕 合成モルデナイト粉末有姿11.21c9(無水として
10kg)酸性白土粉末有姿2.94に9及びカルボキ
シルメチルセルローズ1009を各々秤量シ、ヘンシェ
ルミキサーで周速2 El 2 m / secで10
分間乾粉混合を実施後、純水&25に9を周速I CL
 7 m / sec下で30秒間にわたって添加し、
回転数を2z3m/8θCの周速に上げ10分後に粗造
粒塊発生の兆候が認められたが、更に10分間旋回を続
けた。ヘンシェルミキサーから取り出した混練粗造粒塊
の粒径分布を測定した結果、10騙以下12チ、10〜
20嘔75チ、20臨以上13チであった。この混線粗
造粒塊をダイス穴径1.5 rns 、ダイス厚さ4+
+mのダイスを取り付けた押出造粒機で造粒、以下実施
例1と同様の後処理をしたペレットの機械的強度は平均
2.5 kgであった。なお造粒状態はスムーズで、ペ
レットの形状も良好であった。
[Example 2] Synthetic mordenite powder form 11.21c9 (10 kg as anhydrous), acid clay powder form 2.94 and carboxyl methyl cellulose 1009 were each weighed and mixed in a Henschel mixer at a circumferential speed of 2 El 2 m/sec. 10
After mixing dry powder for a minute, add pure water & 25 to 9 at peripheral speed I CL
added over 30 seconds under 7 m/sec,
After 10 minutes of increasing the rotational speed to a circumferential speed of 2z3m/8θC, signs of coarse granulation agglomeration were observed, but the rotation was continued for another 10 minutes. As a result of measuring the particle size distribution of the kneaded coarse granulated mass taken out from the Henschel mixer, it was found that the particle size distribution was 10 cm or less, 12 cm or less, 10 ~
The score was 75 cm for 20 yen, and 13 cm for 20 yen. This mixed wire coarse granulation mass was formed into a die with a hole diameter of 1.5 rns and a die thickness of 4+.
The mechanical strength of the pellets, which were granulated using an extrusion granulator equipped with a +m die and subsequently subjected to the same post-treatment as in Example 1, was 2.5 kg on average. The granulation state was smooth and the shape of the pellets was good.

〔比較例2〕 実施例2と乾粉混合までを同様に実施後純水&59kg
を同様の周速、添加時間で添加し、混線を実施したが、
10分後には粗造粒塊が大きく成長したためヘンシェル
ミキサーより取り出し粒度分布を測定した。その結果、
すべて50〜100謁の範囲の団子状の固まりであった
。これを実施例2と同じ条件の押出造粒を行なったが、
粗造粒塊の粒径が大きい為、押出機スクリューへの噛み
込みが悪く、又押出後のペレットは相互付着が激しく、
形状は不均一であった。なお成形品の機械的強度は平均
1.5 kgであった。
[Comparative Example 2] After carrying out the same procedure as in Example 2 up to dry powder mixing, pure water & 59 kg
were added at the same circumferential speed and addition time, and crosstalk was performed.
After 10 minutes, the coarse granulated mass had grown large, so it was taken out from the Henschel mixer and its particle size distribution was measured. the result,
All of them were dumpling-shaped masses ranging from 50 to 100 people. This was subjected to extrusion granulation under the same conditions as in Example 2, but
Because the particle size of the coarse granulated mass is large, it is difficult to get caught in the extruder screw, and the pellets adhere to each other strongly after extrusion.
The shape was non-uniform. The mechanical strength of the molded products was 1.5 kg on average.

〔実施例3〕 合成モルデナイト粉末有姿12.5PC9(無水として
10kg)、木節粘土粉末有姿xoICg及びカルボキ
シメチルセルローズ2oo9を各々秤量しヘンシェルミ
キサーで周速20.2 m / sθCで5分間乾粉混
合を実施後、結晶性セルローズの5チ溶液を4に9添加
し、5分間混練した。混線粗造粒塊の発生が認められな
いので更に純水5609添加し、5分間混線を続けた。
[Example 3] Synthetic mordenite powder form 12.5PC9 (10 kg as anhydrous), Kibushi clay powder form xoICg, and carboxymethyl cellulose 2oo9 were each weighed and dried in a Henschel mixer at a circumferential speed of 20.2 m/sθC for 5 minutes. After mixing, a 4 to 9 solution of crystalline cellulose was added and kneaded for 5 minutes. Since generation of coarsely granulated lumps was not observed, further 5609 g of pure water was added, and mixing was continued for 5 minutes.

ヘンシェルミキサーより取り出した混練粗造粒塊の粒径
分布は10〜20關65 %、  20〜30mm55
 %であった。これを3醸穴径ダイスで造粒を行ない実
施例1と同様の後処理をしたペレットの機械的強度の平
均値は49句であった。なお、造粒はスムーズで形状も
良好であった。
The particle size distribution of the kneaded coarse granulated mass taken out from the Henschel mixer was 10-20mm 65%, 20-30mm55
%Met. The pellets were granulated using a 3-hole diameter die and subjected to the same post-treatment as in Example 1. The average mechanical strength of the pellets was 49. Note that the granulation was smooth and had a good shape.

〔比較例3〕 実施例3と同様に結晶性セルローズ5チ溶液までの添加
を実施後純水800り添加し、5分間混線ヲした。ヘン
シェルミキサーから取り出した混練粗造粒塊の粒径はす
べて40〜60mmの団子状固まりであり、造粒後のペ
レットは相互付着し、機械的強度は平均4JC9であっ
た。
[Comparative Example 3] In the same manner as in Example 3, after adding up to 50% of the crystalline cellulose solution, 800 g of pure water was added and mixed for 5 minutes. All of the kneaded coarse granulated lumps taken out from the Henschel mixer had a particle size of 40 to 60 mm in the form of lumps, the pellets after granulation adhered to each other, and the average mechanical strength was 4JC9.

特許出願人  東洋曹達工業株式会社 手続ネ…正書(方入) 昭和60年5月16日Patent applicant: Toyo Soda Kogyo Co., Ltd. Procedure Ne…Authentic book (formal entry) May 16, 1985

Claims (1)

【特許請求の範囲】[Claims] (1)ゼオライトとバインダーとの混合物から形成され
たゼオライト成形品を造粒するに際し、ゼオライトとバ
インダー及び造粒助剤との混合物の混練粗造粒塊の粒径
を1〜50mmに調整し、これを押出造粒することを特
徴としたゼオライトの成形方法。
(1) When granulating a zeolite molded product formed from a mixture of zeolite and a binder, the particle size of the kneaded coarse granulated mass of the mixture of zeolite, binder, and granulation aid is adjusted to 1 to 50 mm, A method for forming zeolite characterized by extrusion granulation.
JP27401684A 1984-12-27 1984-12-27 Molding method of zeolite Granted JPS61155216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27401684A JPS61155216A (en) 1984-12-27 1984-12-27 Molding method of zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27401684A JPS61155216A (en) 1984-12-27 1984-12-27 Molding method of zeolite

Publications (2)

Publication Number Publication Date
JPS61155216A true JPS61155216A (en) 1986-07-14
JPH0544408B2 JPH0544408B2 (en) 1993-07-06

Family

ID=17535782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27401684A Granted JPS61155216A (en) 1984-12-27 1984-12-27 Molding method of zeolite

Country Status (1)

Country Link
JP (1) JPS61155216A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128523A (en) * 1998-10-19 2000-05-09 Mitsubishi Chemicals Corp Method for forming zeolite
JP2001226167A (en) * 1999-12-07 2001-08-21 Tosoh Corp Zeolite formed bead, production process of the same and adsorption/removal process using the same
JP2003517420A (en) * 1999-12-13 2003-05-27 ジュート−ヒェミー アクチェンゲゼルシャフト Small plate press
US7135127B2 (en) 1999-12-13 2006-11-14 Süd-Chemie AG Laminated pressed articles
WO2008114771A1 (en) 2007-03-20 2008-09-25 Mitsui Chemicals, Inc. Process for conversion of hydrocarbons with molded zeolite catalyst
US7585430B2 (en) 2001-01-08 2009-09-08 Sud-Chemie Ag Plate-shaped pressed bodies
JP2010269312A (en) * 1999-12-07 2010-12-02 Tosoh Corp Zeolite bead molding, and adsorption and removal method using the same
JP2014237128A (en) * 2013-06-10 2014-12-18 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Adsorbent based on clay rich in zeolite and silica and method of purifying hydrocarbon feedstock containing unsaturated molecule
KR102393723B1 (en) * 2021-10-18 2022-05-04 주식회사 성광이엔텍 Method for manufacturing synthetic zeolite using spent catalyst generated in petrochemical process and adsorbent manufactured thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100461613B1 (en) * 1997-01-31 2005-06-20 다까사고네쯔가꾸고교가부시끼가이샤 Cleaner, Filter and Manufacturing Method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124539A (en) * 1982-01-19 1983-07-25 Toray Ind Inc Adsorbent for separating gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124539A (en) * 1982-01-19 1983-07-25 Toray Ind Inc Adsorbent for separating gas

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128523A (en) * 1998-10-19 2000-05-09 Mitsubishi Chemicals Corp Method for forming zeolite
JP2001226167A (en) * 1999-12-07 2001-08-21 Tosoh Corp Zeolite formed bead, production process of the same and adsorption/removal process using the same
JP2010269312A (en) * 1999-12-07 2010-12-02 Tosoh Corp Zeolite bead molding, and adsorption and removal method using the same
JP4660876B2 (en) * 1999-12-07 2011-03-30 東ソー株式会社 Method for producing zeolite bead compact
JP2003517420A (en) * 1999-12-13 2003-05-27 ジュート−ヒェミー アクチェンゲゼルシャフト Small plate press
US7135127B2 (en) 1999-12-13 2006-11-14 Süd-Chemie AG Laminated pressed articles
JP4814469B2 (en) * 1999-12-13 2011-11-16 ジュート−ヒェミー アクチェンゲゼルシャフト Small plate press
US7585430B2 (en) 2001-01-08 2009-09-08 Sud-Chemie Ag Plate-shaped pressed bodies
WO2008114771A1 (en) 2007-03-20 2008-09-25 Mitsui Chemicals, Inc. Process for conversion of hydrocarbons with molded zeolite catalyst
US8138386B2 (en) 2007-03-20 2012-03-20 Mitsui Chemicals, Inc. Method for converting hydrocarbons with zeolite shaped catalyst
JP2014237128A (en) * 2013-06-10 2014-12-18 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Adsorbent based on clay rich in zeolite and silica and method of purifying hydrocarbon feedstock containing unsaturated molecule
KR102393723B1 (en) * 2021-10-18 2022-05-04 주식회사 성광이엔텍 Method for manufacturing synthetic zeolite using spent catalyst generated in petrochemical process and adsorbent manufactured thereby

Also Published As

Publication number Publication date
JPH0544408B2 (en) 1993-07-06

Similar Documents

Publication Publication Date Title
US4818508A (en) Process for preparing molecular sieve bodies
EP0706824B1 (en) Low expansion molecular sieves and method of making same
CN101189187B (en) Mesostructured materials with high aluminum content
RU2565599C2 (en) Binder-free molecular sieve-based catalyst and method for production thereof
US6099820A (en) Method for making MTT zeolites without an organic template
JPS61155216A (en) Molding method of zeolite
CZ294449B6 (en) Process for preparing zeolite-bearing material containing at least 95 percent of LSX zeolite and so obtained zeolite-bearing material
US5521133A (en) Phosphorus bound porous microspheres
CN102861551B (en) Bax type zeolite granule and process for preparing the same
EA028588B1 (en) Spherical agglomerates based on zeolites, process for their production and their use in adsorption processes or in catalysis
JPS6126509A (en) Extrusion molding method of solid abounding in silica
TWI674924B (en) Zeolite adsorbents with a low content of binder and high outer surface area, process for preparing the same and uses thereof
WO2000026154A2 (en) Binder systems derived from amorphous silica and bases
CN107115550A (en) Air purifying preparation
JP2000515844A (en) Production of zeolites
JP4361689B2 (en) Production of zeolite
JPH0674136B2 (en) Zeolite compact and manufacturing method thereof
US5132260A (en) Zeolite granules with zeolitic binder
JP2001525781A (en) Production of Y-type faujasite using organic template
DE2025893B2 (en) Glass fiber reinforced zeolite granules
US4081514A (en) Process for producing fluidized mordenite particles
US3384602A (en) Bonded molecular sieve catalysts and preparation of the same
US6680271B1 (en) Solid zeolite granulates having improved abrasion resistance, and methods of making them
CN104211084B (en) A kind of preparation method of monoblock type high silica alumina ratio NaY molecular sieve
JPH0542368B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees