JPH0544408B2 - - Google Patents

Info

Publication number
JPH0544408B2
JPH0544408B2 JP59274016A JP27401684A JPH0544408B2 JP H0544408 B2 JPH0544408 B2 JP H0544408B2 JP 59274016 A JP59274016 A JP 59274016A JP 27401684 A JP27401684 A JP 27401684A JP H0544408 B2 JPH0544408 B2 JP H0544408B2
Authority
JP
Japan
Prior art keywords
granulation
zeolite
kneaded
water
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59274016A
Other languages
Japanese (ja)
Other versions
JPS61155216A (en
Inventor
Seiichi Asano
Yoichi Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP27401684A priority Critical patent/JPS61155216A/en
Publication of JPS61155216A publication Critical patent/JPS61155216A/en
Publication of JPH0544408B2 publication Critical patent/JPH0544408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】 本発明はゼオライト成形品の製法に関し、より
詳細には造粒工程の安定した操業管理及び安定し
た品質管理を可能にした高強度、耐摩耗性、ゼオ
ライト成形品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing zeolite molded products, and more specifically, to a method for producing zeolite molded products with high strength and wear resistance that enable stable operation management of the granulation process and stable quality control. Regarding the method.

<産業上の利用分野> ゼオライトは、その優れた吸着特性、イオン交
換特性、触媒特性等の機能を応用され、乾燥、精
製、分離、イオン交換、触媒及び触媒担体など数
多くの用途が開発され、石油精製、化学及び石油
化学工業、ガス精製業、天然ガス工業、電気工
業、塗料工業、その他複層ガラス用、分析用等で
利用されている。
<Industrial Application Fields> Zeolite has been developed for many uses such as drying, purification, separation, ion exchange, catalysts and catalyst carriers due to its excellent adsorption properties, ion exchange properties, catalytic properties, etc. It is used in petroleum refining, chemical and petrochemical industry, gas refining industry, natural gas industry, electrical industry, paint industry, and other industries such as double glazing and analysis.

ここでゼオライトとは、天然に産する天然ゼオ
ライト及び合成により製造される合成ゼオライト
があり、一般式 M2/oO・Al2O3・xSiO2・yH2O (式中Mはアルカリ金属またはアルカリ土金属
で、nはそれらの原子価である) で表わされる組成を持つ結晶性アルミノシリケー
トある。
Here, zeolite includes naturally occurring natural zeolite and synthetic zeolite produced by synthesis, and has the general formula M 2/o O・Al 2 O 3・xSiO 2・yH 2 O (where M is an alkali metal or It is a crystalline aluminosilicate with a composition of alkaline earth metals, where n is their valence.

本発明におけるゼオライトは天然ゼオライト及
び合成ゼオライトのいずれをも特定するものでは
ない。また、ゼオライトに含まれるカチオンは容
易に他のカチオンにイオン交換できるが、本発明
でのゼオライトはこのカチオンを特定するもので
はない。
The zeolite in the present invention does not specify either natural zeolite or synthetic zeolite. Furthermore, although the cations contained in zeolite can be easily ion-exchanged into other cations, the zeolite used in the present invention does not specify this cation.

ゼオライトのなかでも合成ゼオライトはそれ自
体は0.1〜50μの範囲の微細な結晶又は結晶の凝集
体で、しかも結着性の無い粉末である。これを工
業的に利用する為には使用目的に適した何らかの
成形品とする必要がある。成形品の形状として、
一般的には柱状(ペレツト)、球状(ビーズ)、顆
粒、細粒で、その他特殊用途用としてハニカム
状、管状、板状、コア等の形状のものがある。
Among zeolites, synthetic zeolites themselves are fine crystals or aggregates of crystals in the range of 0.1 to 50 microns, and are non-binding powders. In order to use this product industrially, it is necessary to make it into some kind of molded product suitable for the purpose of use. As the shape of the molded product,
Generally, they are columnar (pellet), spherical (bead), granule, or fine granule, and for special purposes, there are also honeycomb, tube, plate, core, and other shapes.

<従来の技術> ゼオライトを造粒する為には、一般的にバイン
ダーがゼオライト無水重量100部に対して10〜30
部添加される。バインダーとしては、カオリン、
アタパルガイト、モンモリロナイト、ベントナイ
ト、アロフエン、セピオライト等の粘土が単独ま
たは2種以上組み合わせで使用される。粘土以外
のバインダーとして、アルミナ、シリカ等も単独
または粘土をも含めた組み合わせで使用されてい
る。また、バインダー以外に造粒助剤として各種
の有機系、無機系添加剤がゼオライト無水重量
100部に対し0.01〜5部の範囲で単独あるいは組
み合わせで用いられることが多い。造粒助剤の例
としてメチルセルローズ、カルボキシメチルセル
ローズ、ポリビニルアルコール、結晶性セルロー
ズ、リグニン、ステアリン酸、澱粉、アラビアゴ
ム、珪酸ソーダ、ポリリン酸ソーダ等がある。
<Prior art> In order to granulate zeolite, the binder is generally used in an amount of 10 to 30 parts per 100 parts of the dry weight of the zeolite.
part is added. As a binder, kaolin,
Clays such as attapulgite, montmorillonite, bentonite, allofen, and sepiolite are used alone or in combination of two or more. As binders other than clay, alumina, silica, etc. are also used alone or in combination with clay. In addition to the binder, various organic and inorganic additives are used as granulation aids for zeolite dry weight.
They are often used alone or in combination in a range of 0.01 to 5 parts per 100 parts. Examples of granulation aids include methyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, crystalline cellulose, lignin, stearic acid, starch, gum arabic, sodium silicate, and sodium polyphosphate.

ゼオライトの造粒方法としては、例えば転動造
粒、押出造粒、噴霧造粒、流動造粒、圧縮造粒等
の方式があるが、本発明は押出造粒に関するもの
である。押出造粒によりゼオライト成形品を製造
する場合、あらかじめゼオライト粉末とバインダ
ー及び造粒助剤の粉末とをリボンブレンダー、コ
ニカルブレンダー等の公知の混合機を用いて乾粉
混合し、ニーダー等の公知の混練機を用いて加
液、加水後混練した後押出造粒するのが一般的で
ある。造粒助剤はあらかじめ水溶液として添加す
ることもある。
Zeolite granulation methods include, for example, rolling granulation, extrusion granulation, spray granulation, fluidized granulation, and compression granulation, and the present invention relates to extrusion granulation. When producing a zeolite molded product by extrusion granulation, zeolite powder and binder and granulation aid powder are dry-mixed in advance using a known mixer such as a ribbon blender or conical blender, and then kneaded using a known kneader or other kneader. It is common to add liquid using a machine, add water, knead, and then extrude and granulate. The granulation aid may be added in advance as an aqueous solution.

<発明が解決しようとする問題点> ゼオライト成形品の製品特性として具備しなけ
ればならないいくつかの項目の中で、機械的強
度、耐摩耗性及び形状の均一性があげられる。押
出造粒によりゼオライトを成形する場合これらの
製品特性に影響を及ぼす支配因子としては非常に
数多く、またそれらの支配因子が各々相乗的に影
響をもたらすので造粒メカニズム等を体系的に解
明されていないのが現状である。ゼオライトを造
粒する上で考えられる支配因子としては大きく分
けて(1)原材料、(2)前工程、(3)造粒工程がある。
<Problems to be Solved by the Invention> Among the several characteristics that a zeolite molded product must have, mechanical strength, abrasion resistance, and shape uniformity are mentioned. When molding zeolite by extrusion granulation, there are a very large number of governing factors that affect these product properties, and since each of these governing factors has a synergistic effect, the granulation mechanism has not been systematically elucidated. The current situation is that there is no such thing. The governing factors that can be considered in granulating zeolite can be broadly divided into (1) raw materials, (2) pre-processes, and (3) granulation steps.

まず原材料で考えた場合粒子形状、物性、粒度
分布、含有水分、温度、バインダーの種類及びそ
の添加割合等がある。粒子形状は、ゼオライトの
種類やその合成方法によつても異なり、バインダ
ーとして用いる粘土はその種類により異なる。物
性としてはゼオライトは一般的にダイラタンシー
性を有し、粘土はチクソトロピー性を示す。また
ゼオライトの種類、バインダー用粘土の種類によ
りその粉体特性は千差万別である。含有水分は、
ゼオライト粉末の乾燥度合により、またゼオライ
トの種類により、付着水量及び結晶水量が異な
る。また粘土についても、結晶水、層間水、付着
水があり、粘土の種類、乾燥程度、保存雰囲気等
で変化する。
First, when considering raw materials, there are particle shape, physical properties, particle size distribution, moisture content, temperature, type of binder and its addition ratio, etc. The particle shape also differs depending on the type of zeolite and its synthesis method, and the clay used as a binder differs depending on the type. In terms of physical properties, zeolites generally have dilatancy, and clays exhibit thixotropy. Furthermore, the powder characteristics vary widely depending on the type of zeolite and the type of binder clay. The moisture content is
The amount of adhered water and the amount of crystallized water differ depending on the degree of dryness of the zeolite powder and the type of zeolite. Clay also has crystallized water, interlayer water, and attached water, which vary depending on the type of clay, degree of dryness, storage atmosphere, etc.

次に前工程については、乾粉混合時間、加液・
加水時間及びその添加方法、可塑性の有無、練加
機型式、練加時間、温度等が代表的な支配因子で
ある。造粒工程における支配因子としては、造粒
形状、造粒硬軟、付着、ダイス又はスクリーンの
開口比及びその厚さ、押出速度、スクリユー型式
等がある。
Next, regarding the pre-process, dry powder mixing time, liquid addition and
Typical controlling factors include water addition time and its addition method, presence or absence of plasticity, kneading machine type, kneading time, temperature, etc. Controlling factors in the granulation process include granulation shape, granulation hardness and softness, adhesion, aperture ratio of a die or screen and its thickness, extrusion speed, screw type, etc.

これらの数多い支配因子の中で、使用装置及び
ゼオライト、バインダー、造粒助剤の組み合わせ
を特定した場合、造粒性に最も支配する因子は加
液・加水量である。すなわち総合的な水分管理が
最大の問題である。前記した様に、ゼオライトに
は結晶水が含まれており、ゼオライト粉末の乾燥
条件によつて結晶水量の多少及び付着水の有無が
ある。一方バインダーに使用する粘土についても
結晶水、層間水、付着水の各々が変化する。また
乾粉混合、練加、造粒の各工程では必ず発熱現象
があり、その工程雰囲気の温度、湿度により蒸発
水分量が変化することになる。この様なことか
ら、造粒における総合的な水分管理が難しく、従
来は練加後の水分量をその都度測定し、最適条件
に調整し直す方法で管理されていた。
Among these many controlling factors, when the equipment used and the combination of zeolite, binder, and granulation aid are specified, the factor that most controls the granulation property is the amount of liquid and water added. In other words, comprehensive moisture management is the biggest problem. As mentioned above, zeolite contains water of crystallization, and depending on the drying conditions of the zeolite powder, the amount of crystallized water and the presence or absence of attached water may vary. On the other hand, the crystallization water, interlayer water, and adhesion water of the clay used for the binder also change. In addition, heat generation occurs in each process of dry powder mixing, kneading, and granulation, and the amount of evaporated water changes depending on the temperature and humidity of the process atmosphere. For these reasons, comprehensive moisture control during granulation is difficult, and conventionally the moisture content after kneading has been measured and readjusted to the optimum conditions.

水分管理が必要である理由を具体的に述べる
と、練加後の水分が結果的に最適水分量より低い
場合には押出造粒機にかかる負荷量が増大し、ダ
イス又はスクリーン部での発熱が増加し、造粒の
安定性はなく、成形品の形状はササクレやヒビ割
れとなる。一方練加後の水分が結果的に最適水分
量より高い場合には、押出造粒後に成形品は相互
付着し均一な形状は保たれないし、成形品の機械
的強度も低下する。この最適水分量に対する許容
幅は極めて低く±0.5%で、この範囲外の水分量
の練加品を押出造粒した場合前述した操業の不安
定及び製品特性が低下する。この様なことから、
造粒における工程管理の上で、この水分管理には
細心の注意を払い、膨大な労力を費していた。
Specifically speaking, the reason why moisture management is necessary is that if the moisture content after kneading is lower than the optimum moisture content, the load on the extrusion granulator will increase, causing heat generation in the die or screen section. increases, the granulation becomes unstable, and the shape of the molded product becomes uneven or cracked. On the other hand, if the water content after kneading is higher than the optimum water content, the molded products will adhere to each other after extrusion granulation, and a uniform shape will not be maintained, and the mechanical strength of the molded product will also decrease. The tolerance range for this optimum water content is extremely low, ±0.5%, and if a kneaded product with a water content outside this range is extruded and granulated, the aforementioned operational instability and product properties will deteriorate. Because of this,
In terms of process control during granulation, careful attention was paid to moisture control and a huge amount of effort was expended.

本発明はこの水分管理に関して常に最適値にコ
ントロールする方法について鋭意検討した結果、
前工程において混練粗造粒塊をえ(従来法では、
前工程で粒状物をうる方法を採らない)、その粒
塊の粒度をコントロールすることにより常に最適
条件下で造粒が行なえることを見い出し、造粒の
安定性、成形品の品質の安定性加えて機械的強度
の高い成形品の製造方法を提供するにいたつた。
The present invention was developed as a result of intensive studies on how to constantly control the moisture content to the optimum value.
In the previous process, the coarsely granulated mass is kneaded (in the conventional method,
We discovered that by controlling the particle size of the agglomerates, granulation can always be carried out under optimal conditions, resulting in stable granulation and stable quality of molded products. In addition, we have now provided a method for manufacturing molded products with high mechanical strength.

<問題点を解決する為の手段> 本発明は、ゼオライト、バインダー及び造粒助
剤の一部又は全部を混合機で乾粉混合し、その混
合粉を同一機内又は別の機内で旋回運動下で加水
し又は造粒助剤の一部もしくは全部を溶解もしく
は分散した溶液を加液し、ゼオライト、バインダ
ー、造粒助剤及び水から成る混練粗造粒塊の粒径
が1〜50mmの範囲望ましくは1〜30mmの範囲とな
る様調整し、この混練粗造粒塊を押出造粒するこ
とを特徴とする。
<Means for Solving the Problems> The present invention involves dry powder mixing of some or all of the zeolite, binder, and granulation aid in a mixer, and the mixed powder being rotated in the same machine or in a separate machine. By adding water or adding a solution in which part or all of the granulation aid is dissolved or dispersed, the particle size of the kneaded coarse granulated mass consisting of zeolite, binder, granulation aid and water is preferably in the range of 1 to 50 mm. is adjusted to have a diameter in the range of 1 to 30 mm, and the kneaded coarsely granulated mass is extruded and granulated.

ゼオライト成形品を製造する練加工程では、ゼ
オライト、バインダー及び造粒助剤の各々の固体
と主に水及び一部造粒助剤溶液の液体と主に空気
の気体との三相が何らかの充填様式をもつて形成
される。押出造粒を安定的に行なわせる為の理想
的な湿潤粉体すなわち混練塊の充填様式は固体、
液体、気体の三相形成が固体相は連続、液体相は
連続、気体相は無い状態である。すなわち固体相
表面及び固体間空隙を充満するに足る液体のみが
存在し、気体が存在する空隙の無い状態が理想的
で、この状態での混練塊を造粒した場合、成形品
の機械的強度は高く、且つ耐摩耗性に富む。この
理想状態の混練塊を作る為には、旋回運動下で粉
体を凝集付着させる力を加え、且つ空隙を充填す
るに足る液体を加えてやれば良い。ここで空隙を
充填するに足る液体量の目安としては、混練塊が
球形化し、その粒径が1〜50mmの範囲望ましくは
1〜30mmの範囲に粗造粒された状態である。例え
ば混練後に1mm未満のいわゆる粉状での混練粉を
押出造粒した場合、水分不足の兆候すなわち、造
粒機のスクリーン又はダイス部での発熱が増加
し、造粒の安定性はなく、成形品形状としてササ
クレ又はワレが目立つ。一方混練後に50mmより大
きい混練粗造粒塊となつた場合、これを押出造粒
すると、水分過多の兆候すなわち成形品は相互付
着し、その機械的強度も低下する。
In the kneading process for producing zeolite molded products, the three phases of the solid zeolite, binder, and granulation aid, the liquid (mainly water and a part of the granulation aid solution), and the gas (mainly air) are filled in some way. Formed with style. In order to stably perform extrusion granulation, the ideal packing method for wet powder or kneaded mass is solid,
The solid phase is continuous, the liquid phase is continuous, and the gas phase is absent. In other words, the ideal state is that there is only enough liquid to fill the solid phase surface and the voids between the solids, and there are no voids where gas exists.If the kneaded mass is granulated in this state, the mechanical strength of the molded product will be is high and has high wear resistance. In order to create a kneaded mass in this ideal state, it is sufficient to apply a force to cause the powder to coagulate and adhere under swirling motion, and to add enough liquid to fill the voids. Here, as a guideline for the amount of liquid sufficient to fill the voids, the kneaded mass is spherical and coarsely granulated to have a particle size in the range of 1 to 50 mm, preferably in the range of 1 to 30 mm. For example, when extrusion granulation is performed on kneaded powder in the form of powder less than 1 mm after kneading, there are signs of moisture deficiency, i.e. heat generation increases in the screen or die part of the granulator, the granulation becomes unstable, and molding The shape of the product has noticeable cracks or cracks. On the other hand, if a kneaded coarse granulated mass larger than 50 mm is obtained after kneading, extrusion granulation will show signs of excessive water content, that is, the molded products will adhere to each other, and their mechanical strength will also decrease.

混練粗造粒塊の大きさは、旋回時間、旋回速度
にも起因するが、加水量又は加液量により最も変
化する割合が大きい。バインダー及び造粒助剤は
ゼオライトを含めた全成分を凝集し易い様な組み
合わせを選定しており、混練における凝集最小単
位は水分存在下で相互付着し、雪だるま式に成長
する。この状態での水分の過多が混練粗造粒塊の
大きさを支配し、凝集最小単位内に浸透する程度
の水分量が適正値で、それ以上の加水を行なつた
場合水分は凝集表面に停滞し、相互間付着を助長
し、混練粗造粒塊の大きさを急速に大きくしてし
まう。
Although the size of the kneaded coarse granulated mass depends on the swirling time and the swirling speed, it changes the most depending on the amount of water added or the amount of liquid added. The binder and granulation aid are selected in a combination that facilitates agglomeration of all components including zeolite, and the minimum agglomeration units during kneading adhere to each other in the presence of moisture and grow in a snowballing manner. Excess moisture in this state controls the size of the kneaded coarse granules, and the appropriate amount of moisture is enough to penetrate into the minimum unit of agglomeration. They stagnate, promote mutual adhesion, and rapidly increase the size of the kneaded coarse granules.

以上のことから、造粒に最適な水分をもたらす
為には前工程での粗造粒塊の大きさを1〜50mmの
範囲、望ましくは1〜30mmの範囲となる様加水又
は加液すればよいことが分かる。
From the above, in order to bring the optimum moisture for granulation, it is necessary to add water or liquid so that the size of the coarse granulated mass in the previous step is in the range of 1 to 50 mm, preferably in the range of 1 to 30 mm. I know it's good.

本発明による押出造粒法はその前工程における
ゼオライト、バインダー、造粒助剤との混合物の
混練において、混練粗造粒塊の粒径が1〜50mm、
さらに望ましくは1〜30mmの範囲になる様加水又
は加液する方法である。上記範囲の混練粗造粒塊
を押出造粒すれば、造粒工程の操業は常に安定
し、加えて成形製品の形状は均一化し、機械的強
度が高められ、また耐摩耗性も高くなる。さらに
混練途中又は混練後に水分の測定を行なう必要が
無くなり工程管理は非常に簡略化できる。
In the extrusion granulation method according to the present invention, in the previous step of kneading the mixture with zeolite, binder, and granulation aid, the particle size of the kneaded coarse granulated mass is 1 to 50 mm,
More desirably, it is a method of adding water or liquid so that the thickness is in the range of 1 to 30 mm. If the kneaded coarse granulated mass in the above range is extruded and granulated, the operation of the granulation process will always be stable, and in addition, the shape of the molded product will be uniform, mechanical strength will be increased, and wear resistance will also be increased. Furthermore, there is no need to measure moisture during or after kneading, and process control can be greatly simplified.

また、前工程に使用する混練機としては、従来
使用されているニーダー等は粒状物がえられない
ので不適当であり、ヘンシエルミキサー等造粒機
能をもつ混合撹拌機が適している。
Furthermore, as a kneader used in the pre-process, conventionally used kneaders and the like are unsuitable because they cannot produce granular materials, and a mixing agitator with a granulation function such as a Henschel mixer is suitable.

<発明の効果> 以上の説明から明らかな様に、本発明によれば (1) ゼオライト成形品の形状が常に均一化でき
る。
<Effects of the Invention> As is clear from the above description, according to the present invention (1) the shape of the zeolite molded product can always be made uniform.

(2) ゼオライト成形品の機械的強度及び耐摩耗性
を高めることができる。
(2) Mechanical strength and wear resistance of zeolite molded products can be increased.

(3) ゼオライト成形品の造粒工程が常に安定化
し、操業管理が容易となる。
(3) The granulation process of zeolite molded products is always stabilized, making operational management easier.

(4) ゼオライト成形品の造粒前工程における水分
調整が容易となり、水分測定等の工程管理が省
ける。
(4) Moisture adjustment in the pre-granulation process of zeolite molded products becomes easy, and process control such as moisture measurement can be omitted.

<実施例> 以下実施例により本発明の具体的説明をする。
なお本発明は、実施例に記載するゼオライト、バ
インダー、造粒助剤及び使用装置に特定するもの
ではない。
<Examples> The present invention will be specifically explained below using Examples.
Note that the present invention is not limited to the zeolite, binder, granulation aid, and equipment used in the Examples.

実施例 1 4A型ゼオライト粉末有姿5Kg(無水として
4.14Kg)酸性白土粉末有姿1.22Kg及びカルボキシ
ルメチルセルローズ粉末40gを各々秤量し、竪型
混合撹拌機ヘンシエルミキサーFM75C型(三井
三池製作所製)に投入し、周速20.2m/secで10
分間乾粉混合を行なつた。その後純水2.25Kgを周
速10.7m/secの旋回条件下で30秒間で添加後、
回転数を周速20.2m/secに上げ、5分間混練を
続けた。ヘンシエルミキサーから取り出した混練
粗造粒塊の粒径分布を測定した結果、1〜10mm5
%、10〜20mm8%、20〜30mm85%、30〜40mm2%
であつた。この混練粗造粒塊を押出造粒機EXDF
−100型(不二パウダル製)で造粒した。取付ダ
イスは穴径3mm、ダイス厚さ10mmである。造粒は
非常にスムーズで形状の良いペレツトが得られ
た。これを熱風温度120℃の流動層式乾燥機で30
分間乾燥後、静置式電気焼成炉で550℃、2時間
焼成した。焼成ペレツトの機械的強度を木屋式硬
度計で20点測定しその平均値は9.2Kgであつた。
Example 1 5 kg of 4A type zeolite powder (as anhydrous)
4.14Kg) Weighed 1.22Kg of acidic clay powder and 40g of carboxyl methyl cellulose powder, put them into a vertical mixer Henschel mixer FM75C (manufactured by Mitsui Miike Seisakusho), and mixed them at a circumferential speed of 20.2 m/sec for 10 minutes.
Dry powder mixing was performed for minutes. After that, after adding 2.25 kg of pure water for 30 seconds under rotating conditions at a circumferential speed of 10.7 m/sec,
The rotation speed was increased to a circumferential speed of 20.2 m/sec, and kneading was continued for 5 minutes. As a result of measuring the particle size distribution of the kneaded coarse granulated mass taken out from the Henschel mixer, it was found that it was 1 to 10 mm5.
%, 10~20mm8%, 20~30mm85%, 30~40mm2%
It was hot. This kneaded coarse granulated mass is extruded into a granulator EXDF.
-100 type (manufactured by Fuji Paudal). The mounting die has a hole diameter of 3 mm and a die thickness of 10 mm. Granulation was very smooth and well-shaped pellets were obtained. This is dried in a fluidized bed dryer with a hot air temperature of 120℃ for 30 minutes.
After drying for a minute, it was fired at 550°C for 2 hours in a static electric firing furnace. The mechanical strength of the fired pellets was measured at 20 points using a Kiya type hardness tester, and the average value was 9.2 kg.

比較例 1 実施例1と同様のゼオライト、酸性白土、カル
ボキシメチルセルローズを同量秤量し、ニーダー
FM−NW−20型(富士〓加機製)に投入し、10
分間乾粉混合を行なつた。その後純水2.25Kgを1
分間で添加後30分間混練した。ニーダーから取り
出した混練物は粒径1mm以下の粉状で混練粗造粒
塊の存在は認められなかつた。この混練物を実施
例1と同様に造粒、乾燥、焼成を行ない、ペレツ
トの機械的強度を測定した結果、平均値は5.5Kg
であつた。なお造粒時にはダイス全面からペレツ
トが押出されず、目詰まり穴があり、またペレツ
トの表面がササクレしているものが目立つた。
Comparative Example 1 The same amounts of zeolite, acid clay, and carboxymethyl cellulose as in Example 1 were weighed, and the same amounts were weighed in a kneader.
Pour into FM-NW-20 type (manufactured by Fuji Kaki) and
Dry powder mixing was performed for minutes. Then add 2.25Kg of pure water to 1
After addition, the mixture was kneaded for 30 minutes. The kneaded material taken out from the kneader was in the form of powder with a particle size of 1 mm or less, and no coarsely kneaded granules were observed. This kneaded material was granulated, dried, and fired in the same manner as in Example 1, and the mechanical strength of the pellets was measured, and the average value was 5.5 kg.
It was hot. During granulation, the pellets were not extruded from the entire surface of the die, resulting in clogged holes and cracked pellet surfaces.

実施例 2 合成モルデナイト粉末有姿11.2Kg(無水として
10Kg)酸性白土粉末有姿2.94Kg及びカルボキシル
メチルセルローズ100gを各々秤量し、ヘンシエ
ルミキサーで周速20.2m/secで10分間乾粉混合
を実施後、純水6.25Kgを周速10.7m/sec下で30秒
間にわたつて添加し、回転数を27.3m/secの周
即に上げ10分後に粗造粒塊発生の兆候が認められ
たが、更に10分間旋回を続けた。ヘンシエルミキ
サーから取り出した混練粗造粒塊の粒径分布を測
定した結果、1〜10mm12%、10〜20mm75%、20〜
30mm10%、30〜50mm3%であつた。この混練粗造
粒塊をダイス穴径1.5mm、ダイス厚さ4mmのダイ
スを取り付けた押出造粒機で造粒、以下実施例1
と同様の後処理をしたペレツトの機械的強度は平
均2.5Kgであつた。なお造粒状態はスムーズで、
ペレツトの形状も良好であつた。
Example 2 Synthetic mordenite powder 11.2Kg (as anhydrous)
10Kg) Weigh 2.94Kg of acidic clay powder and 100g of carboxymethyl cellulose, and mix the dry powders with a Henschel mixer at a circumferential speed of 20.2m/sec for 10 minutes, then add 6.25Kg of pure water at a circumferential speed of 10.7m/sec. The rotation speed was immediately increased to 27.3 m/sec, and although signs of coarse granulation agglomeration were observed after 10 minutes, swirling was continued for an additional 10 minutes. As a result of measuring the particle size distribution of the kneaded coarse granulated mass taken out from the Henschel mixer, 1-10 mm 12%, 10-20 mm 75%, 20-20 mm
It was 10% for 30mm and 3% for 30-50mm. This kneaded coarse granulated mass was granulated using an extrusion granulator equipped with a die having a die hole diameter of 1.5 mm and a die thickness of 4 mm, as described in Example 1 below.
The average mechanical strength of the pellets after the same post-treatment was 2.5 kg. The granulation state is smooth,
The shape of the pellets was also good.

比較例 2 実施例2と乾粉混合までを同様に実施後純水
6.59Kgを同様の周速、添加時間で添加し、混練を
実施したが、10分後には粗造粒塊が大きく成長し
たためヘンシエルミキサーより取り出し粒度分布
を測定した。その結果、すべて50〜100mmの範囲
の団子状の固まりであつた。これを実施例2と同
じ条件の押出造粒を行なつたが、粗造粒塊の粒径
が大きい為、押出機スクリユーへの噛み込みが悪
く、又押出後のペレツトは相互付着が激しく、形
状は不均一であつた。なお成形品の機械的強度は
平均1.5Kgであつた。
Comparative example 2 After carrying out the same procedure as in Example 2 up to dry powder mixing, pure water was added.
6.59 kg was added at the same circumferential speed and addition time and kneaded, but after 10 minutes, the coarse granulated lumps had grown large, so they were taken out from the Henschel mixer and the particle size distribution was measured. As a result, all of the particles were in the form of dumplings with a size ranging from 50 to 100 mm. This was extruded and granulated under the same conditions as in Example 2, but because the coarse granulated mass had a large particle size, it was difficult to get caught in the extruder screw, and the pellets after extrusion adhered to each other severely. The shape was non-uniform. The mechanical strength of the molded products was 1.5 kg on average.

実施例 3 合成モルデナイト粉末有姿12.5Kg(無水として
10Kg)、木節粘土粉末有姿3.0Kg及びカルボキシメ
チルセルローズ200gを各々秤量しヘンシエルミ
キサーで周速20.2m/secで5分間乾粉混合を実
施後、結晶性セルローズの5%溶液を4Kg添加
し、5分間混練した。混練粗造粒塊の発生が認め
られないので更に純水530g添加し、5分間混練
を続けた。ヘンシエルミキサーより取り出した混
練粗造粒塊の粒径分布は10〜20mm65%、20〜30mm
35%であつた。これを3mm穴径ダイスで造粒を行
ない実施例1と同様の後処理をしたペレツトの機
械的強度の平均値は6.9Kgであつた。なお、造粒
はスムーズで形状も良好であつた。
Example 3 Synthetic mordenite powder 12.5 kg (as anhydrous)
10Kg), 3.0Kg of Kibushi clay powder and 200g of carboxymethyl cellulose were each weighed, and after performing dry powder mixing for 5 minutes at a circumferential speed of 20.2m/sec using a Henschel mixer, 4Kg of a 5% solution of crystalline cellulose was added. , kneaded for 5 minutes. Since no coarse granulated lumps were observed during kneading, an additional 530 g of pure water was added and kneading was continued for 5 minutes. The particle size distribution of the kneaded coarse granulated mass taken out from the Henschel mixer is 10-20mm65%, 20-30mm
It was 35%. The pellets were granulated using a die with a hole diameter of 3 mm and subjected to the same post-treatment as in Example 1. The average mechanical strength of the pellets was 6.9 kg. Note that the granulation was smooth and had a good shape.

比較例 3 実施例3と同様に結晶性セルローズ5%溶液ま
での添加を実施後純水800g添加し、5分間混練
をした。ヘンシエルミキサーから取り出した混練
粗造粒塊の粒径は40〜50mm15%、50〜70mm85%の
団子状固まりであり、造粒後のペレツトは相互付
着し、機械的強度は平均4Kgであつた。
Comparative Example 3 After adding up to a 5% crystalline cellulose solution in the same manner as in Example 3, 800 g of pure water was added and kneaded for 5 minutes. The particle size of the kneaded coarse granulated mass taken out from the Henschel mixer was 40-50 mm (15%), 50-70 mm (85%), and the pellets after granulation adhered to each other and had an average mechanical strength of 4 kg. .

Claims (1)

【特許請求の範囲】[Claims] 1 ゼオライトとバインダーとの混合物から形成
されたゼオライト成形品を造粒するに際し、ゼオ
ライトとバインダー及び造粒助剤との混合物の混
練粗造粒塊の粒径を1〜50mmに調整し、これを押
出造粒することを特徴としたゼオライトの成形方
法。
1. When granulating a zeolite molded product formed from a mixture of zeolite and a binder, the particle size of the kneaded coarse granulated mass of the mixture of zeolite, binder, and granulation aid is adjusted to 1 to 50 mm; A method for forming zeolite characterized by extrusion granulation.
JP27401684A 1984-12-27 1984-12-27 Molding method of zeolite Granted JPS61155216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27401684A JPS61155216A (en) 1984-12-27 1984-12-27 Molding method of zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27401684A JPS61155216A (en) 1984-12-27 1984-12-27 Molding method of zeolite

Publications (2)

Publication Number Publication Date
JPS61155216A JPS61155216A (en) 1986-07-14
JPH0544408B2 true JPH0544408B2 (en) 1993-07-06

Family

ID=17535782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27401684A Granted JPS61155216A (en) 1984-12-27 1984-12-27 Molding method of zeolite

Country Status (1)

Country Link
JP (1) JPS61155216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033575A1 (en) * 1997-01-31 1998-08-06 Takasago Thermal Engineering Co., Ltd. Cleaning apparatus, filter and method of manufacturing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128523A (en) * 1998-10-19 2000-05-09 Mitsubishi Chemicals Corp Method for forming zeolite
JP5170187B2 (en) * 1999-12-07 2013-03-27 東ソー株式会社 Zeolite bead compact and adsorption removal method using the same
JP4660876B2 (en) * 1999-12-07 2011-03-30 東ソー株式会社 Method for producing zeolite bead compact
US7135127B2 (en) 1999-12-13 2006-11-14 Süd-Chemie AG Laminated pressed articles
DE19959957A1 (en) * 1999-12-13 2001-06-21 Sued Chemie Ag Platelet-shaped compacts
US20030015687A1 (en) 2001-01-08 2003-01-23 Sud-Chemie Ag Plate-shaped pressed bodies
KR101216232B1 (en) 2007-03-20 2012-12-28 미쓰이 가가쿠 가부시키가이샤 Process for conversion of hydrocarbons with molded zeolite catalyst
FR3006608B1 (en) * 2013-06-10 2021-01-01 Ifp Energies Now ADSORBANT BASED ON A ZEOLITH AND A CLAY RICH IN SILICA AND PROCESS FOR PURIFYING HYDROCARBON LOADS CONTAINING UNSATURATED MOLECULES
KR102393723B1 (en) * 2021-10-18 2022-05-04 주식회사 성광이엔텍 Method for manufacturing synthetic zeolite using spent catalyst generated in petrochemical process and adsorbent manufactured thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124539A (en) * 1982-01-19 1983-07-25 Toray Ind Inc Adsorbent for separating gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124539A (en) * 1982-01-19 1983-07-25 Toray Ind Inc Adsorbent for separating gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033575A1 (en) * 1997-01-31 1998-08-06 Takasago Thermal Engineering Co., Ltd. Cleaning apparatus, filter and method of manufacturing the same

Also Published As

Publication number Publication date
JPS61155216A (en) 1986-07-14

Similar Documents

Publication Publication Date Title
US4818508A (en) Process for preparing molecular sieve bodies
US3313594A (en) Method for producing crystalline aluminosilicate zeolitic particles of uniform size
US4594332A (en) Preparation of hard, fracture-resistant catalysts from zeolite powder
EP0291201B1 (en) Process for the production of spherical particles
JPS6126509A (en) Extrusion molding method of solid abounding in silica
JPH0544408B2 (en)
CZ294449B6 (en) Process for preparing zeolite-bearing material containing at least 95 percent of LSX zeolite and so obtained zeolite-bearing material
CN102861551A (en) Bax type zeolite granule and process for preparing the same
JP3799678B2 (en) High-strength, low-abrasion zeolite granular material, method for producing the same, and adsorption separation method using the same
US5132260A (en) Zeolite granules with zeolitic binder
JPH0674136B2 (en) Zeolite compact and manufacturing method thereof
JPH0535090B2 (en)
GB1567856A (en) Preparation of zeolite a in axtruded form
JP4526760B2 (en) Zeolite microsphere compact
US3384602A (en) Bonded molecular sieve catalysts and preparation of the same
US6680271B1 (en) Solid zeolite granulates having improved abrasion resistance, and methods of making them
JPH11314913A (en) High strength low wear zeolite granule and its production
JPS6219363B2 (en)
JP4188050B2 (en) Method for producing zeolite microsphere molding
JP4188049B2 (en) Method for producing zeolite microsphere molding
JP2893508B2 (en) Granular ceramic fiber aggregate and method for producing the same
JPH0542368B2 (en)
KR900003318B1 (en) Lighting magnesia clinkers
US2735823A (en) barrett
US3370917A (en) Production of zeolitic adsorbents in nodular form

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees