JPS61154123A - Liquid-phase epitaxial growth method - Google Patents

Liquid-phase epitaxial growth method

Info

Publication number
JPS61154123A
JPS61154123A JP59273903A JP27390384A JPS61154123A JP S61154123 A JPS61154123 A JP S61154123A JP 59273903 A JP59273903 A JP 59273903A JP 27390384 A JP27390384 A JP 27390384A JP S61154123 A JPS61154123 A JP S61154123A
Authority
JP
Japan
Prior art keywords
substrate
epitaxial growth
type
layer
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59273903A
Other languages
Japanese (ja)
Inventor
Shigetaka Murasato
村里 茂隆
Atsushi Matsuzaki
松崎 温
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59273903A priority Critical patent/JPS61154123A/en
Publication of JPS61154123A publication Critical patent/JPS61154123A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a GaAlAs epitaxial wafer whose luminous wavelength is constant and luminous effect is high by a method wherein turbulance on a surface of a GaAs single, crystal substrate is eliminated, and a smooth and uniform epitaxial growth layer is obtained. CONSTITUTION:At epitaxial growth, at first solvent or solute 2 not containing Al is placed on a substrate 1 and the surface of the GaAs substrate 1 is subjected to melt-back keeping at constant temperature and for constant period. After that, a p-type solvent 3 is placed on the substrate 1 sliding a slider 10 and is cooled at prescribed cooling speed, then epitaxial growth is performed to a p-type GaAlAs layer 2a or the surface of the GaAs substrate 1. Addition ally, an n-type solvent 4 is placed on the substrate sliding the slider 10, then an n-type growth layer 3a is obtained on the p-type layer 2a similarly. In this manner, when the GaAlAs layer is subjected to perform epitaxial growth after milt-back operation is performed by using the solute or the solvent not containing Al, turblence on the surface of the GaAs substrate does not generate then stable epitaxial growth can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガリウムアルミニウムヒ素(GaAJLAs)
の液相エピタキシャル成長方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to gallium aluminum arsenide (GaAJLAs).
This invention relates to a liquid phase epitaxial growth method.

〔従来の技術〕[Conventional technology]

近年、発光装置、マイクロ波発振装置、または電界効果
トランジスターとして、■−v族化合物半導体からなる
半導体が利用されている。このような■−v族化合物半
導体結晶の製作に用いられる一つの方法として液相エピ
タキシャル法が知られている。この方法は所定温度に達
した溶融媒質中の溶質と半導体結晶基板とを接触させて
、所定温度だけ降下することによって、過飽和となった
溶質を基板上に析出させてエピタキシャル成長層を得る
ものである。
In recent years, semiconductors made of ■-v group compound semiconductors have been used as light emitting devices, microwave oscillation devices, or field effect transistors. A liquid phase epitaxial method is known as one of the methods used to manufacture such a -V group compound semiconductor crystal. In this method, a solute in a molten medium that has reached a predetermined temperature is brought into contact with a semiconductor crystal substrate, and by lowering the temperature by a predetermined amount, the supersaturated solute is deposited on the substrate to obtain an epitaxial growth layer. .

単結晶基板上に液相エピタキシャル成長をさせる場合、
通常は基板表面に成形されたごく薄い酸化層あるいは熱
変形層を取り除くために、不飽和溶液を基板に接触させ
、基板表面を溶解除去するいわゆるメルトバックと称す
る方法がとられている。
When performing liquid phase epitaxial growth on a single crystal substrate,
Usually, in order to remove a very thin oxide layer or thermally deformable layer formed on the surface of a substrate, a method called meltback is used in which an unsaturated solution is brought into contact with the substrate and the surface of the substrate is dissolved and removed.

GaAs単結晶基板上に液相エピタキシャル成長法によ
ってGa A文As層を成長させる場合、従来は不飽和
のAsを含むGaAJIAs溶液をGaAs基板表面に
接触させて一定温度で一定時間保持し、酸素の多いGa
As基板表面をメルトバックして除去し、しかる後As
の飽和したGaAJIAg溶液を接触させ、所定温度降
下させることによってGaAfLAsをGaAs基板上
に析出させていた。
When growing a GaAs layer on a GaAs single crystal substrate by the liquid phase epitaxial growth method, conventionally, a GaAJIAs solution containing unsaturated As is brought into contact with the GaAs substrate surface and held at a constant temperature for a certain period of time, and then a GaAs layer containing a large amount of oxygen is grown. Ga
The surface of the As substrate is melted back and removed, and then As
GaAfLAs was deposited on the GaAs substrate by contacting with a saturated GaAJIAg solution and lowering the temperature to a predetermined temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、 Ga AJLAsの液相エピタキシャ
ル成長において、通常おこなわれている方法でこのメル
トバック操作をおこなうと、GaAs基板表面は滑らか
な面とはならず、凹凸の激しい面となってしまう、極端
な場面は第2図に示すように基板表面1aは直線となら
ずに乱れた線となる。
However, in the liquid phase epitaxial growth of Ga AJLAs, if this meltback operation is performed in the usual manner, the surface of the GaAs substrate will not be a smooth surface, but will become a highly uneven surface. As shown in FIG. 2, the substrate surface 1a is not a straight line but a disordered line.

この乱れはメルトバック現象が面内で均一に行われてい
ない事を示しており、引続いて行われるエピタキシャル
成長によって作られるp−n接合が均一にならず、たと
えばこのようなウェハーを使用して発光素子を作った場
合には、発光効率の低下や発光波長のズレ等最終製品の
特性不良や特性のバラツキが発生する。
This disturbance indicates that the meltback phenomenon is not occurring uniformly within the plane, and the p-n junction formed by the subsequent epitaxial growth is not uniform. When a light emitting device is manufactured, the final product may have poor characteristics or variations in characteristics, such as a decrease in luminous efficiency or a shift in emission wavelength.

現在、特にGaAjLAs可視エピタキシャルウェハー
からの製品歩留りが低いと言われる原因の1つがここに
あると考えられる。
This is thought to be one of the reasons why the yield of products from GaAjLAs visible epitaxial wafers is said to be low at present.

〔問題を解決するための手段〕[Means to solve the problem]

この発明は上記のようなGaAs単結晶基板表面の乱れ
を解消し、滑らかで均質なエピタキシャル成長層を得る
ことによって、発光波長が一定でしかも発光効率の高い
GaAJIAsエピタキシャルウェハーを得ることを目
的としたものである。
The purpose of this invention is to eliminate the above-mentioned disorder on the surface of a GaAs single crystal substrate and obtain a smooth and homogeneous epitaxial growth layer, thereby obtaining a GaAJIAs epitaxial wafer with a constant emission wavelength and high emission efficiency. It is.

本発明者は種々の実験によって先に述べたメルトバック
操作をおこなうにあたり、AfLを含まない溶媒あるい
は溶液を用いておこなうと、GaAs基板とGaAJL
Asエピタキシャル成長層との界面の乱れが生じないこ
とを見出した。A立合有溶液によるメルトバックで界面
が乱れる原因はまだ明確ではないが、溶液中の酸化し易
い元素であるAnと基板表面にある酸素との反応が関係
していると考えられる。
The present inventor has found through various experiments that when performing the above-mentioned meltback operation using a solvent or solution that does not contain AfL, GaAs substrates and GaAJL
It has been found that no disturbance occurs at the interface with the As epitaxially grown layer. The reason why the interface is disturbed by the meltback caused by the A-containing solution is not yet clear, but it is thought to be related to the reaction between An, an element that is easily oxidized, in the solution and oxygen on the substrate surface.

本発明ではメルトバック操作をおこなうにあたり、 A
Qを含まない溶媒または溶液を用いて基板゛表面の酸化
膜のみを除去して表面を滑かに維持し、その上にエピタ
キシャル成長させるものである。
In the present invention, when performing the meltback operation, A
A Q-free solvent or solution is used to remove only the oxide film on the surface of the substrate to keep the surface smooth, and then epitaxial growth is performed thereon.

本発明の方法を図面に従って詳述する。The method of the present invention will be explained in detail with reference to the drawings.

w41図は本発明によるスライドボード式液相エピタキ
シャル成長方法を説明する図である0図において黒鉛製
のボード11には基板ホルダー12が設けられており、
この中に厚さ330〜340pmの鏡面研磨されたGa
As単結晶基板1を入れておく。
Figure w41 is a diagram explaining the slide board type liquid phase epitaxial growth method according to the present invention. In Figure 0, a substrate holder 12 is provided on a board 11 made of graphite.
Inside this, mirror-polished Ga with a thickness of 330 to 340 pm was placed.
An As single crystal substrate 1 is placed.

ボード11の上には黒鉛製で摺動自在にしたスライダー
10を配置しており、スライダー10には3種類の溶液
を収容可能な13a〜13cが設けである。最初の溶液
槽め13a中にはメルトバックするためのA5Lを含ま
ない溶質または溶液2を入れておく。
A slidable slider 10 made of graphite is placed on the board 11, and the slider 10 is provided with 13a to 13c capable of accommodating three types of solutions. A solute or solution 2 that does not contain A5L for melting back is placed in the first solution tank 13a.

次の溶液溜め13b中はp型GaAlAs層を得るため
のAnとp型不純物を含んだ溶液を入れておく。
A solution containing An and p-type impurities for obtaining a p-type GaAlAs layer is placed in the next solution reservoir 13b.

最後の溶液溜め13c中にはn型GaAuAsMを得る
ためのAnとn型不純物を含んだ溶液を入れておく、エ
ピタキシャル成長にあったては、まず基板l上にAiを
含まない溶媒または溶質2を載せ、一定温度で一定時簡
保持してGaAs基板l基板面を溶液2中にメルトバッ
クさせる0次にスライダー10を摺動させ基板1上にp
型溶液3を載せて所定の冷却速度で冷却し、GaAs基
板1の表面にp型GaAiAse2aをエピタキシャル
成長させる。ついでさらにスライダー10を摺動させ、
基板l上にn型溶液4を載せ、同様にしてp型層2a上
にn型エピタキシャル成長層3aを得る。このようにA
nを含まない溶媒または溶液でメルトバック操作をした
のち、GaAfLAj層をエピタキシャル成長させると
、GaAs基板の表面が乱れることなく、安定したエピ
タキシャル成長を得ることができる。
A solution containing An and n-type impurities to obtain n-type GaAuAsM is placed in the last solution reservoir 13c. For epitaxial growth, first, a solvent or solute 2 that does not contain Ai is placed on the substrate l. Place the GaAs substrate on the substrate and hold it for a certain period of time at a constant temperature to melt the substrate surface into the solution 2.Next, slide the slider 10 to place the GaAs substrate on the substrate 1.
A mold solution 3 is placed and cooled at a predetermined cooling rate to epitaxially grow p-type GaAiAse 2a on the surface of the GaAs substrate 1. Then slide the slider 10 further,
An n-type solution 4 is placed on the substrate l, and an n-type epitaxial growth layer 3a is obtained on the p-type layer 2a in the same manner. Like this A
If a GaAfLAj layer is epitaxially grown after performing a meltback operation using a solvent or solution that does not contain n, stable epitaxial growth can be obtained without disturbing the surface of the GaAs substrate.

次に本発明の要点について説明する。Next, the main points of the present invention will be explained.

本発明で使用する^見を含有しない溶媒とはGa融液の
ことであり、AnやGaAsを溶解していないものであ
る。 Ga融液は温度が700℃ではGaAsをGa 
100gあたり 1.4g溶解することができる。
The solvent-free solvent used in the present invention is a Ga melt that does not dissolve An or GaAs. When the temperature of Ga melt is 700℃, GaAs becomes Ga
1.4g can be dissolved per 100g.

GaAs基板のメルトバックされる厚さはせいぜい11
07L程度であるから、メルトバック用のGa融液とし
ては基板表面に数10pmの厚さで載っていれば充分で
ある。
The thickness of the GaAs substrate melted back is at most 11
Since the thickness is about 0.7L, it is sufficient for the Ga melt for meltback to be placed on the substrate surface with a thickness of several tens of pm.

また、Aiを含有しない溶液とはGapsを溶解したG
a溶液のことであり、飽和溶液でなくても良く、たとえ
ば700℃ではGa30gに対してGaAs O,4g
を溶解した溶液が使用できる。メルトバックする温度に
おいてGaAsに対し溶解度を有するものであれば良い
In addition, a solution containing no Ai is a solution containing Gap in which Gaps is dissolved.
A solution does not need to be a saturated solution; for example, at 700°C, 30 g of Ga is mixed with 4 g of GaAs O.
You can use a solution containing . Any material may be used as long as it has solubility in GaAs at the temperature at which it melts back.

p型Gaj14As層成長用溶液としてはGaにGaA
s、Anおよび、Zn、 Ge、等のp型不純物を含ん
だ溶液である。また、n型GaA1As成長層用の溶液
とはGaにGaAs、  AnおよびSt、 Sn、 
Se、 Te等のn型不純物を含んだ溶液である。
As a p-type Gaj14As layer growth solution, Ga and GaA are used.
This is a solution containing p-type impurities such as S, An, Zn, and Ge. In addition, the solution for the n-type GaA1As growth layer includes Ga, GaAs, An and St, Sn,
This is a solution containing n-type impurities such as Se and Te.

メルトバックの条件は特に制限されるものではなく、メ
ルトバックすべき基板表面の厚さ、使用する溶液組成に
従って温度時間を選択すればよい。
Meltback conditions are not particularly limited, and the temperature and time may be selected according to the thickness of the substrate surface to be melted back and the solution composition used.

次に実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

(実施例) 第1図に示すような黒鉛製スライドボード装置を使用し
てGaAs単結晶基板表面上にGaAJIAs層をエピ
タキシャル成長させ、p−n接合を成形した0図におい
て溶液溜め13aにはメルトバックするための溶液2が
入れてあり、溶液2は30gのGaに1.6gのGaA
aを溶解したものである。溶液溜め13bにはp型Ga
AJLAs暦を成長させるための溶液3が入れてあり、
溶液3は308のGaに 18のGaAs、30mgの
Anおよび10(leHのZnを溶解したものである。
(Example) A GaAJIAs layer was epitaxially grown on the surface of a GaAs single crystal substrate using a graphite slide board device as shown in Fig. 1, and a p-n junction was formed. Solution 2 contains 30g of Ga and 1.6g of GaA.
This is a solution of a. The solution reservoir 13b contains p-type Ga.
Contains solution 3 for growing AJLAs calendar,
Solution 3 is a solution of 308 Ga, 18 GaAs, 30 mg An, and 10 (leH) Zn.

さらに溶液溜め4にはn型GaAMAs層を成長させる
ための溶液4が入れてあり、溶液4は30gのGaに0
.3gのGaAs、  100+ggのAnおよび0.
5mgのTeを溶解したものである。
Furthermore, the solution reservoir 4 contains a solution 4 for growing an n-type GaAMAs layer.
.. 3g GaAs, 100+gg An and 0.
This is a solution of 5 mg of Te.

まず、第1図の状態で820℃で2時間保持した後、矢
印方向にスライダー10を摺動させ、溶液2を基板lの
上に載せ、822℃に温度を上げて10分間保持した。
First, after holding the temperature at 820° C. for 2 hours in the state shown in FIG. 1, the slider 10 was slid in the direction of the arrow, solution 2 was placed on the substrate 1, and the temperature was raised to 822° C. and held for 10 minutes.

その後さらにスライダーlOを摺動させ、溶液3、溶液
4を順次基板1上に載せ、所定のプログラムに従って除
冷し、p型およびn型のGaAJIAsエピタキシャル
層を成長させた。冷却条件はGaAJLAs成長に通常
用いる条件である。
Thereafter, the slider IO was further moved to sequentially place solutions 3 and 4 on the substrate 1, and the substrate was slowly cooled according to a predetermined program to grow p-type and n-type GaAJIAs epitaxial layers. The cooling conditions are those normally used for GaAJLAs growth.

このようにして得られたGaA1Asエピタキシャルウ
ェハーの断面を調らべたところ、第3図に示すようにG
aAs基板lの厚さは300ルであり、もとの基板が1
071mの厚さでメルトバックされており、しかもその
表面1aは平滑になっており、GaAs基板lとGaA
jLAsエピタキシャル成長層の界面の乱れは全く認め
られなかった。
When we examined the cross section of the GaA1As epitaxial wafer thus obtained, we found that the G
The thickness of the aAs substrate l is 300 l, and the original substrate is l
It is melted back to a thickness of 0.71m, and its surface 1a is smooth, and the GaAs substrate 1 and GaAs substrate 1a are smooth.
No disturbance at the interface of the jLAs epitaxially grown layer was observed.

また、p型およびn型GaAJLAsエピタキシャル成
長層の厚さはいずれも30pmであった。
Furthermore, the thicknesses of the p-type and n-type GaAJLAs epitaxial growth layers were both 30 pm.

さらにこのウェハーから0.35膳l角のLED素子を
作ったところ、所定の電気特性を満足する素子の歩留り
は81%であり、従来の方法による場合の約2倍に向上
していた。
Furthermore, when LED elements of 0.35 square meters were made from this wafer, the yield of elements satisfying the predetermined electrical characteristics was 81%, which was about twice as high as when using the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施方法を示す説明図、第2図は従来
の方法によるウェハーの断面を示す図。 第3図は本発明によるウェハーの断面を示す図である。
FIG. 1 is an explanatory diagram showing a method of implementing the present invention, and FIG. 2 is a diagram showing a cross section of a wafer according to a conventional method. FIG. 3 is a cross-sectional view of a wafer according to the present invention.

Claims (1)

【特許請求の範囲】[Claims]  ガリウムヒ素単結晶基板上に液相成長法によってガリ
ウムアリミニウムヒ素層を成長させるにあたり、アルミ
ニウムを含まない溶液あるいは溶媒を用いて、ガリウム
ヒ素単結晶基板表面をメルトバックした後、p型または
n型のガリウムアルミニウムヒ素層を成長されることを
特徴とする液相エピタキシャル成長方法。
When growing a gallium ariminium arsenide layer on a gallium arsenide single crystal substrate by liquid phase growth, the surface of the gallium arsenide single crystal substrate is melted back using a solution or solvent that does not contain aluminum, and then p-type or n-type A liquid phase epitaxial growth method characterized in that a gallium aluminum arsenide layer is grown.
JP59273903A 1984-12-27 1984-12-27 Liquid-phase epitaxial growth method Pending JPS61154123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59273903A JPS61154123A (en) 1984-12-27 1984-12-27 Liquid-phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273903A JPS61154123A (en) 1984-12-27 1984-12-27 Liquid-phase epitaxial growth method

Publications (1)

Publication Number Publication Date
JPS61154123A true JPS61154123A (en) 1986-07-12

Family

ID=17534176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273903A Pending JPS61154123A (en) 1984-12-27 1984-12-27 Liquid-phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS61154123A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509630A (en) * 1973-04-13 1975-01-31
JPS5728372A (en) * 1980-07-29 1982-02-16 Fujitsu Ltd Manufacture of semiconductor light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509630A (en) * 1973-04-13 1975-01-31
JPS5728372A (en) * 1980-07-29 1982-02-16 Fujitsu Ltd Manufacture of semiconductor light emitting device

Similar Documents

Publication Publication Date Title
US3862859A (en) Method of making a semiconductor device
JPH0534825B2 (en)
GB1329041A (en) Method of manufacturing semiconductor elements by a liquid phase growing method
US4032370A (en) Method of forming an epitaxial layer on a crystalline substrate
GB1340671A (en) Process for epitaxially growing semiconductor crystals of predetermined conductivity type
US3462320A (en) Solution growth of nitrogen doped gallium phosphide
US4218270A (en) Method of fabricating electroluminescent element utilizing multi-stage epitaxial deposition and substrate removal techniques
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
JPS61154123A (en) Liquid-phase epitaxial growth method
US3530011A (en) Process for epitaxially growing germanium on gallium arsenide
Bergh et al. Growth of GaP layers from thin aliquot melts: Liquid phase epitaxy as a commercial process
JP4211897B2 (en) Liquid phase epitaxial growth method
JPH0249422A (en) Manufacture of silicon carbide semiconductor device
US4609411A (en) Liquid-phase epitaxial growth method of a IIIb-Vb group compound
IE35057B1 (en) Methods of growing multilayer semiconductor crystals
JPH0712093B2 (en) Light emitting semiconductor device substrate and manufacturing method thereof
JPS6021894A (en) Process for liquid phase epitaxial growth
van Oirschot et al. LPE growth of DH laser structures with the double source method
JP3202405B2 (en) Epitaxial growth method
JPS62241893A (en) Method for liquid-phase epitaxial growth
JPH02307889A (en) Liquid phase epitaxy
JPS63198318A (en) Epitaxial growth method
JPS62188387A (en) Semiconductor light-emitting element
JPS63310111A (en) Compound semiconductor wafer and its manufacture
JPS5815475B2 (en) epitaxial epitaxy