JPS6115333A - Pattern formation - Google Patents

Pattern formation

Info

Publication number
JPS6115333A
JPS6115333A JP13632784A JP13632784A JPS6115333A JP S6115333 A JPS6115333 A JP S6115333A JP 13632784 A JP13632784 A JP 13632784A JP 13632784 A JP13632784 A JP 13632784A JP S6115333 A JPS6115333 A JP S6115333A
Authority
JP
Japan
Prior art keywords
layer
intermediate layer
resist
molybdenum oxide
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13632784A
Other languages
Japanese (ja)
Inventor
Hideo Ikitsu
英夫 生津
Masatoshi Oda
政利 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13632784A priority Critical patent/JPS6115333A/en
Publication of JPS6115333A publication Critical patent/JPS6115333A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Abstract

PURPOSE:To prevent a substrate or a processed material from being etched at the time of removal of the intermediate layer by a method wherein a film containing molybdenum oxide is used as the intermediate layer made of three-layer resist. CONSTITUTION:First, an organic polymer layer 3, an intermediate layer 4' containing at least molybdenum oxide, and a resist layer 5 are formed on the processed material 2 laminated on the substrate 1. Next, the resist layer 5 is formed into a desired pattern by exposure and development. The pattern of the resist layer 5 is transcribed to the intermediate layer 4' and the organic polymer layer 3. Thereafter, after or before etching the processed material 2, the intermediate layer 4' is removed with a solution containing at least water. Since the intermediate layer 4' containing molybdenum oxide can be removed by rinsing or some another method, the substrate or the processed material is not corroded at the time of removal of this layer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体集積回路を始めとする各種の固体デバ
イスの製造に際してなされる・やタン形成方法に関する
。特に、有機高分子層、中間層、レノスト層の3つを積
層した所謂3層しソストによるパタン形成方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming a tangent during the manufacture of various solid-state devices including semiconductor integrated circuits. In particular, the present invention relates to a pattern forming method using a so-called three-layer stack, in which an organic polymer layer, an intermediate layer, and a Lenost layer are stacked.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

現在、半導体集積回路等の製造においては、微細・2タ
ン形成工程に多層レジストヲ用いることが一般的になり
つつある。この理由は、多層レジストが集積回路製造プ
ロセス過程で生じる基板段差を実効的に平坦化するため
露光すべきレノスト層の薄層、均一膜厚化が可能となり
、さらには露光時の、基板からの反射光9反射電子を抑
制できることから、微細で高精度なA?メタン形成でき
ることに起因している。多層レジストの種類としては、
2層レジスト、3層レジストがあるが、寸法精度等の利
点から3層レジストが主に使用されている。3層レジス
トの形成は、第2図に示す工程によりなされる。先ず、
第2図(a)の如く基板1上に形成された被加工材料2
の表面上に、有機高分子層3.中間層4Tレジスト層5
を順次積層し、3層レジスト6を形成する。次に、公知
の露光法を用い、所望のパタンをレジスト層5に露光し
、現像工程を経て、第2図(b)の様なレジスト層5の
パタンを形成する。続いて、第2図(C)の如く、レジ
スト層5の/?メタンマスクに中間層4をエツチングし
てレノスト層5の・母タンを中間層4に転写し、さらに
第2図(d)の如く、中間層4のパタンをマスクに有機
高分子層3をエツチングし、上記パタンを有機高分子層
3まで転写する。有機高分子層3の転写は主として酸素
を反応ガスとした反応性イオンエツチング法(02RI
E)が用いらが速い技術のためである。従って、中間層
4としては、マスクとして作用する為に、02RIEに
対しての耐性がなければならず、通常は5tO21Si
 、 AI 、スピンオンガラス等の無機材質が使われ
ている。有機高分子層3としては、基板段差を実効的に
平坦化するため2μm膜厚程度塗布できるものであれば
すべて適用でき、通常はHunt社製)IPRレジスト
やシプレ−(5hipley )社製入2系レジストが
主に使われている。また、レジスト層5としては、公知
の紫外線、X線あるいは電子線レジストが用いられる。
Currently, in the manufacture of semiconductor integrated circuits and the like, it is becoming common to use multilayer resists in the process of forming fine 2-layer resists. The reason for this is that the multilayer resist effectively flattens the substrate level differences that occur during the integrated circuit manufacturing process, making it possible to make the exposed layer thinner and more uniform in thickness. Reflected light 9 Since reflected electrons can be suppressed, fine and highly accurate A? This is due to the ability to form methane. The types of multilayer resists are:
Although there are two-layer resists and three-layer resists, the three-layer resist is mainly used because of its advantages such as dimensional accuracy. The three-layer resist is formed by the steps shown in FIG. First of all,
A workpiece material 2 formed on a substrate 1 as shown in FIG. 2(a)
On the surface of the organic polymer layer 3. Intermediate layer 4T resist layer 5
are sequentially laminated to form a three-layer resist 6. Next, the resist layer 5 is exposed to a desired pattern using a known exposure method, and through a development process, a pattern of the resist layer 5 as shown in FIG. 2(b) is formed. Subsequently, as shown in FIG. 2(C), the /? The intermediate layer 4 is etched using a methane mask to transfer the mother tongue of the Renost layer 5 to the intermediate layer 4, and then the organic polymer layer 3 is etched using the pattern of the intermediate layer 4 as a mask, as shown in FIG. 2(d). Then, the pattern is transferred to the organic polymer layer 3. The transfer of the organic polymer layer 3 is performed mainly by the reactive ion etching method (02RI) using oxygen as a reactive gas.
E) is because the technology used is faster. Therefore, the intermediate layer 4 must have resistance to 02RIE in order to act as a mask, and is usually made of 5tO21Si.
Inorganic materials such as , AI, and spin-on glass are used. As the organic polymer layer 3, any material can be used as long as it can be coated to a thickness of about 2 μm in order to effectively flatten the substrate level difference, and usually IPR resist (manufactured by Hunt) or IPR resist (manufactured by Hipley) 2 can be used. series resists are mainly used. Further, as the resist layer 5, a known ultraviolet, X-ray, or electron beam resist is used.

以上の様にして、3層レジスト6の/’Pタンを形成し
た後、このパタン全マスクとして被加工材料2をエツチ
ングする。中間層4はこの被加工材料エツチングの前も
しくは後に除去する。
After forming the /'P tan of the three-layer resist 6 in the manner described above, the material 2 to be processed is etched using this entire pattern as a mask. The intermediate layer 4 is removed before or after etching the workpiece material.

しかしながら、中間層4として5i02’+被加工材料
2としてAl 、基板1として8102を用いた場合、
例えば中間層4の除去に弗酸を用いた場合、被加工材料
エツチング前に中間層4を除去する場合には第2図(e
)の如く、被加工材料2のAtが、被加工材料エツチン
グ後に中間層4を除去する場合には第2図(f)の如く
基板1の8102がエツチングされ、微細・やタン形成
が困難になる問題が生じていた。
However, when using 5i02' as the intermediate layer 4 + Al as the workpiece material 2 and 8102 as the substrate 1,
For example, if hydrofluoric acid is used to remove the intermediate layer 4, if the intermediate layer 4 is removed before etching the material to be processed, as shown in FIG.
), when the intermediate layer 4 is removed after etching the At of the workpiece material 2, 8102 of the substrate 1 is etched as shown in FIG. A problem had arisen.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点ヲ解決した中間層を形成し、
これにより微細パタン形成に不可欠な3層レジストのパ
タン形成方法を提供することにある。
The object of the present invention is to form an intermediate layer that solves the above drawbacks,
Thereby, it is an object of the present invention to provide a method for forming a three-layer resist pattern, which is essential for forming a fine pattern.

〔発明の概要〕[Summary of the invention]

本発明は、基板上に積層された被加工材料上に有機高分
子層を形成する工程と、該有機高分子層の上に少なくと
も酸化モリブデンを含む中間層を形成する工程と、該中
間層の上にレノスト層を形成する工程と、露光・現像処
理により該レノスト層に所望の・々タンを形成する工程
と、該レジスト層のパタン金上記中間層及び有機高分子
層に転写する工程と、上記被加工材料をエツチングした
後もしくはその前に上記中間層を、少なくとも水を含む
溶液により除去する工程を含むことを特徴とするパタン
形成方法である。
The present invention comprises a step of forming an organic polymer layer on a workpiece material laminated on a substrate, a step of forming an intermediate layer containing at least molybdenum oxide on the organic polymer layer, and a step of forming an intermediate layer containing at least molybdenum oxide on the organic polymer layer. a step of forming a renost layer thereon, a step of forming a desired tan on the renost layer by exposure and development treatment, a step of transferring the pattern of the resist layer to the gold intermediate layer and the organic polymer layer; This pattern forming method includes the step of removing the intermediate layer with a solution containing at least water after or before etching the material to be processed.

〔発明の実施例〕[Embodiments of the invention]

先ず、前述の如く、中間層としては02RIEに対し高
い耐性を有することは勿論のこと、その除去時に、基板
や被加工材料がエツチングされないことが必要である。
First, as mentioned above, it is necessary that the intermediate layer not only have high resistance to 02RIE, but also that the substrate and the material to be processed are not etched during its removal.

本発明は、上記中間層としての条件を、酸化モリブデン
を含む膜が最も満足していることを見出したものである
。すなわち、酸化モリブデンはO,、RIEに対して全
くエツチングされず、また水に対して溶解性を有するた
め、本発明の如く酸化モリブデンを中間層にすると、0
2R工Eのエツチングマスクとなるだけでなく、水洗処
理等により基板や被加工材料を全く侵さずに除去するこ
とが出来るものである。
The present invention is based on the discovery that a film containing molybdenum oxide most satisfies the above-mentioned conditions for the intermediate layer. That is, since molybdenum oxide is not etched at all by O, RIE and is soluble in water, when molybdenum oxide is used as an intermediate layer as in the present invention,
Not only does it serve as an etching mask for 2R process E, but it can also be removed by washing with water or the like without damaging the substrate or the material to be processed.

即ち、第1図(a)〜(f)はその適用例であり、中間
層4′として酸化モリブデンを用い、その他の層は第2
図(、)〜(f)と同じ材料である。第2図(、)〜(
d)と同様の工程により、第1図(a)〜(d)の如く
3層レジスト6′のパタンを形成した後、水洗処理によ
り中間層4′を除去し、第1図(、)の様なパタンを得
る。この後、所望の方法により被加工材料2をエツチン
グすることにより基板1に影響を与えずに第1図(f)
の如く高精度な被加工材料2の・9タン全得ることが出
来る。
That is, FIGS. 1(a) to 1(f) show examples of its application, in which molybdenum oxide is used as the intermediate layer 4', and the other layers are the second layer.
It is the same material as in Figures (,) to (f). Figure 2 (,)~(
After forming the pattern of the three-layer resist 6' as shown in FIGS. 1(a) to (d) using the same process as in d), the intermediate layer 4' is removed by washing with water to form the pattern shown in FIG. 1(,). Obtain various patterns. Thereafter, by etching the material 2 to be processed by a desired method, the material 2 is etched as shown in FIG. 1(f) without affecting the substrate 1.
As shown in FIG.

また、中間層4′が酸化モリブデン単独では、有機高分
子層3上に形成した場合その内部応力により酸化モリブ
デンの膜が割れたり、はがれたりする場合がある。これ
を防ぐため、酸化モリブデンの代りに、この酸化モリブ
デンを含んだ重合膜を使用することも、よp効果的であ
る。
Furthermore, if the intermediate layer 4' is made of molybdenum oxide alone, when it is formed on the organic polymer layer 3, the molybdenum oxide film may crack or peel off due to its internal stress. To prevent this, it is also very effective to use a polymer film containing molybdenum oxide instead of molybdenum oxide.

この合成は例えば、モリブデン、酸素、炭素。This synthesis includes, for example, molybdenum, oxygen, and carbon.

水素を含んだガスプラズマにより行うことができる。本
実験では、平行平板型プラズマデポジション装置、f 
k用い、高周波全印加する有機高分子から成る電極(炭
素、水素源)の一部にモリブデンを配置し、基板lを接
地電極上に置いた後、四塩化炭素、酸素で成るガスプラ
ズマを生じさせ、重合膜を形成した。この重合膜は、0
2HIEに対し、IOA/m1n以下しかエツチングさ
れない。重合膜を光電子分光法により分析した結果、化
学シフト量からモリブデンは殆どが酸化モリブデンとな
っていることがわかり、また含有する元素の比率は Mo #  c) I  C@  cll  、  2
.5.3.5.〜0 となり、塩素は殆ど含まれていないことがわかった。従
って、重合膜の形成に際しての塩素(四塩化炭素)の役
割は、Mo (固体)→Mo C15(気体)→Mo5
s (固体)の如く、モリブデンを気相中に放出するだ
けのもので、従って、モリブデンと反応し、揮発性生成
物全生成するガスであれば四塩化炭素に限るものではな
い。さらに、MoCl5等を反応ガスとして直接反応室
に送りこむことも可能である。また、本実験では、炭素
、水素源として有機高分子を用いたが、メタン、エタン
、エチレン、アセチレン等の炭化水素系ガスを直接反応
室に導入しても同様の重合膜を形成することが出来る。
This can be carried out using gas plasma containing hydrogen. In this experiment, we used a parallel plate plasma deposition apparatus, f
Molybdenum is placed on a part of an electrode (carbon, hydrogen source) made of an organic polymer to which a high frequency is applied, and the substrate l is placed on the grounded electrode, and then a gas plasma consisting of carbon tetrachloride and oxygen is generated. to form a polymer film. This polymer film has 0
For 2HIE, only less than IOA/m1n is etched. As a result of analyzing the polymer film by photoelectron spectroscopy, it was found that most of the molybdenum was molybdenum oxide based on the amount of chemical shift, and the ratio of the contained elements was Mo # c) I C @ cll, 2
.. 5.3.5. It was found that almost no chlorine was contained. Therefore, the role of chlorine (carbon tetrachloride) in forming a polymer film is as follows: Mo (solid) → Mo C15 (gas) → Mo5
It is not limited to carbon tetrachloride, as long as it only releases molybdenum into the gas phase, such as s (solid), and therefore reacts with molybdenum to produce all volatile products. Furthermore, it is also possible to directly feed MoCl5 or the like as a reaction gas into the reaction chamber. In addition, although organic polymers were used as carbon and hydrogen sources in this experiment, it is also possible to form a similar polymer film by directly introducing hydrocarbon gases such as methane, ethane, ethylene, and acetylene into the reaction chamber. I can do it.

また、上記重合膜は、その形成速度が1000X/mi
n以上と速いため、高スルーゾノト形成が可能である利
点をも有している。
Further, the above polymer film has a formation rate of 1000X/mi.
Since it is fast at n or more, it also has the advantage of being able to form a high throughput.

さらには、酸化モリブデンを含む薄膜を中間層に用いた
場合、レジスト層の電子線露光特性7に以下の様な卓越
した結果を与える。
Furthermore, when a thin film containing molybdenum oxide is used as an intermediate layer, the following excellent results are obtained in the electron beam exposure characteristics 7 of the resist layer.

■ 被加工材料が重金属のように、電子の反射率の大き
い材料でも、そこから飛来する反射電子が酸化モリブデ
ンで殆ど遮られる為、所謂基板(被加工材料)ふらの後
方散乱効果がない。
■ Even if the material to be processed has a high electron reflectance, such as a heavy metal, most of the reflected electrons coming from it are blocked by molybdenum oxide, so there is no backscattering effect of the so-called substrate (material to be processed).

■ 酸化モーリブデンからの後方散乱電子等により見掛
は上レジスト感度が向上する。
■ The upper resist sensitivity appears to improve due to backscattered electrons from molybdenum oxide.

以下具体的実施例に基づき、詳細に説明する。A detailed explanation will be given below based on specific examples.

〈具体的実施例1〉 05μm膜厚のアルミニウム薄膜を堆積したシリコン基
板上にぐ有機高分子層としてシゾレー社製ホトレジス)
MP−140C11,5μm膜厚スピン塗布し、200
℃、30分加熱処理した。続いて、基板を高周波マグネ
トロンスi’? 、yり装置内にセットし、1×10 
Pa以下に排気した。
<Specific Example 1> Photoresist manufactured by Schisoley was used as an organic polymer layer on a silicon substrate on which a thin aluminum film with a thickness of 0.05 μm was deposited.
MP-140C11, 5 μm thick spin coating, 200
It was heat-treated at ℃ for 30 minutes. Next, the substrate is exposed to a high frequency magnetron i'? , set in the Yuri device, 1×10
It was evacuated to below Pa.

この後、Arがス會導入し、圧力’1lPaとした。After this, Ar gas was introduced and the pressure was set to 11 Pa.

13、56 MHzの高周波電力を三酸化モリブデンタ
ーrットに印加し、ス/? ツタリングを行うことによ
り酸化モリブデンで成る膜−1500Xの膜厚だけMP
−1400上に形成した。次に上層レジストとしての電
子線ネガ型しジメ) CMS io、5μm膜厚スピン
塗布し、電子線露光・現像処理を行い、所望の0MSパ
タン全形成した。次に、13、56 MHzの高周波3
00 W + CF450secm。
High-frequency power of 13 and 56 MHz was applied to the molybdenum trioxide tart, and S/? By performing tuttering, the film made of molybdenum oxide can be reduced by a film thickness of 1500X.
-1400. Next, an electron beam negative type resist was applied as an upper layer resist using CMS io, spin coating to a thickness of 5 μm, and electron beam exposure and development were performed to completely form the desired 0MS pattern. Next, high frequency 3 of 13, 56 MHz
00 W + CF450sec.

0.05 Torrの条件でCMs /4タンをマスク
に酸化モリブデンをドライエツチングし、次に、反応ガ
スをCF4から02に切換えMP−1400全ドライエ
ツチングした。この後、500W 、 CCCCl43
0se 、 Q、 I Torrの条件でアルミニウム
薄膜をドライエツチングし、基板を30秒水洗して残っ
た三酸化モリブデンを除去し、MP−1400i酸素プ
ラズマ処理(250W+02150cc/min。
Molybdenum oxide was dry etched using CMs/4 tan as a mask under the condition of 0.05 Torr, and then the reaction gas was changed from CF4 to 02 and MP-1400 was completely dry etched. After this, 500W, CCCCl43
The aluminum thin film was dry etched under conditions of 0se, Q, I Torr, the substrate was washed with water for 30 seconds to remove remaining molybdenum trioxide, and MP-1400i oxygen plasma treatment (250W + 02150cc/min).

ITorr ) シて除去することにより良好なアルミ
ニウム/リンを形成した。
A good aluminum/phosphorus was formed by removing the aluminum/phosphorus.

〈具体的実施例2〉 0.5μm膜厚のアルミニウム薄膜を堆積したシリコン
基板上に、有機高分子層としてのMP−’1400’k
 1.5μm膜厚スピン塗布し、150℃。
<Specific Example 2>MP-'1400'k as an organic polymer layer was deposited on a silicon substrate on which a 0.5 μm thick aluminum thin film was deposited.
Spin coating to a thickness of 1.5 μm at 150°C.

20分加熱処理した。次に、モリブデン電極を配置した
反応室内に基板をセットし、反応室を10−’ Tor
r以下まで排気した後四塩化炭素15secm + 0
235 seem f導入し、反応室内圧力を0.2T
orr・に保りた。高周波電力200Wを30秒間モリ
ブデン電極に印加し、500X膜厚の重合膜kMP−1
400上に形成した°。この後、′に子線ポジ型レジス
トのFBM’r0.5μm膜厚スピン塗布し、電子線露
光・現像処理を行うことにより FBMのパタン全形成
した。この後、20秒水洗することにより露光した部分
の重合膜をエツチングした。次に、具体的実施例1同様
の条件でMP−1400’i?エツチングし、アルミニ
ウム薄膜をドライエツチングした。この後、残った重合
膜ケ水洗して除去し、MP−1400を酸素プラズマ処
理して除去することにより良好なアルミニウムツヤタン
を形成した。
Heat treatment was performed for 20 minutes. Next, the substrate was set in a reaction chamber in which a molybdenum electrode was placed, and the reaction chamber was heated to 10-' Torr.
After evacuation to below r, carbon tetrachloride 15sec + 0
235 seem f was introduced and the pressure inside the reaction chamber was set to 0.2T.
It was kept at orr. High frequency power of 200W was applied to the molybdenum electrode for 30 seconds, and the polymer film kMP-1 with a thickness of 500X was applied.
Formed over 400°. Thereafter, a 0.5 .mu.m thick film of FBM'r, which is a positive type resist with a ray beam, was spin-coated on '', and the entire FBM pattern was formed by performing electron beam exposure and development. Thereafter, the exposed portion of the polymer film was etched by washing with water for 20 seconds. Next, under the same conditions as the specific example 1, MP-1400'i? The aluminum thin film was then dry etched. Thereafter, the remaining polymer film was removed by washing with water, and MP-1400 was removed by oxygen plasma treatment to form a good aluminum gloss.

尚、本実施例では酸化モリブデン形成にスパッタリング
法を用いたが、本方法に限定されるものではなく、蒸着
法、 CVD法も適用可能である。まり、酸化モリブデ
ン及びこれを含む重合膜の除去に水を用いたが、要はM
oOs・nH20が形成できれば良く、水を含んだ溶液
はすべて本発明の適用範囲である。又、具体的実施例1
の如く、酸化モリブデン及びこれを含む重合膜はドライ
エツチングも可能で、この場合反応ガスとしてはモリブ
デンをエツチングできる弗素及び塩素系ガスはすべて適
用できる。
In this example, a sputtering method was used to form molybdenum oxide, but the method is not limited to this method, and vapor deposition methods and CVD methods can also be applied. Therefore, water was used to remove molybdenum oxide and the polymer film containing it, but the point is that M
It is sufficient that oOs·nH20 can be formed, and all solutions containing water are within the scope of the present invention. Also, specific example 1
As shown in the figure, molybdenum oxide and a polymer film containing the same can be dry-etched, and in this case, any fluorine or chlorine-based gas capable of etching molybdenum can be used as the reactive gas.

また、上記実施例では、基板としてアルミニウム薄膜を
堆積したシリコン基板を、有機高分子層としてMP−1
400’k、レジスト層として電子線レジストヲ用いた
が、これに限定されるものでないことは勿論である。
Further, in the above embodiment, a silicon substrate on which an aluminum thin film was deposited was used as the substrate, and MP-1 was used as the organic polymer layer.
400'k, an electron beam resist was used as the resist layer, but it is needless to say that the present invention is not limited to this.

また、水溶性現像液を使用するレノスト層を用いた場合
、中間層が現像時にエツチングされるおそれがあるが、
これを防止するため、中間  層とレジスト層の間に非
水溶性高分子を形成することも効果的である。
Furthermore, when using a Renost layer that uses a water-soluble developer, there is a risk that the intermediate layer may be etched during development.
To prevent this, it is also effective to form a water-insoluble polymer between the intermediate layer and the resist layer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は少なくとも酸化モリブデ
ンを含む薄膜を中間層に適用したことを特徴とする3層
レジストのノ卆タン形成方法に関するもので、本発明に
よれば基板もしくけ被加工材料をエツチングすることな
く中間層を除去することが出来る。従って、多層レジス
トの利点を生さした高精度・9タンの形成を実現するこ
とが出来る。
As explained above, the present invention relates to a method for forming a three-layer resist layer, characterized in that a thin film containing at least molybdenum oxide is applied as an intermediate layer. The intermediate layer can be removed without etching. Therefore, it is possible to realize highly accurate 9-tank formation that takes advantage of the multilayer resist.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)乃至(f)は本発明の一実施例を示す断面
略図、第2図(、)乃至(f)は従来の3層レジストパ
タン形成工程を示す断面略図である。 1・・・基板、2・・・被加工材料、3・・・有機高分
子層、4 、4’・・・中間層、5・・・レジスト層、
6 、6’・・・3層レジスト。 出願人代理人 弁理士 鈴 江 武 彦部1図
FIGS. 1(,) to (f) are schematic cross-sectional views showing one embodiment of the present invention, and FIGS. 2(-) to (f) are schematic cross-sectional views showing a conventional three-layer resist pattern forming process. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Material to be processed, 3... Organic polymer layer, 4, 4'... Intermediate layer, 5... Resist layer,
6, 6'...3-layer resist. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (1)

【特許請求の範囲】 1、基板上に積層された被加工材料上に有機高分子層を
形成する工程と、該有機高分子層の上に少なくとも酸化
モリブデンを含む中間層を形成する工程と、該中間層の
上にレジスト層を形成する工程と、露光・現像処理によ
り該レジスト層に所望のパタンを形成する工程と、該レ
ジスト層のパタンを上記中間層及び有機高分子層に転写
する工程と、上記被加工材料をエッチングした後もしく
はその前に上記中間層を、少なくとも水を含む溶液によ
り除去する工程を含むことを特徴とするパタン形成方法
。 2、特許請求の範囲第1項記載のパタン形成方法におい
て、前記少なくとも酸化モリブデンを含む中間層が、モ
リブデン、酸素、炭素、水素を少なくとも含むガスプラ
ズマを利用した工程により形成されることを特徴とする
パタン形成方法。 3、特許請求の範囲第2項記載のパタン形成方法におい
て、前記モリブデンが、前記ガスプラズマを発生させる
ために使用される電極から供給されることを特徴とする
パタン形成方法。
[Claims] 1. A step of forming an organic polymer layer on a workpiece material laminated on a substrate, and a step of forming an intermediate layer containing at least molybdenum oxide on the organic polymer layer, A step of forming a resist layer on the intermediate layer, a step of forming a desired pattern on the resist layer by exposure and development treatment, and a step of transferring the pattern of the resist layer to the intermediate layer and the organic polymer layer. and a step of removing the intermediate layer with a solution containing at least water after or before etching the material to be processed. 2. The pattern forming method according to claim 1, wherein the intermediate layer containing at least molybdenum oxide is formed by a process using gas plasma containing at least molybdenum, oxygen, carbon, and hydrogen. pattern formation method. 3. The pattern forming method according to claim 2, wherein the molybdenum is supplied from an electrode used to generate the gas plasma.
JP13632784A 1984-06-30 1984-06-30 Pattern formation Pending JPS6115333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13632784A JPS6115333A (en) 1984-06-30 1984-06-30 Pattern formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13632784A JPS6115333A (en) 1984-06-30 1984-06-30 Pattern formation

Publications (1)

Publication Number Publication Date
JPS6115333A true JPS6115333A (en) 1986-01-23

Family

ID=15172629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13632784A Pending JPS6115333A (en) 1984-06-30 1984-06-30 Pattern formation

Country Status (1)

Country Link
JP (1) JPS6115333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316623A (en) * 1986-07-08 1988-01-23 Fujitsu Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316623A (en) * 1986-07-08 1988-01-23 Fujitsu Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP2004513515A (en) Amorphous carbon layer for improved adhesion of photoresist
JPS596540A (en) Manufacture of semiconductor device
JP3511802B2 (en) Method of forming metal wiring
US5985750A (en) Manufacturing method of semiconductor device
US6171764B1 (en) Method for reducing intensity of reflected rays encountered during process of photolithography
JPS62109973A (en) Molybdenum adhesive layer for chemical vapor deposition tungsten
JPS6115333A (en) Pattern formation
JPS5846635A (en) Formation of semiconductor element pattern
JPH03174724A (en) Method of forming pattern
CN101169600A (en) Method for removing photoresist of titanium or titanium nitride layer in semiconductor production
KR20020077191A (en) Method of making semiconductor device
JP3250240B2 (en) Method for manufacturing semiconductor device
JPS62136820A (en) Formation of ultramicro pattern
JPH03291929A (en) Dry etching method
JP5052313B2 (en) Manufacturing method of semiconductor device
JPS6115332A (en) Pattern formation
JPS583251A (en) Manufacture of semiconductor device
JPH0143453B2 (en)
CN115584469A (en) Method for increasing covering thickness of silicon carbide step metal layer and related equipment
JPH08288255A (en) Manufacture of semiconductor device
JP2952097B2 (en) X-ray mask structure
JP2880341B2 (en) X-ray mask manufacturing method
CN117613154A (en) Method for reinforcing grid line firmness of gallium arsenide solar cell
JPS582031A (en) Manufacture of semiconductor device
JPS5928156A (en) Manufacture of exposure mask