JPS6115322B2 - - Google Patents

Info

Publication number
JPS6115322B2
JPS6115322B2 JP53119261A JP11926178A JPS6115322B2 JP S6115322 B2 JPS6115322 B2 JP S6115322B2 JP 53119261 A JP53119261 A JP 53119261A JP 11926178 A JP11926178 A JP 11926178A JP S6115322 B2 JPS6115322 B2 JP S6115322B2
Authority
JP
Japan
Prior art keywords
amount
boiler
control circuit
control
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53119261A
Other languages
Japanese (ja)
Other versions
JPS5546357A (en
Inventor
Tei Misawa
Tetsuro Mochizuki
Kazuo Aizawa
Hatsuo Uehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP11926178A priority Critical patent/JPS5546357A/en
Publication of JPS5546357A publication Critical patent/JPS5546357A/en
Publication of JPS6115322B2 publication Critical patent/JPS6115322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/12Recycling exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/18Incinerating apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】 本発明は余熱利用のためのボイラー設備を有す
る移動床式都市ごみ焼却炉の燃焼制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion control device for a moving bed municipal waste incinerator having boiler equipment for utilizing residual heat.

従来、焼却炉の廃熱ボイラードラムの圧力を一
定にするために余剰蒸気を大気コンデンサに放出
して上記ドラムの圧力を制御している。ところ
で、現用の焼却炉ボイラーでは缶水容量が著しく
大きく、缶圧変動による缶水中の蒸気泡の発生、
凝縮による気水ドラム内液面の高低、所謂スウエ
ルシユリンクが大きく現われ、従つて給水制御に
より液面変動を精密に押えることが難かしい。こ
のため、上記余剰蒸気放出による缶圧制御に関し
ては、調節器の感度を高めて運転するのが普通で
あり、収熱量変化がそのまま、又は拡大されて蒸
発量変化として現われ、変動幅及び変動サイクル
数が著しく大きくなる。この変動する蒸気量をご
みの供給量又は燃焼空気量の制御によつて制御す
ることは、ごみの不均質性と応答性からして困難
である。又蒸気の外部への安定供給のためには上
記した変動分を除外して考えるので、利用効率が
著しく悪くなる。一方、焼却炉の廃熱ボイラー
は、タービン端常用圧力とボイラーの最高圧力と
の間に約6Kg/cm2の余裕を持つているのが普通で
あり、この圧力差全量の利用できないとしても、
大きな缶水容量と鋼材容量とによるスチームアキ
ユレータとしての機能を生かすことにより、蒸気
流量の短い周期の変動のみならず、多少周期の長
い吸収熱量変化をも平滑化することが可能であ
る。この平滑化のためには、上記した給水制御の
改善と、液面変動の許容巾を設計上繰り入れる必
要があるが、これらは従来技術で可能である。
Conventionally, in order to maintain a constant pressure in the waste heat boiler drum of an incinerator, excess steam is discharged to an atmospheric condenser to control the pressure in the drum. By the way, in the current incinerator boiler, the can water capacity is extremely large, and the generation of steam bubbles in the can water due to fluctuations in can pressure.
The height of the liquid level in the air-water drum due to condensation, the so-called swell swelling, appears significantly, and it is therefore difficult to precisely suppress liquid level fluctuations through water supply control. For this reason, in order to control the pressure of the tank by releasing excess steam, it is common to increase the sensitivity of the regulator during operation, and changes in the amount of heat absorption appear as they are or are magnified as changes in the amount of evaporation, and the fluctuation width and fluctuation cycle are The number becomes significantly larger. It is difficult to control this fluctuating amount of steam by controlling the amount of waste supplied or the amount of combustion air due to the heterogeneity and responsiveness of the waste. Furthermore, in order to stably supply steam to the outside, the above-mentioned fluctuations must be excluded, resulting in a significant decrease in utilization efficiency. On the other hand, the waste heat boiler of an incinerator usually has a margin of about 6 kg/cm 2 between the turbine end normal pressure and the boiler's maximum pressure, and even if this pressure difference cannot be utilized in its entirety,
By utilizing the function as a steam accumulator due to the large can water capacity and steel material capacity, it is possible to smooth out not only short period fluctuations in the steam flow rate but also somewhat long period changes in absorbed heat amount. In order to achieve this smoothing, it is necessary to improve the water supply control described above and to take into account the allowable range for liquid level fluctuations in the design, but these can be done using conventional techniques.

一方、ごみの安定燃焼制御の立場からみると、
ボイラー蒸発量安定化と、ごみ焼却の安定化とは
深い関連があり、両立させ得るものである。しか
しながら、既に述べたように蒸発量の変動を焼却
制御により定値に制御しようとすると極めて制御
性が悪く、結果的に充分なごみの安定燃焼を達成
することは不可能である。ところで、一定負荷設
定時におけるボイラー圧力は既に述べたように、
すぐれた変動特性をもつものであり、これをごみ
の安定燃焼制御のための制御変数に選ぶことによ
り、無理なくごみの安定燃焼を達成することが可
能である。
On the other hand, from the standpoint of stable combustion control of waste,
Stabilizing boiler evaporation and stabilizing waste incineration are closely related and can be achieved simultaneously. However, as described above, when attempting to control fluctuations in the amount of evaporation to a constant value by incineration control, controllability is extremely poor, and as a result, it is impossible to achieve sufficient stable combustion of waste. By the way, as already mentioned, the boiler pressure when setting a constant load is
It has excellent fluctuation characteristics, and by selecting this as a control variable for stable garbage combustion control, it is possible to achieve stable garbage combustion without difficulty.

又、上記とは別に、ごみ焼却炉に対するNOx
規制も問題になつている。従来、燃焼制御システ
ムにおいてNOx抑制を考慮したものはないが、
焼却炉の運転方法として、燃焼通気温度を高め、
乾燥段において内部着火せしめ、乾燥と同時に乾
留ガス化を促進すると同時に、燃焼段と後燃焼段
通気を絞つて炉内ガス燃焼ゾーンにおける酸素濃
度を下げることが考えられる。又、オーバーフア
イヤエアーによる炉内冷却は、再循環排ガスを用
いるか、又は水噴霧により、極めて効果的な
NOx抑制が可能である。
In addition to the above, NOx for garbage incinerators
Regulation is also an issue. Conventionally, no combustion control system has considered NOx suppression;
The method of operating an incinerator is to increase the combustion ventilation temperature,
It is conceivable to cause internal ignition in the drying stage to promote drying and carbonization gasification at the same time, and at the same time to reduce the oxygen concentration in the gas combustion zone in the furnace by restricting ventilation in the combustion stage and after-combustion stage. Furnace cooling by overfire air is extremely effective, either by using recirculated exhaust gas or by water spray.
NOx suppression is possible.

又、焼却炉における炉温は、ごみのカロリー値
に対応して変えることができるが、従来では炉内
冷却空気による炉温制御が行なわれている。とこ
ろで、炉内冷却空気を用いると、該炉内冷却空気
と燃焼ガスとの攬拌混合が容易ではなく、均一化
した温度の検出が困難な他、新鮮空気の導入によ
り部分的な未撚ガスの燃焼促進があり、逆応答が
あるため、満足できる成果が得られなかつた。従
つて、炉温制御としては新鮮空気によらず、再循
環ガス、又は水噴霧によるものが望ましい。
Furthermore, the furnace temperature in the incinerator can be changed in accordance with the calorie value of the waste, but conventionally the furnace temperature has been controlled using in-furnace cooling air. However, when in-furnace cooling air is used, it is not easy to stir and mix the in-furnace cooling air and combustion gas, and it is difficult to detect a uniform temperature. Because of the acceleration of combustion and the opposite response, satisfactory results could not be obtained. Therefore, it is desirable to control the furnace temperature not by using fresh air but by using recirculated gas or water spray.

NOxの抑制手段としては、NH3脱硝法等が提案
されている。この方法はNH3の消費コストが高い
他、NH4Clのボイラー伝熱面における堆積及び腐
食、更には煙突よりの白煙発生等の問題もあるの
で、前記したNOx抑制は運転方法による抑制を
第1とし、NH3脱硝は補助的に用いることが望ま
しい。
As a means of suppressing NOx, NH 3 denitrification methods and the like have been proposed. This method has problems such as high NH 3 consumption cost, NH 4 Cl deposition and corrosion on the boiler heat transfer surface, and white smoke generation from the chimney. Therefore, the above-mentioned NOx suppression cannot be achieved by controlling the operation method. As the first step, it is desirable to use NH 3 denitrification as an auxiliary method.

本発明は上記に鑑みた新規な都市ごみ焼却炉の
燃焼制御装置を提供するものである。
In view of the above, the present invention provides a novel combustion control device for a municipal waste incinerator.

以下に、本発明の一実施例を図について詳細に
説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は燃焼制御装置を示すものであり、蒸発
量安定制御回路、NOx抑制制御回路、炉温制御
回路、ボイラー負荷修正回路及び投入速度制御回
路等により構成されている。上記蒸発量安定制御
回路は、ボイラー1のドラム圧力信号aが入力さ
れるボイラー圧力調節計2と、該ボイラー圧力調
節計の出力が入力される空気先行用調節計3、空
燃比設定器4及び自動,手動切換設定器5と、上
記空気先行用調節計3及び空燃比設定器4の出力
が加算される加算器6と、該加算器の出力が入力
される通気量調節計7と、該通気量調節計によつ
て制御される通気量調節弁8と、上記自動・手動
切換設定器5の出力が入力される投入量調節計9
と、該投入量調節計によつて制御される火格子駆
動信発生器10と等により構成されている。上記
通気量調節弁8は通気ブロワ11から通気配管1
2を介して乾燥火格子13、燃焼火格子14及び
後燃焼火格子15への火格子下通気量を制御する
ものである。火格子駆動信号発生器10は火格子
駆動装置16,17,18に駆動信号を出力する
ものである。
FIG. 1 shows the combustion control device, which is composed of an evaporation stabilization control circuit, a NOx suppression control circuit, a furnace temperature control circuit, a boiler load correction circuit, a charging speed control circuit, and the like. The evaporation stabilization control circuit includes a boiler pressure regulator 2 to which the drum pressure signal a of the boiler 1 is input, an air advance regulator 3 to which the output of the boiler pressure regulator is input, an air-fuel ratio setting device 4, and an automatic/manual switching setting device 5, an adder 6 to which the outputs of the air advance controller 3 and the air-fuel ratio setting device 4 are added, an air flow rate controller 7 to which the output of the adder is input; An air flow control valve 8 controlled by the air flow controller, and an input flow controller 9 into which the output of the automatic/manual switching setting device 5 is input.
, a grate drive signal generator 10 controlled by the input amount controller, and the like. The ventilation amount control valve 8 is connected to the ventilation pipe 1 from the ventilation blower 11.
2 to control the amount of ventilation under the grate to the drying grate 13, combustion grate 14, and post-combustion grate 15. The grate drive signal generator 10 outputs drive signals to the grate drive devices 16, 17, and 18.

上記NOx抑制制御回路は、排ガスの一部を取
出すサンプリング装置19と、上記排ガスの一部
が供給されるNOx濃度検出装置20及びO2濃度
検出装置21と、NO2濃度O2換算器22と、酸素
濃度設定装置23と、平均化装置24と、酸素濃
度調節計25と、手動バイアス設定器26と、該
手動バイアス設定器の出力と前記空燃比設定器4
の出力とを加算して前記加算器6に入力する加算
器27と等により構成されている。
The NOx suppression control circuit includes a sampling device 19 that extracts a portion of the exhaust gas, a NOx concentration detection device 20 and an O 2 concentration detection device 21 to which a portion of the exhaust gas is supplied, and a NO 2 concentration O 2 converter 22. , an oxygen concentration setting device 23, an averaging device 24, an oxygen concentration controller 25, a manual bias setting device 26, an output of the manual bias setting device, and the air-fuel ratio setting device 4.
and an adder 27 which adds the output of the adder 27 and inputs the result to the adder 6.

前記炉温制御回路は、炉温信号bが入力される
非線形回路28と、該非線形回路の出力が入力さ
れる炉温調節計29と、該炉温調節計によつて制
御される排気再循環量調節弁30と等により構成
されている。この排気再循環量調節弁は排気再循
環装置31から再循環用ブロワ32を介した排気
再循環量を制御するものである。
The furnace temperature control circuit includes a nonlinear circuit 28 to which the furnace temperature signal b is input, a furnace temperature controller 29 to which the output of the nonlinear circuit is input, and an exhaust gas recirculation circuit controlled by the furnace temperature controller. It is composed of a quantity control valve 30 and the like. This exhaust gas recirculation amount control valve controls the amount of exhaust gas recirculated from the exhaust gas recirculation device 31 via the recirculation blower 32.

33はボイラー負荷修正回路であり、該ボイラ
ー負荷修正回路からの信号によりボイラー負荷3
4が制御される。
33 is a boiler load correction circuit, and the boiler load 3 is adjusted by a signal from the boiler load correction circuit.
4 is controlled.

投入速度制御回路はごみ投入量信号cが入力さ
れる自動・手動切換設定器35と、該自動・手動
切換設定器の出力が入力される前記の投入量調節
計9と等により構成されている。
The feeding speed control circuit is composed of an automatic/manual switching setting device 35 to which the garbage feeding amount signal c is input, the above-mentioned feeding amount controller 9 to which the output of the automatic/manual switching setting device is input, etc. .

尚、第1図において、dは通気量信号、36は
ごみ投入ホツパー、37はロータリキルン、38
は集塵器、39はごみの基準レベルをそれぞれ示
すものである。
In Fig. 1, d is an airflow rate signal, 36 is a garbage input hopper, 37 is a rotary kiln, and 38 is a rotary kiln.
3 represents a dust collector, and 39 represents a standard level of dust.

上記のような構成を有する燃焼制御装置の作用
及び効果を上記した各回路ごとに説明する。
The operation and effect of the combustion control device having the above configuration will be explained for each of the above circuits.

蒸発量安定制御回路は、所要蒸気量又は所要焼
却量より設定蒸発量に対応してごみ送り速度と通
気量を制御するのにボイラードラム圧力を検出し
て設定圧力との偏差を修正せしめる如く動作す
る。尚、圧力変動の許容幅を大きめにとり、熱収
支の差を吸収緩和せしめる。
The evaporation stability control circuit operates by detecting the boiler drum pressure and correcting the deviation from the set pressure in order to control the waste feeding speed and ventilation amount according to the set evaporation amount based on the required steam amount or required incineration amount. do. Note that the allowable range of pressure fluctuation is set to be large enough to absorb and alleviate the difference in heat balance.

前記ドラム圧力信号aが入力されるボイラー圧
力調節計2は、圧力が下ればそれを修正すべきご
み送りの増加量と、これに比例した空気の増量を
設定し、逆に圧力が上がれば、これを修正すべき
ごみ送りの減少量と、これに比例した空気の減少
量を設定すべく作動する。このために、上記調節
計2の出力は前記空気先行用調節計3に導びか
れ、一時的な大きな圧力の変動に対して空気の操
作のみで対処するように、上記調節計2の出力の
変化速度に比例した空気量を、圧力が上昇した場
合には空気を減少させ、下降した場合には増加さ
せる方向に設定すべく作動する。又、上記調節器
2の出力信号はごみ投入量調節計9の設定値とし
て出力されると共に、前記空燃比設定器4を通過
した後、上記調節計3の出力と加算器6により加
算され、この蒸発量安定制御回路における通気量
の要求値となり、前記通気量調節計7に導びかれ
る。
The boiler pressure regulator 2 to which the drum pressure signal a is input sets the amount of increase in waste feed to be corrected when the pressure decreases and the increase in the amount of air proportional to this, and vice versa when the pressure increases. , operates to set the amount of reduction in waste feed to be corrected and the amount of air reduction proportional to this. For this purpose, the output of the controller 2 is led to the air advance controller 3, and the output of the controller 2 is changed so that temporary large pressure fluctuations can be dealt with only by manipulating the air. It operates to set the amount of air proportional to the rate of change so that when the pressure increases, the air amount decreases, and when the pressure decreases, the amount of air increases. Further, the output signal of the regulator 2 is outputted as a setting value of the garbage input amount regulator 9, and after passing through the air-fuel ratio setting device 4, is added to the output of the regulator 3 by an adder 6, This becomes the required value of the ventilation amount in this evaporation amount stabilization control circuit, and is led to the ventilation amount controller 7.

上記した蒸発量安定制御回路の動作により、蒸
発量に比較して缶水容量が大きく、大きな熱貫性
をもつごみ焼却ボイラーにおいて、ごみの不均一
な燃焼に基ずくボイラー蒸気の過不足が多少のド
ラム圧力の変動を許す結果生ずる自己蒸発又は蒸
気泡の凝縮によつて平滑されるため、制御動作に
かかる負担が軽減されると共に、制御性が著しく
改善される。又蒸発量に対する空気量の前記した
先行動作は火格子上の乾燥済みごみの燃焼制御に
より制御の応答性を高め、制御性を改善できる。
このことにより、結果としてごみの安定燃焼を無
理なく行うことができる。
Due to the operation of the evaporation stabilization control circuit described above, in a waste incineration boiler that has a large can water capacity and a large heat penetration compared to the evaporation amount, there may be some excess or deficiency of boiler steam due to uneven combustion of waste. The pressure on the drum is smoothed by self-evaporation or condensation of vapor bubbles resulting from allowing fluctuations in the drum pressure, thereby reducing the burden on control operations and significantly improving controllability. Furthermore, the above-mentioned advance control of the amount of air relative to the amount of evaporation increases control responsiveness and improves controllability by controlling the combustion of dried waste on the grate.
As a result, stable combustion of garbage can be carried out without difficulty.

前記NOx抑制制御回路では、過去一定時間内
の平均性NOx濃度から、現在撚しているごみに
みあつた適正排ガス酸素濃度を設定し、前記した
火格子下通気量を操作することによつて排ガス中
の酸素濃度を制御し、NOxの発生を低レベルに
抑制維持する。NOxは第2図にも示すように、
低酸素燃焼させることにより、充分低いレベルに
抑制することができる。このことを利用して、上
記NOx抑制制御回路では、排ガスの一部がサン
プリング装置19よりNOx濃度検出装置20及
びO2濃度検出装置21に導びかれ、この検出結
果がNOx濃度O2換算器22に連続的に導びか
れ、O2換算されたNOx濃度は酸素濃度設定装置
23に入力される。この酸素濃度設定装置23は
一定時間TN内におけるNOx濃度の平均値xに
対して第3図に示す如く、新たに設定すべき適正
酸素濃度O2を次式に従つて演算するための非線
形回路と、オペレータかNOxの発生を観察しつ
つ人為的に設定できるバイアス回路とを含んでい
る。
The NOx suppression control circuit sets an appropriate exhaust gas oxygen concentration for the garbage currently being twisted based on the average NOx concentration over a certain period of time in the past, and controls the amount of airflow under the grate by manipulating the amount of ventilation under the grate. Controls the oxygen concentration in exhaust gas to suppress and maintain NOx generation at low levels. As shown in Figure 2, NOx is
By performing low-oxygen combustion, the level can be suppressed to a sufficiently low level. Taking advantage of this, in the NOx suppression control circuit, a part of the exhaust gas is guided from the sampling device 19 to the NOx concentration detection device 20 and the O 2 concentration detection device 21, and the detection results are sent to the NOx concentration O 2 converter. 22 and the NOx concentration converted into O 2 is input to an oxygen concentration setting device 23 . This oxygen concentration setting device 23 is a nonlinear circuit for calculating the appropriate oxygen concentration O 2 to be newly set for the average value x of the NOx concentration within a certain time TN according to the following formula, as shown in FIG. and a bias circuit that can be set manually by the operator while observing the generation of NOx.

+α(NO −x)+′ 但し、NO :NOx濃度の許容限界値 α:α=0(NO >x) α=正常数(NO ≦x) :常数 ′:オペレータが人為的に設定可
能な酸素濃度のバイアス分 結果的に酸素濃度設定装置23からは、一定時
間TNごとに新たな適正排ガス酸素濃度が前記酸
素濃度調節計25の目標値として出力・保持され
る。この酸素濃度調節計25は前記平均化装置2
4によつて平滑化され、滑かに変化する酸素濃度
信号を測定しつつ比例・積分動作によつてこれを
ゆつたりと制御するための火格子下通気量の修正
量を出力し、バイアス設定器26を通つた後、ド
ラム圧力制御回路の通気量要求値に加算される。
O * 2 = 2 + α (NO * x - x) + ' 2 However, NO * x : Tolerable limit value of NOx concentration α: α = 0 (NO * x > x) α = Normal number (NO * x ≦ x ) 2 : Constant ' 2 : Bias amount of oxygen concentration that can be set artificially by the operator As a result, the oxygen concentration setting device 23 outputs a new appropriate exhaust gas oxygen concentration to the oxygen concentration controller 25 at fixed time intervals TN. Output and retained as target value. This oxygen concentration controller 25 is connected to the averaging device 2.
While measuring the oxygen concentration signal that changes smoothly and smoothed by After passing through the setter 26, it is added to the airflow requirement value of the drum pressure control circuit.

上記したNOx抑制制御回路の動作は、NOx濃
度の動的変動に対して直接対処するのではなく、
過去一定時間の平均的NOx濃度より新たな適正
排ガス酸素濃度を設定し、ゆつたりとした制御に
より酸素濃度を所定値に維持するので、制御動作
にかかる負担が軽く、ボイラー圧力制御系への干
渉も少い。又、オペレータの観察によつて設定で
きるバイアス設定回路を含むため、NOx発生量
の少いごみの場合には必要以上の低酸素燃焼を回
避することができる。
The operation of the NOx suppression control circuit described above does not directly deal with dynamic fluctuations in NOx concentration.
A new appropriate exhaust gas oxygen concentration is set based on the average NOx concentration over a certain period of time in the past, and the oxygen concentration is maintained at a predetermined value through slow control, reducing the burden on control operations and reducing the burden on the boiler pressure control system. There is also less interference. Furthermore, since it includes a bias setting circuit that can be set based on operator observation, unnecessarily low oxygen combustion can be avoided in the case of waste that generates a small amount of NOx.

前記した炉温制御回路では、不完全燃焼灰の溶
融及び炉の破損等を防ぐための炉温許容範囲を設
定し、炉温をこの範囲内に維持する。このような
回路として、前記した低酸素燃焼による炉温の高
騰を押えるために炉内への排気再循環又は水噴霧
を行うものが考えられる。第1図では排気再循環
を用いたものであり、前記炉温信号bは非線形回
路28を通り、炉温調節計29に入る。非線形回
路28は第4図に示す折線特性を有する。従つて
調節計29は炉温が許容範囲内にあるときは、一
定量の排ガスを炉内に送り、上限を超したときに
はこの量を増し、又下限より下つたときには減す
ことにより、炉温を許容範囲内に維持させるべく
作動する。
In the above-described furnace temperature control circuit, an allowable furnace temperature range is set to prevent incompletely burned ash from melting and damage to the furnace, and the furnace temperature is maintained within this range. As such a circuit, a circuit that recirculates exhaust gas into the furnace or performs water spraying is considered in order to suppress the rise in furnace temperature due to the above-mentioned low-oxygen combustion. In FIG. 1, exhaust gas recirculation is used, and the furnace temperature signal b passes through a nonlinear circuit 28 and enters a furnace temperature controller 29. The nonlinear circuit 28 has a polygonal characteristic shown in FIG. Therefore, the controller 29 sends a certain amount of exhaust gas into the furnace when the furnace temperature is within the permissible range, increases this amount when it exceeds the upper limit, and decreases this amount when it falls below the lower limit, thereby controlling the furnace temperature. It operates to maintain the temperature within the permissible range.

上記した排ガス再循環、又は水噴霧により確実
な冷却効果が得られ、更にこれらの操作は排ガス
中の酸素濃度に影響を与えないので、前記NOx
抑制制御回路への干渉をなくすことができる。
又、炉温の変動に許容幅を与えることにより、ボ
イラー圧力制御回路への干渉を少くできる。
A reliable cooling effect can be obtained by the exhaust gas recirculation or water spray described above, and furthermore, these operations do not affect the oxygen concentration in the exhaust gas, so the NOx
Interference with the suppression control circuit can be eliminated.
Furthermore, by providing a permissible range for fluctuations in furnace temperature, interference with the boiler pressure control circuit can be reduced.

前記ボイラー負荷修正回路33では、過去一定
時間の平均的ごみ投入量から、現時点において燃
やしているごみの質を大雑把に評価し、平均的ご
み投入量が規定投入量から大きくずれないような
適正なボイラー負荷を設定する。このために、ご
み投入ホツパ36へのごみ投入量と投入時刻が一
定時間TBごとにチエツクされ、その間における
平均ごみ投入量が計算される。この平均ごみ投入
量と規定投入量との偏差は、ボイラー負荷を修正
することにより、より少くすることができる。従
つて、上記ボイラー負荷修正回路33は過去一定
時間TBの平均ごみ投入量(焼却量)が規定値よ
り多ければボイラー負荷34を減少させ、逆に小
さければ増加させるような出力を一定時間ごとに
出力し、これを保持する。
The boiler load correction circuit 33 roughly evaluates the quality of the garbage currently being burned from the average amount of garbage input over a certain period of time in the past, and determines an appropriate amount so that the average amount of garbage input does not deviate greatly from the specified input amount. Set boiler load. For this purpose, the amount of garbage input into the garbage input hopper 36 and the input time are checked every fixed period of time TB, and the average amount of garbage input during that period is calculated. The deviation between the average waste input amount and the specified input amount can be further reduced by correcting the boiler load. Therefore, the boiler load correction circuit 33 decreases the boiler load 34 if the average garbage input amount (incineration amount) of the past fixed time TB is larger than the specified value, and conversely increases the output if it is smaller than the specified value. Output and retain this.

上記したボイラー負荷修正回路では、乾燥火格
子13の切り出しスピードによつてごみ投入速度
を規定値に常時かたく制御するのではなく、平均
的ごみ質にみあつたボイラー負荷を一定時間ごと
に修正することにより、間接的に投入速度制御を
行うことによつて、投入量制御と他の制御回路と
の間の動的な干渉を回避することができ、結果的
にNOx抑制制御及びボイラー圧力制御等を両立
させることができる。
In the boiler load correction circuit described above, the waste input speed is not always tightly controlled to a specified value by the cut-out speed of the drying grate 13, but the boiler load corresponding to the average waste quality is corrected at regular intervals. By controlling the input speed indirectly, dynamic interference between the input amount control and other control circuits can be avoided, and as a result, NOx suppression control, boiler pressure control, etc. It is possible to achieve both.

前記投入速度制御回路では、ボイラー圧力制御
回路からのごみ投入量の要求値に対して投入速度
を測定制御する。この投入速度の測定値として、
クレーンによるホツパ36へのごみ投入が規定回
数(1〜2回)行なわれた間の平均的投入速度を
随時出力保持する。前記投入速度調節計9はこの
平均的投入速度を計測しつつ、この値と投入速度
の要求値との偏差にもとづいて比例制御を行う。
上記調節計9は電流等の連続量を出力し、この出
力は前記火格子駆動信号発生器10に入力され
る。この発信器10は連続信号を積算し、この積
算量が一定になつた時点で火格子駆動信号を出力
し、同時にリセツトされて新たな積算をはじめ
る。この火格子駆動信号は前記火格子駆動装置1
6,17,18に供給され、この信号が受信され
るたびに上記火格子駆動装置16,17,18が
一回の往復動作を行う。
The charging speed control circuit measures and controls the charging speed with respect to the requested value of the amount of waste to be charged from the boiler pressure control circuit. As a measurement value of this feeding speed,
The average input speed during the specified number of times (1 to 2 times) of garbage input into the hopper 36 by the crane is maintained as an output at any time. The feeding speed controller 9 measures this average feeding speed and performs proportional control based on the deviation between this value and the required value of the feeding speed.
The controller 9 outputs a continuous amount such as current, and this output is input to the grate drive signal generator 10. This transmitter 10 integrates a continuous signal, outputs a grate drive signal when the integrated value becomes constant, and is simultaneously reset to start a new integration. This grate drive signal is transmitted to the grate drive device 1.
6, 17, 18, and each time this signal is received, said grate drive 16, 17, 18 performs one reciprocating motion.

上記した第1図の制御装置における上記したよ
うな制御のフローチヤートは第5図のようにな
る。第5図において、焼却量制御を実施したとき
には、炉温制御とごみの安定燃焼制御が要求され
る。又、負荷設定時におけるボイラー圧力制御に
よつてはごみ送り操作を優先し、付加的に通気量
操作を行う。蒸発量安定制御とNOx抑制制御と
は焼却量制御より低いレベルにおいて、別系列の
項目として要求される。
A flowchart of the above-described control in the control device of FIG. 1 described above is as shown in FIG. 5. In FIG. 5, when incineration amount control is implemented, furnace temperature control and stable garbage combustion control are required. Also, depending on the boiler pressure control when setting the load, priority is given to the garbage feeding operation, and the ventilation amount is additionally controlled. Evaporation amount stabilization control and NOx suppression control are required as separate items at a lower level than incineration amount control.

本発明は叙上の如く、ボイラー圧力の多少の変
動を許しつつ燃焼制御により圧力を修正し、炉温
の変動に許容量を与え、排ガス再循環、水噴霧等
によつて炉温制御を行い、ごみ質にみあつた排ガ
ス酸素濃度を設定制御すると共に、一定時間ごと
のボイラー負荷の修正により平均化ごみ投入量制
御を行うので、ボイラー蒸発量の安定化、NOx
抑制制御、炉温制御、及びごみ投入量制御を同時
に実施することが可能である。
As described above, the present invention corrects the pressure by combustion control while allowing some fluctuations in the boiler pressure, provides a tolerance for fluctuations in the furnace temperature, and controls the furnace temperature through exhaust gas recirculation, water spraying, etc. In addition to setting and controlling the exhaust gas oxygen concentration that matches the waste quality, the average waste input amount is controlled by modifying the boiler load at regular intervals, thereby stabilizing the amount of boiler evaporation and reducing NOx.
It is possible to simultaneously perform suppression control, furnace temperature control, and waste input amount control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロツク図、
第2図は排ガス酸素濃度に対するNOx濃度を示
す線図、第3図は酸素濃度設定装置の特性を示す
線図、第4図は非線形回路の特性を示す線図、第
5図は第1図の装置の制御のフローチヤートであ
る。 1:ボイラー、33:ボイラー負荷修正回路。
FIG. 1 is a block diagram showing one embodiment of the present invention;
Figure 2 is a diagram showing the NOx concentration versus exhaust gas oxygen concentration, Figure 3 is a diagram showing the characteristics of the oxygen concentration setting device, Figure 4 is a diagram showing the characteristics of the nonlinear circuit, and Figure 5 is the diagram shown in Figure 1. This is a flowchart of the control of the device. 1: Boiler, 33: Boiler load correction circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 廃ガスボイラーを設置した都市ごみ焼却炉の
燃焼制御装置において、ボイラードラムの圧力を
一定にすべくごみ送り速度及び通気量を制御する
蒸発量安定制御回路と、過去一定時間のNOx濃
度から通気量を修正して排ガスの酸素濃度制御を
行うNOx抑制制御回路と、炉温の上限及び下限
を設定し排ガス循環又は水噴霧により炉温制御す
る炉温制御回路と、ごみ量により回収可能熱量に
応じたボイラー負荷設定を行うボイラー負荷修正
回路とを備えたことを特徴とする都市ごみ焼却炉
の燃焼制御装置。
1. In the combustion control system of a municipal waste incinerator equipped with a waste gas boiler, there is an evaporation stabilization control circuit that controls the waste feed rate and ventilation amount to keep the pressure of the boiler drum constant, and a ventilation control circuit that controls the amount of ventilation based on the NOx concentration over a certain period of time. A NOx suppression control circuit that controls the oxygen concentration of exhaust gas by correcting the amount of oxygen, a furnace temperature control circuit that sets the upper and lower limits of the furnace temperature and controls the furnace temperature through exhaust gas circulation or water spray, and a NOx control circuit that controls the amount of heat that can be recovered depending on the amount of waste. 1. A combustion control device for a municipal waste incinerator, characterized by comprising a boiler load correction circuit that sets a boiler load accordingly.
JP11926178A 1978-09-29 1978-09-29 Combustion controller for city waste incinerator Granted JPS5546357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11926178A JPS5546357A (en) 1978-09-29 1978-09-29 Combustion controller for city waste incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11926178A JPS5546357A (en) 1978-09-29 1978-09-29 Combustion controller for city waste incinerator

Publications (2)

Publication Number Publication Date
JPS5546357A JPS5546357A (en) 1980-04-01
JPS6115322B2 true JPS6115322B2 (en) 1986-04-23

Family

ID=14756947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11926178A Granted JPS5546357A (en) 1978-09-29 1978-09-29 Combustion controller for city waste incinerator

Country Status (1)

Country Link
JP (1) JPS5546357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258615A (en) * 1988-08-25 1990-02-27 Yokohama Rubber Co Ltd:The Fitting structure of buffer work

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036826A (en) * 1983-09-05 1985-02-26 Hitachi Zosen Corp Method of reducing production of nox in furnace by blowing in steam
JPS60162116A (en) * 1984-01-31 1985-08-23 Hitachi Zosen Corp Incinerator
JPS61180825A (en) * 1985-02-06 1986-08-13 Tokyo Met Gov Operation of incinerator
JPH0796132A (en) * 1993-06-23 1995-04-11 Kurabo Ind Ltd Method for controlling supply of ammonia in denitration system and its controller
JPH07103447A (en) * 1993-10-12 1995-04-18 Sekisui Plastics Co Ltd Waste plastic treatment device
JPH11201435A (en) * 1998-01-19 1999-07-30 Hitachi Ltd Waste incineration generator plant and load control method thereof
JP5021543B2 (en) * 2008-03-31 2012-09-12 三井造船株式会社 Combustion control method and waste treatment apparatus
JP6797082B2 (en) * 2017-06-27 2020-12-09 川崎重工業株式会社 Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method, and grate-type waste incinerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258615A (en) * 1988-08-25 1990-02-27 Yokohama Rubber Co Ltd:The Fitting structure of buffer work

Also Published As

Publication number Publication date
JPS5546357A (en) 1980-04-01

Similar Documents

Publication Publication Date Title
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
CN109084324B (en) The burning air quantity control system and control method of biomass boiler
JPS6115322B2 (en)
JP6153090B2 (en) Waste incinerator and waste incineration method
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
US20040255831A1 (en) Combustion-based emission reduction method and system
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
CN114046517B (en) Air distribution system control method based on flue gas recirculation
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
JP3145998B2 (en) Control method of combustion efficiency
JP2712017B2 (en) Combustion system and combustion furnace
JPS6239325B2 (en)
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
JP2001082719A (en) Combustion control for refuse incinerating plant
KR20000065241A (en) Control method of combustion of waste incinerator
US7845291B2 (en) Control method for waste incineration plants with auxiliary burner operation
JP2001033019A (en) Method for controlling combustion in refuse incinerator and refuse incinerator
JP2001304525A (en) Waste incinerator and its operation method
JPS6136611A (en) Combustion control of refuse incinerator
JPH0323806B2 (en)
JPH0217775B2 (en)
JPS6125969B2 (en)
KR100434650B1 (en) Automatic Combustion Control System for Stoker Type Refuse Incinerator
JP3235643B2 (en) Combustion control method and apparatus for sludge incinerator
JP2973154B2 (en) Combustion control method for incinerator