JPS61153192A - Method for removing phosphoric ion in waste water - Google Patents

Method for removing phosphoric ion in waste water

Info

Publication number
JPS61153192A
JPS61153192A JP27813484A JP27813484A JPS61153192A JP S61153192 A JPS61153192 A JP S61153192A JP 27813484 A JP27813484 A JP 27813484A JP 27813484 A JP27813484 A JP 27813484A JP S61153192 A JPS61153192 A JP S61153192A
Authority
JP
Japan
Prior art keywords
water
oxy
gamma
iron
phosphoric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27813484A
Other languages
Japanese (ja)
Inventor
Hiroshi Matoba
的場 浩
Hiroaki Ida
井田 宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP27813484A priority Critical patent/JPS61153192A/en
Publication of JPS61153192A publication Critical patent/JPS61153192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To remove rapidly and efficiently phosphoric ions by using gamma-oxy hydrated iron when phosphoric ions in waste water are removed. CONSTITUTION:When phosphoric ions in waste water are removed, gamma-oxy hydrated iron is used. The pH of the phosphoric ion-contg. water is preferably regulated to 4-10, when the gamma-oxy hydrated iron is brought into contact with the water. As a contact method, the phosphoric ion-contg. water is passed through the bed of granular or powdery gamma-oxy hydrated iron, or a batch process wherein the gamma-oxy hydrated iron is added to the phosphoric ion-contg. water and agitated is used. In this method, the operation for removing phosphoric ions is simplified, the removing speed is high, and the removal efficiency is remarkably high. Although the removing effect is excellent, sludge is hardly generated. Moreover, since the gamma-oxy hydrated iron is hardly soluble in water, the iron is not eluted into the treated water. Besides, the gamma-oxy hydrated iron can be obtained inexpensively, because iron occurs in nature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本0発明は、生活排水、産業排水、農業排水等の各種排
水中に含まれるりん酸イオンを効率よく除去する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for efficiently removing phosphate ions contained in various types of wastewater such as domestic wastewater, industrial wastewater, and agricultural wastewater.

(従来の技術) 近年、りん酸イオン物質は湖沼等においては。(Conventional technology) In recent years, phosphate ion substances have been found in lakes and marshes.

富栄養化の原因物質の1つとなるとされており。It is said to be one of the causes of eutrophication.

特に閉鎖水域においては「あおこ」の発生、海域におい
ては赤潮の発生等に大いに関与しているとされ、我々に
種々の害を与えている。これがために湖沼法等において
は排水中のりん酸イオン含有量に規制が行われると同時
にりん酸イオン物質の湖沼、河川への流入防止の点から
りん酸イオン物質の除去技術が研究され種々提案されて
いる。
In particular, they are said to play a major role in the occurrence of blue-green algae in closed waters and red tide in sea areas, causing various harm to us. For this reason, the Lakes and Marshes Act etc. regulate the phosphate ion content in wastewater, and at the same time, research is being done on technology to remove phosphate ion substances from the perspective of preventing phosphate ion substances from flowing into lakes, marshes, rivers, etc., and various proposals have been made. has been done.

現在、これらりん酸イオンの除去方法としては凝集沈澱
法、生物学的法、イオン交換法、晶析法などの技術があ
るが、主として実用に供されているのは凝集沈澱法によ
る方法が多い。
Currently, methods for removing these phosphate ions include coagulation-precipitation, biological methods, ion-exchange methods, and crystallization, but most of the methods used in practical use are coagulation-precipitation. .

(発明が解決しようとする問題点) この凝集沈澱法は硫酸アルミニウム、硫酸第1鉄、硫酸
第2鉄、塩化アルミニウム、塩化第1鉄。
(Problems to be Solved by the Invention) This coagulation-precipitation method uses aluminum sulfate, ferrous sulfate, ferric sulfate, aluminum chloride, and ferrous chloride.

塩化第2鉄、水酸化カルシウム等の金属塩を使用してp
H調整し、水酸化物としてフロックをつくるか又は反応
させて1反応物とともに残るりん酸イオンを共沈させる
のでりん酸イオンの除去方法としては安定した処理方法
ではある。しかしながら。
p using metal salts such as ferric chloride and calcium hydroxide.
It is a stable treatment method for removing phosphate ions because it adjusts H and forms flocs as hydroxide or reacts to co-precipitate the remaining phosphate ions with one reactant. however.

この方法はりん酸イオン濃度に対して金属塩を多量に添
加する必要がある。このことは添加金属塩の使用量に対
してりん酸イオンの除去効率がわるいことを示すととも
に、加うるに沈澱汚泥が多量に発生することも欠点とさ
れるものである。また。
This method requires the addition of a large amount of metal salt relative to the phosphate ion concentration. This indicates that the removal efficiency of phosphate ions is poor relative to the amount of added metal salt used, and in addition, a large amount of precipitated sludge is generated, which is considered to be a drawback. Also.

その他の生物学的法、イオン交換法、晶析法等もいずれ
も汚泥の発生量が多量であるとともに多くの薬品を必要
とすること、 pi副調整必要であること操作が複雑で
運転管理が難しいことなども欠点となるものである。
Other biological methods, ion exchange methods, crystallization methods, etc. all generate a large amount of sludge, require many chemicals, require PI sub-adjustment, are complicated to operate, and require operational management. Difficulty is also a drawback.

(問題点を解決するための手段) 本発明者等は従来方法の欠点を゛解決するために鋭意研
究を行った結果、γ−オキシ永和鉄が非常に効率よくり
ん酸イオンを除去し得るものであることを見出し1本発
明に到達したのである。
(Means for Solving the Problems) The present inventors conducted intensive research to solve the drawbacks of conventional methods, and found that γ-oxyyeiwa iron can remove phosphate ions very efficiently. They discovered that this is the case and arrived at the present invention.

すなわち1本発明によれば、りん酸イオンを含む排水中
にγ−オキシ水和鉄を添加し、常温で攪拌し、排水中の
りん酸イオンを難溶なりん化合物として沈降させるか、
あるいは吸着させて、りん酸イオン物質を効率よく排水
中より除去することができる。
That is, according to the present invention, γ-oxyiron hydrate is added to wastewater containing phosphate ions, and the mixture is stirred at room temperature to precipitate the phosphate ions in the wastewater as a hardly soluble phosphorus compound, or
Alternatively, phosphate ion substances can be efficiently removed from wastewater by adsorption.

本発明に使用するT−オキシ永和鉄は別名、γ−含水酸
化鉄あるいはγ−オキシ水酸化鉄などと呼ばれ、天然に
はウロコ鉄鉱などで産出するが。
T-oxyyeiwa iron used in the present invention is also called γ-hydrous iron oxide or γ-oxyiron hydroxide, and is naturally produced in scale ironite.

人工的に製造するには実験化学講座、第9巻(丸首、 
1958年版)、無機化合物の合成と精製(340頁)
や日化誌1970年、91巻、10号(935頁)等に
記載されている方法があり、その使用の際の形状は粒状
、粉状のものがあるが2本発明においてはりん酸イオン
除去装置の形式、大きさ、水の通過速度等とよって得ら
れる除去効率とを考慮に入れて、その使用形状を決定す
るものである。しかしながら、一般的には接触面積の大
きいところの粉状を用いるのが好ましい。
For artificial production, Experimental Chemistry Course, Volume 9 (round neck,
1958 edition), Synthesis and Purification of Inorganic Compounds (340 pages)
There is a method described in Nikkashi, Vol. 91, No. 10 (page 935), 1970, etc., and it can be used in the form of granules or powder, but in the present invention, phosphate ions are used. The shape of the removal device to be used is determined by taking into account the type and size of the removal device, the removal efficiency obtained by the water passage speed, etc. However, it is generally preferable to use a powder that has a large contact area.

また1種々のりん酸イオン含有水には種々のpHのもの
があるので、γ−オキシ永和鉄を接触させる際にはりん
酸イオン含有水のpiを4〜10とすることが望まれる
。この場合にpHが4より小さいと鉄分が排水中に溶解
し、りん酸イオン除去効率が悪くなる傾向があり、また
、pHが10より大きいとγ−オキシ水和鉄の表面に塩
類が析出皮膜をつくってりん酸イオンの除去が著しく損
なわれることになる傾向があるので、この場合pHは6
〜9が好ましい。また接触方法はγ−オキシ水和鉄の粒
状又は粉体の層状体にりん酸イオン含有水を通過させる
方法(静置層を通過又は撹拌層を通過)やりん酸イオン
含有水中にγ−オキシ水和鉄を添加して撹拌するバッチ
法が有効である。
Furthermore, since there are various types of phosphate ion-containing water with various pH values, it is desirable that the pi of the phosphate ion-containing water be 4 to 10 when contacting with γ-oxy Eiwa iron. In this case, if the pH is less than 4, iron will dissolve in the waste water, and the phosphate ion removal efficiency will tend to deteriorate.If the pH is greater than 10, salts will form on the surface of the γ-oxyhydrated iron. In this case, the pH should be 6.
-9 is preferable. In addition, contact methods include passing phosphate ion-containing water through a layered body of granular or powdered iron hydrate (passing through a static layer or stirring layer), or passing γ-oxyiron in water containing phosphate ions. A batch method in which hydrated iron is added and stirred is effective.

(実施例) 以下に実施例をあげて本発明の詳細な説明するが、実施
例に用いたT−オキシ水和鉄は実験化学講座(前記)の
記載方法により次記のごとく調製した。
(Example) The present invention will be described in detail with reference to Examples below. The T-oxyiron hydrate used in the Examples was prepared as follows according to the method described in Experimental Chemistry Course (above).

T−オキシ水和鉄の製造; 120gの塩化第1鉄を31の水に溶解し、液を濾過し
、その濾液にウロトロピン溶液(168g/600i+
 l水)を性別した。青緑色の水酸化第1鉄の沈澱が生
じたら、この液を絶えず撹拌しながら。
Production of T-oxyiron hydrate; Dissolve 120g of ferrous chloride in 31ml of water, filter the liquid, and add urotropin solution (168g/600i+) to the filtrate.
l water) was sexed. When a blue-green ferrous hydroxide precipitate forms, stir the solution constantly.

濃塩酸80m lと亜硝酸ナトリウム溶液(42g/ 
600m1水)を加え、60℃に加熱した。酸化窒素の
発生する酸化反応が進行したら、ときどき液を攪拌しな
がら約3時間放置した。得られん上澄液を取り去り、濾
過し、塩素イオンのこんせきを認め得ない程度にまで洗
浄した。これを60℃で乾燥すると。
80ml concentrated hydrochloric acid and sodium nitrite solution (42g/
600ml water) was added and heated to 60°C. After the oxidation reaction to generate nitrogen oxide progressed, the solution was left to stand for about 3 hours while stirring occasionally. The resulting supernatant was removed, filtered, and washed to the extent that no chloride ions were present. Dry this at 60°C.

深いオレンヂ色のこまかい粉末が得られた。以下の実施
例にはこの粉末を用いた。(以下これをT−Feと略記
する。) 実施例1 1off1g/lのりん酸イオン(PO4−’)を含む
水(pH7)の200m lを3個の三角フラスコのそ
れぞれに採り、 (サンプルla)にはr−FeをO,
’1g添加し、 (サンプルlb)には比較用として活
性アルミナ(試薬特級、  200〜300メツシユ、
牛丼化学社製)を0.1g添加し、(サンプルlc)に
は硫酸アルミニウムを0.1g (少量の水に溶解)添
加してpH7に調整して、これら(la)、  (lb
)、  (lc)を常温にて24時時間上ウした。その
(1a)と(1b)については上澄液を採取し。
A deep orange fine powder was obtained. This powder was used in the following examples. (Hereinafter, this will be abbreviated as T-Fe.) Example 1 200 ml of water (pH 7) containing 1 off 1 g/l of phosphate ion (PO4-') was placed in each of three Erlenmeyer flasks, and (sample la ), r-Fe is O,
1g of activated alumina (reagent grade, 200-300 mesh) was added for comparison (sample lb).
To (sample lc), 0.1 g of aluminum sulfate (dissolved in a small amount of water) was added to adjust the pH to 7.
) and (lc) were added for 24 hours at room temperature. For (1a) and (1b), the supernatant was collected.

(IC)については濾紙(#6)にて濾過して。For (IC), filter with filter paper (#6).

これら3つの液についてりん酸イオンを測定した。Phosphate ions were measured for these three solutions.

その結果1本発明のもの(1a)はほぼ100%の除去
率、比較例1(lb)は80%、比較例2(lc)はほ
ぼ100%の除去率であった。なお、この際の沈降物は
(la)、  (lb)についてはほとんど添加量だけ
であったが、  (lc)については水酸化物のフロッ
クが多量に沈降した。
As a result, the removal rate of the present invention (1a) was approximately 100%, the removal rate of Comparative Example 1 (lb) was 80%, and the removal rate of Comparative Example 2 (lc) was approximately 100%. Incidentally, the precipitate at this time was almost only the added amount for (la) and (lb), but a large amount of hydroxide flocs precipitated for (lc).

実施例2 りん酸イオンの除去速度を調べるために本発明のγ−F
eと比較用に活性アルミナについて実施した。
Example 2 γ-F of the present invention was used to investigate the removal rate of phosphate ions.
The test was carried out on activated alumina for comparison.

10mg/ j2のりん酸イオン含有水(pH7)の1
00m1を2個の三角フラスコのそれぞれに採り、一方
へ本発明の7−Feを0.04g Cサンプ2a)、他
方に活性アルミナ(実施例1のものと同様)を0.04
gをそれぞれ加え、常温にて振トウした。次いで時間の
経過に従って上澄液中のりん酸イオンを測定した。その
結果は第1図に示すごとく2本発明のごとくγ−Feを
添加(2a)した方が著しく。
10mg/j2 of phosphate ion-containing water (pH 7)
00ml was placed in each of two Erlenmeyer flasks, 0.04g of 7-Fe of the present invention was placed in one (C sump 2a), and 0.04g of activated alumina (same as in Example 1) was placed in the other.
g were added to each and shaken at room temperature. Next, phosphate ions in the supernatant were measured over time. As shown in FIG. 1, the results were more remarkable when γ-Fe was added (2a) as in the present invention.

りんの除去効果が速いことが解った。It was found that the phosphorus removal effect is fast.

実施例3 第2図に示したような装置を用いて、りん酸イオン(P
O4−3)含有水10mg/N中よりりん酸イオンの除
去を行った。処理槽1の原水注入口2よりりん酸イオン
含有水を注入速度50cc /分で注入し。
Example 3 Phosphate ion (P
Phosphate ions were removed from 10 mg/N of water containing O4-3). Phosphate ion-containing water was injected from the raw water inlet 2 of the treatment tank 1 at an injection rate of 50 cc/min.

槽1内へはγ−Feを100g添加して、攪拌機3にて
槽1内をゆるやかに撹拌し、槽内滞留時間を30分間と
して処理水出口4より上澄水を放出した。
100 g of γ-Fe was added into the tank 1, and the inside of the tank 1 was gently stirred by the stirrer 3, and the residence time in the tank was set to 30 minutes, and supernatant water was discharged from the treated water outlet 4.

その結果、上澄水のりん酸イオンは、はぼ100%除去
されていた。また上澄水中には鉄分は検出されなかった
。5は仕切板、Fは沈降物である。
As a result, almost 100% of the phosphate ions in the supernatant water were removed. Furthermore, no iron was detected in the supernatant water. 5 is a partition plate, and F is a sediment.

(発明の効果) 本発明の方法によれば次のような利点がある。(Effect of the invention) The method of the present invention has the following advantages.

(1)りん酸イオンの除去操作が簡単で、除去速度が速
やかであり、かつ除去効率が著しく高い。
(1) The removal operation of phosphate ions is simple, the removal rate is rapid, and the removal efficiency is extremely high.

(2)アルミニウム塩、カルシウム塩を使用する凝集沈
澱法に比し、除去効果が良好であるにもかかわらずスラ
ッジの発生量がほとんどない。
(2) Compared to the coagulation-sedimentation method using aluminum salts and calcium salts, almost no sludge is generated despite the good removal effect.

(3)T−オキシ水和鉄は水に溶けがたいため、処理水
中に溶出することがない。
(3) Since T-oxyiron hydrate is hardly soluble in water, it will not be eluted into the treated water.

(4)γ−オキシ水和鉄が天然に産出するので安価に人
手できるとともに人工的にも簡単に製造し得るものであ
る。
(4) Since γ-iron oxyhydrate is naturally produced, it can be produced manually at low cost and can also be easily produced artificially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はりん酸イオンの除去速度の比較図、第2図は実
施例装置の概略縦断面図を示すものである。
FIG. 1 is a comparative diagram of the removal rate of phosphate ions, and FIG. 2 is a schematic longitudinal sectional view of the apparatus of the example.

Claims (1)

【特許請求の範囲】[Claims] (1)排水中のりん酸イオンを除去する際にγ−オキシ
水和鉄を用いることを特徴とする排水中のりん酸イオン
の除去方法。
(1) A method for removing phosphate ions from wastewater, which comprises using γ-oxyiron hydrate when removing phosphate ions from wastewater.
JP27813484A 1984-12-27 1984-12-27 Method for removing phosphoric ion in waste water Pending JPS61153192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27813484A JPS61153192A (en) 1984-12-27 1984-12-27 Method for removing phosphoric ion in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27813484A JPS61153192A (en) 1984-12-27 1984-12-27 Method for removing phosphoric ion in waste water

Publications (1)

Publication Number Publication Date
JPS61153192A true JPS61153192A (en) 1986-07-11

Family

ID=17593066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27813484A Pending JPS61153192A (en) 1984-12-27 1984-12-27 Method for removing phosphoric ion in waste water

Country Status (1)

Country Link
JP (1) JPS61153192A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088083A1 (en) * 2005-02-16 2006-08-24 Japan Science And Technology Agency Method for producing iron oxyhydroxide and adsorbing material comprising iron oxyhydroxide
WO2006134828A1 (en) * 2005-06-09 2006-12-21 Tomotaka Yanagita Anion adsorbent, agent for purifying water or soil, and method for producing those
WO2008001442A1 (en) * 2006-06-29 2008-01-03 Createrra Inc. Anion adsorbent, water or soil cleanup agent and process for producing the same
CN103232103A (en) * 2013-04-09 2013-08-07 北京建筑工程学院 Method for removing phosphorus from reclaimed water by using ferric hydroxide produced through iron salt coagulant in-situ hydrolysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088083A1 (en) * 2005-02-16 2006-08-24 Japan Science And Technology Agency Method for producing iron oxyhydroxide and adsorbing material comprising iron oxyhydroxide
WO2006134828A1 (en) * 2005-06-09 2006-12-21 Tomotaka Yanagita Anion adsorbent, agent for purifying water or soil, and method for producing those
WO2008001442A1 (en) * 2006-06-29 2008-01-03 Createrra Inc. Anion adsorbent, water or soil cleanup agent and process for producing the same
US8231790B2 (en) 2006-06-29 2012-07-31 Createrra Inc. Process for producing an anion adsorbent and anion adsorbent produced by said process
CN103232103A (en) * 2013-04-09 2013-08-07 北京建筑工程学院 Method for removing phosphorus from reclaimed water by using ferric hydroxide produced through iron salt coagulant in-situ hydrolysis

Similar Documents

Publication Publication Date Title
DE60131747T2 (en) PROCESS FOR SYNTHESIS OF AN OXIDIZING AGENT AND THE APPLICATION THEREOF
US5500131A (en) Compositions and methods for water treatment
O'Melia Coagulation and sedimentation in lakes, reservoirs and water treatment plants
CN104276646A (en) Method for quickly and efficiently removing heavy metals in water body
CA2346922A1 (en) Lanthanide halide water treatment compositions and methods
JP2512420B2 (en) Water treatment method, treatment agent and treatment equipment
US3872002A (en) Process for extracting phosphate from solutions
JP2002514505A (en) Method for treating water, soil, sediment and / or silt
JPH0226557B2 (en)
JPS61153192A (en) Method for removing phosphoric ion in waste water
US6811704B2 (en) Method for anion removal by forming chemical precipitation under an electric field and continuous process for anion removal
JPH11309448A (en) Arsenic (iii, v), and fluorine adsorbing filter medium and production thereof
JP3453129B2 (en) Water purification promoter and water purification method and purification system using this purification promoter
KR20140128717A (en) Waste water treatment agent for phosphorus removal andpreparation method thereof
CN106277630A (en) High skilful production waste decoloration treatment method
WO2001050863A1 (en) Phytoplankton growth inhibitors and method of water purification with the use of the same
RU2250877C1 (en) Method of natural and industrial wastewater purification
JP2000176205A (en) Flocculating and settling agent
JPS5918365B2 (en) Red tide treatment agent and its manufacturing method
JP2000342981A (en) Dephosphorizing agent for water, and method for removing phosphorus and regenerating the agent
SU477614A1 (en) Method of stabilization of cooling circulating water
JP2903359B2 (en) Water activator and its production method
JPH08257591A (en) Removal of water-bloom and method and device for controlling abnormal generation thereof
SU1606471A1 (en) Method of treating waste water sediment
JPH0596281A (en) Treatment of starch-containing waste water