JPH11309448A - Arsenic (iii, v), and fluorine adsorbing filter medium and production thereof - Google Patents

Arsenic (iii, v), and fluorine adsorbing filter medium and production thereof

Info

Publication number
JPH11309448A
JPH11309448A JP13426898A JP13426898A JPH11309448A JP H11309448 A JPH11309448 A JP H11309448A JP 13426898 A JP13426898 A JP 13426898A JP 13426898 A JP13426898 A JP 13426898A JP H11309448 A JPH11309448 A JP H11309448A
Authority
JP
Japan
Prior art keywords
arsenic
fluorine
firing
soil
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13426898A
Other languages
Japanese (ja)
Inventor
Tomotaka Yanagida
友隆 柳田
Youshu Ko
耀宗 江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUREATERA KK
Createrra Inc
Original Assignee
KUREATERA KK
Createrra Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUREATERA KK, Createrra Inc filed Critical KUREATERA KK
Priority to JP13426898A priority Critical patent/JPH11309448A/en
Priority to CNB991048601A priority patent/CN1163299C/en
Publication of JPH11309448A publication Critical patent/JPH11309448A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an arsenic adsorbing material capable of simultaneously removing both trivalent and pentavalent arsenics and a fluorine adsorbing material that makes adjustment of pH before and after the treatment of waste water and drinking water unnecessary, generates less quantity of sludge, and also is high in the duration, and to provide a production method. SOLUTION: The filter medium is produced by a process for firing soil in the temp. range of 200 to 700 deg.C or a process for adding one or more kinds selected from iron salt to the soil and mixing and later firing in the temp. range of 200 to 700 deg.C or a process for adding one or more kinds selected from the iron salt to the soil, mixing, and later adding acid or alkali so that pH after the firing becomes 4 or more, and also firing in the temp. range of 200 to 700 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排水および飲用水
中の砒素(III、V)、フッ素を吸着固定し、その濃度
を低減することにより水質浄化に寄与する砒素(III、
V)、フッ素吸着ろ過材およびその製造方法に関するも
のである。
The present invention relates to arsenic (III, V) which contributes to water purification by adsorbing and fixing arsenic (III, V) and fluorine in waste water and drinking water and reducing the concentration thereof.
V), a fluorine-adsorbing filtration material and a method for producing the same.

【0002】[0002]

【従来の技術】金属精錬業、医薬品、顔料、石油工業、
半導体製造工業および地熱発電所、温泉の排水に砒素が
多く含まれている。また、一部の飲用水にも砒素が含ま
れている。
[Prior Art] Metal refining, pharmaceuticals, pigments, petroleum industry,
The effluent of the semiconductor manufacturing industry, geothermal power plants and hot springs is rich in arsenic. Some drinking water also contains arsenic.

【0003】現在一般的に用いられている砒素の除去方
法として鉄、アルミナおよびマグネシウムなどの金属水
酸化物共沈法がある。5価の砒酸イオンは0.1ppm
程度まで除去できるが、3価の亜砒酸イオンは凝集沈殿
させることはできず、過酸化水素などで酸化し、5価の
砒酸イオンに変えた後、凝集沈殿させている。しかし、
多量の水を処理する場合に、大量に発生する沈殿物の処
分が問題となる。
[0003] As a method of removing arsenic that is generally used at present, there is a coprecipitation method of metal hydroxides such as iron, alumina and magnesium. 0.1 ppm of pentavalent arsenate ion
Although trivalent arsenite ions cannot be coagulated and precipitated, they are oxidized with hydrogen peroxide or the like, changed to pentavalent arsenate ions, and coagulated and precipitated. But,
When treating a large amount of water, disposal of a large amount of sediment becomes a problem.

【0004】また、水酸化物共沈法に代わる処理方法と
して活性炭および活性アルミナなどによる吸着法ならび
に陰イオン交換樹脂によるイオン交換法などの検討が行
われているが、砒素の除去率および処理コスト面で問題
がある。
[0004] In addition, adsorption methods using activated carbon and activated alumina, and ion exchange methods using an anion exchange resin have been studied as alternative treatment methods to the hydroxide coprecipitation method. There is a problem in terms.

【0005】一方、フッ素含有排水は、アルミニウム電
解精錬工程、リン酸肥料の製造工程、ステンレス鋼など
の金属板の表面洗浄工程、シリコンなどの電子工業部品
の洗浄工程、ならびに化学実験室からの研究排水などか
らフッ素を含む排水が排出される場合が多い。また、火
山地帯からの自然水中および一部の飲用水中にもフッ素
を多く含む場合がある。
[0005] On the other hand, fluorine-containing wastewater is subjected to an aluminum electrolytic refining process, a process of producing phosphate fertilizer, a process of cleaning the surface of a metal plate such as stainless steel, a process of cleaning electronic components such as silicon, and research from a chemical laboratory. Wastewater containing fluorine is often discharged from wastewater. In addition, natural water from volcanic areas and some drinking water sometimes contain a large amount of fluorine.

【0006】フッ素を含む排水の処理方法としては、カ
ルシウム塩、アルミナおよびマグネシウム塩などの共沈
法がある。しかし、排水および飲用水処理に当たって、
処理前後のpHの調整や沈殿物の処分が問題となる。
As a method of treating wastewater containing fluorine, there is a coprecipitation method of calcium salt, alumina and magnesium salt. However, in the treatment of wastewater and drinking water,
Adjustment of the pH before and after the treatment and disposal of the precipitate are problems.

【0007】以上の砒素、フッ素の処理方法は、生成す
る懸濁物質を処理水中から除去する後処理が必要となる
ため、工数が増加し、煩雑となる。また、薬剤の連続注
入設備が必要である。
The above method for treating arsenic and fluorine requires a post-treatment for removing the generated suspended substances from the treated water, which increases the number of steps and becomes complicated. Also, a continuous drug injection facility is required.

【0008】また、排水および飲用水の3価、5価砒素
の同時除去および砒素、フッ素含量の基準値以下に達す
るのが困難である。したがって、持続性が高く、後処理
せずに基準値がクリアできる砒素、フッ素吸着ろ過材の
開発が求められている。
Further, it is difficult to simultaneously remove trivalent and pentavalent arsenic in drainage water and drinking water and to reach the arsenic and fluorine contents below the reference values. Therefore, there is a need for the development of an arsenic / fluorine-adsorbing filter medium which has high durability and can clear the standard value without post-treatment.

【0009】[0009]

【発明が解決しようとする課題】排水および飲用水処理
に当たって、処理前後のpHの調整が不要で、スラッジ
の発生が少なく、しかも持続性が高い3価、5価砒素を
同時に除去できる砒素吸着材およびフッ素吸着材により
上述の問題を解決することが本発明の課題である。
In the treatment of waste water and drinking water, it is not necessary to adjust the pH before and after the treatment, the generation of sludge is small, and the arsenic adsorbent which can remove trivalent and pentavalent arsenic with high durability at the same time. It is an object of the present invention to solve the above-mentioned problem by using a fluorine adsorbent.

【0009】そこで本発明は、上述の欠点を克服するこ
とによって、水質浄化用砒素(III、V)、フッ素吸着
ろ過材を得ることおよびその製造方法を提供することを
目的とするものである。
Accordingly, an object of the present invention is to obtain arsenic (III, V) for water purification and a fluorine-adsorbing filter medium by overcoming the above-mentioned drawbacks, and to provide a method for producing the same.

【0011】[0011]

【課題を解決するための手段】本発明は、土壌を200
〜700℃で焼成する工程を具備することを特徴とする
砒素(III、V)、フッ素吸着ろ過材およびその製造方
法により上記課題を解決するものである。
SUMMARY OF THE INVENTION The present invention relates to
The object is solved by an arsenic (III, V) and fluorine-adsorbing filtering material and a method for producing the same, comprising a step of firing at a temperature of up to 700 ° C.

【0012】また、本発明は、土壌に鉄塩から選ばれる
1種以上を加えて混合する工程、その後、200〜70
0℃で焼成する工程を具備することを特徴とする砒素
(III、V)、フッ素吸着ろ過材およびその製造方法に
より上記課題を解決するものである。
[0012] The present invention also provides a step of adding one or more kinds selected from iron salts to soil and mixing the same.
The object is achieved by an arsenic (III, V) and fluorine-adsorbing filter material and a method for producing the same, which comprises a step of firing at 0 ° C.

【0013】また、本発明は、土壌に鉄塩から選ばれる
1種以上を加えて混合する工程、その後、焼成後のpH
が4以上になるように酸又はアルカリを加える工程、並
びに200〜700℃で焼成する工程を具備することを
特徴とする砒素(III、V)、フッ素吸着ろ過材および
その製造方法により上記課題を解決するものである。
[0013] The present invention also relates to a step of adding one or more kinds selected from iron salts to soil and mixing the same, and then the pH after firing.
(III, V), a fluorine-adsorbing filter, and a method for producing the same, which comprises a step of adding an acid or an alkali so that the concentration becomes 4 or more, and a step of baking at 200 to 700 ° C. Is the solution.

【0014】上記各発明の砒素(III、V)、フッ素吸
着ろ過材およびその製造方法において、成形前の原料混
合物に土壌、又は底質を混合する工程、その後、焼成す
る工程を具備することを特徴とする砒素、フッ素吸着材
およびその製造方法により上記課題を解決するものであ
る。
[0014] The arsenic (III, V), fluorine-adsorbing filter medium and the method for producing the same according to each of the above-mentioned inventions are provided with a step of mixing soil or sediment with the raw material mixture before molding, and then a step of firing. The object is achieved by the characteristic arsenic and fluorine adsorbents and the method for producing the same.

【0015】以下において、各砒素、フッ素吸着ろ過材
およびその製造方法を上記の順序にしたがい説明する。
それぞれの発明において原料とする土壌とは、火山灰
土、赤色土、褐色森林土、又は底質、建設残土などの地
殻を形成する土壌全般を含む。これらの土壌を単独で又
は土壌など2種以上を組み合わせて原料とすることもで
きる。
In the following, each arsenic, fluorine-adsorbing filtration material and its manufacturing method will be described in the above order.
The soil used as a raw material in each invention includes volcanic ash soil, red soil, brown forest soil, or all soils that form the crust, such as sediment and construction surplus soil. These soils can be used alone or as a raw material in combination of two or more kinds such as soils.

【0016】まず、請求項1に記載の発明(以下、便宜
的に「第1発明」と称する)について説明する。第1工
程は、土壌の砒素、フッ素吸着力を発揮しやすくする目
的で、土壌を所望の形状に焼成する工程である。焼成工
程を行う前に成形工程を行うかあるいは成形工程を経ず
に焼成し、それを砕くことによって所望の形状を得ても
よい。また、成形工程およびそれに至る混合操作におい
て、それらの作業性を容易にするため、適宜必要量の水
を加えることができる。
First, the invention described in claim 1 (hereinafter referred to as "first invention" for convenience) will be described. The first step is a step of firing the soil into a desired shape for the purpose of facilitating the arsenic and fluorine adsorption of the soil. A desired shape may be obtained by performing a forming step before performing the firing step or firing without passing through the forming step and crushing it. In the molding step and the mixing operation leading to the molding step, a necessary amount of water can be appropriately added in order to facilitate their workability.

【0017】焼成条件は、200〜700℃で、2〜6
0分間であることが好ましく、とくに300〜500℃
で、5〜20分間であることが好ましい。
The firing conditions are 200-700 ° C., 2-6
0 minutes, preferably 300 to 500 ° C
For 5 to 20 minutes.

【0018】次に、請求項2に記載の発明について説明
する。まず、第1工程は、土壌に鉄塩から選ばれる1種
以上を加えて混合する工程である。それらの鉄塩の添加
量は100重量部(乾物重換算)に対してそれぞれ1〜
30重量部であることが好ましい。この工程で用いる鉄
塩としては、硫酸第一鉄、硫酸第二鉄、塩化第一鉄、塩
化第二鉄などを挙げることができるが、これらの中でも
硫酸第一鉄が好ましい。
Next, the invention according to claim 2 will be described. First, the first step is a step of adding and mixing one or more kinds selected from iron salts to soil. The addition amount of these iron salts is 1 to 100 parts by weight (in terms of dry weight).
Preferably it is 30 parts by weight. Examples of the iron salt used in this step include ferrous sulfate, ferric sulfate, ferrous chloride, and ferric chloride. Of these, ferrous sulfate is preferable.

【0019】第2工程は、焼成する工程である。この工
程の処理は上記第1発明の第1工程と同様に行うことが
できる。
The second step is a firing step. The processing in this step can be performed in the same manner as in the first step of the first invention.

【0020】次に、請求項3に記載の発明について説明
する。まず、第1工程は、土壌に鉄塩から選ばれる1種
以上を加えて混合する工程である。それらの鉄塩の添加
量は100重量部(乾物重換算)に対してそれぞれ1〜
30重量部であることが好ましい。
Next, the invention according to claim 3 will be described. First, the first step is a step of adding and mixing one or more kinds selected from iron salts to soil. The addition amount of these iron salts is 1 to 100 parts by weight (in terms of dry weight).
Preferably it is 30 parts by weight.

【0021】第2工程は、アルカリ金属又はアルカリ土
類金属の酸化物又は水酸化物を焼成後のpHが4〜8以
上、好ましくは5〜7になるように加えて混合する工程
である。この工程で用いるアルカリ金属又はアルカリ土
類金属の酸化物又は水酸化物としては、ナトリウム、カ
リウム、カルシウム、マグネシウムなどの酸化物又は水
酸化物を挙げることができるが、これらの中でもカルシ
ウムの酸化物又は水酸化物が好ましい。アルカリ金属又
はアルカリ土類金属の酸化物又は水酸化物の添加量は、
焼成後のpHを4以上にできる量である。この添加量が
少なく、前記pHが4未満になった場合には鉄イオンが
被処理水中に溶出し、砒素、フッ素吸着力の持続性が低
下するので好ましくない。なお、この第2工程は第1工
程と同時に行うこともできる。
The second step is a step of adding and mixing an alkali metal or alkaline earth metal oxide or hydroxide so that the pH after calcination becomes 4 to 8 or more, preferably 5 to 7. Examples of the oxide or hydroxide of an alkali metal or alkaline earth metal used in this step include oxides or hydroxides of sodium, potassium, calcium, magnesium and the like, and among these, oxides of calcium Or a hydroxide is preferable. The amount of the alkali metal or alkaline earth metal oxide or hydroxide added,
It is an amount that can make the pH after firing 4 or more. If the addition amount is small and the pH becomes less than 4, iron ions are eluted into the water to be treated, and the persistence of arsenic and fluorine adsorption power is undesirably reduced. The second step can be performed simultaneously with the first step.

【0022】第3工程は、焼成する工程である。この工
程の処理は上記第1発明の第1工程と同様に行うことが
できる。
The third step is a firing step. The processing in this step can be performed in the same manner as in the first step of the first invention.

【0023】このような各製造方法により得られる砒
素、フッ素吸着ろ過材の形状や大きさは特に制限される
ものではなく、使用方法に応じて適宜選択することがで
きる。通常は、取扱の容易さや水との接触面積を大きく
するために、粒径が0.5〜5mmの粒状物であること
が好ましい。また、より一層水との接触面積を大きくす
るため、全孔隙率が60〜80%の範囲の多孔質である
ことが好ましい。
The shape and size of the arsenic / fluorine-adsorbing filtration material obtained by each of the production methods are not particularly limited, and can be appropriately selected according to the method of use. Usually, in order to increase the ease of handling and the contact area with water, it is preferable that the particles have a particle size of 0.5 to 5 mm. In order to further increase the contact area with water, it is preferable that the porous material has a total porosity in the range of 60 to 80%.

【0024】本発明の製造方法により得られる砒素、フ
ッ素吸着ろ過材は、そのままで水質浄化材として用いる
ことができ、さらに必要に応じて適当な容器に充填した
り、担体に担持させたりしても用いることができる。さ
らに、本砒素、フッ素吸着ろ過材は、水中の懸濁物質の
凝集剤としても使用することができる。
The arsenic / fluorine-adsorbing filtration material obtained by the production method of the present invention can be used as it is as a water purification material, and may be filled in an appropriate container or supported on a carrier as necessary. Can also be used. Furthermore, the present arsenic and fluorine-adsorbing filter medium can also be used as a flocculant for suspended substances in water.

【0025】[0025]

【実施例】以下、実施例により本発明をさらに詳しく説
明するが、本発明はこれらにより限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0026】実施例1〜10および比較例1 火山灰土をミキサーで混練した後、押し出して直径3.
0mm、長さ約5mmの円柱状体を作成した。乾燥後、
自動温度調節式電気炉の中において、100〜1000
℃で20分間焼成した。このようにして得られた吸着ろ
過材は多孔質の粒状物である。
Examples 1 to 10 and Comparative Example 1 Volcanic ash soil was kneaded with a mixer and extruded to a diameter of 3.
A cylindrical body having a length of 0 mm and a length of about 5 mm was prepared. After drying,
100-1000 in a thermostatic electric furnace
Baking for 20 minutes at ° C. The adsorption filter material thus obtained is a porous granular material.

【0027】次に、得られた吸着材を用い、砒素(II
I、V)の吸着率試験を行った。それらの結果を表1に
示す。砒素吸着能力の試験方法は、得られた本吸着材1
gを250mlの三角フラスコにとり、それら二つのフ
ラスコに16.74ppm亜砒酸および20.08pp
m砒酸水溶液を100mlずつ加え、25℃で24時間
振盪した。その後、乾燥濾紙でろ過し、ろ液を原子吸光
光度計を用いて測定した。この測定値から砒素吸着率を
求めた。フッ素吸着能力の試験方法は、得られた本吸着
材1gを250mlの三角フラスコにとり、10ppm
フッ化ナトリウム水溶液を100ml加え、25℃で2
4時間振盪した。その後、乾燥濾紙でろ過し、ろ液をイ
オンクロマトグラフィーを用いて測定した。この測定値
からフッ素吸着率を求めた。
Next, using the obtained adsorbent, arsenic (II
I, V) adsorption rate test was performed. Table 1 shows the results. The test method for the arsenic adsorption ability is as follows.
g in a 250 ml Erlenmeyer flask and add 16.74 ppm arsenous acid and 20.08 pp to the two flasks.
A 100 ml aqueous solution of m-arsenic acid was added, and the mixture was shaken at 25 ° C for 24 hours. Thereafter, the solution was filtered through a dry filter paper, and the filtrate was measured using an atomic absorption spectrophotometer. The arsenic adsorption rate was determined from the measured values. The test method of fluorine adsorption capacity is as follows: 1 g of the obtained adsorbent is placed in a 250 ml Erlenmeyer flask, and 10 ppm
100 ml of aqueous sodium fluoride solution was added,
Shake for 4 hours. Thereafter, the mixture was filtered with a dry filter paper, and the filtrate was measured using ion chromatography. The fluorine adsorption rate was determined from the measured values.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなとおり、火山灰土の砒素
(III)吸着率は焼成温度300℃で一番高かったが、
砒素(V)吸着率は焼成温度500℃で一番高かった。
フッ素吸着率は焼成温度500℃で一番高かった。
As is clear from Table 1, the arsenic (III) adsorption rate of the volcanic ash soil was highest at the firing temperature of 300 ° C.
The arsenic (V) adsorption rate was highest at a firing temperature of 500 ° C.
The fluorine adsorption rate was highest at a firing temperature of 500 ° C.

【0030】実施例11〜20および比較例2 赤色土をミキサーで混練した後、押し出して直径3.0
mm、長さ約5mmの円柱状体を作成した。乾燥後、自
動温度調節式電気炉の中において、100〜1000℃
で20分間焼成した。このようにして得られた吸着ろ過
材は多孔質の粒状物である。
Examples 11 to 20 and Comparative Example 2 Red earth was kneaded with a mixer and extruded to a diameter of 3.0.
A cylindrical body having a length of about 5 mm and a length of about 5 mm was prepared. After drying, in an automatic temperature controlled electric furnace, 100-1000 ° C
For 20 minutes. The adsorption filter material thus obtained is a porous granular material.

【0031】次に、得られた吸着材を用い、砒素(II
I、V)、フッ素の吸着率試験を行った。それらの結果
を表2に示す。砒素、フッ素吸着能力の試験方法は、上
述と同様である。
Next, using the obtained adsorbent, arsenic (II
I, V) and a fluorine adsorption rate test were performed. Table 2 shows the results. The test method for arsenic and fluorine adsorption capacity is the same as described above.

【0032】[0032]

【表2】 [Table 2]

【0033】表2から明らかなとおり、赤色土の砒素
(III、V)吸着率は焼成温度300℃で一番高かっ
た。フッ素吸着率は焼成温度300℃で一番高かった。
As apparent from Table 2, the arsenic (III, V) adsorption rate of the red soil was highest at the firing temperature of 300 ° C. The fluorine adsorption rate was highest at a firing temperature of 300 ° C.

【0034】表1、2からみると、火山灰土の砒素(II
I、V)、フッ素吸着率は赤色土よりも高いことから、
砒素(III、V)、フッ素吸着材の原料として火山灰土
が望ましい。
As can be seen from Tables 1 and 2, arsenic (II
I, V), since the fluorine adsorption rate is higher than red soil,
Volcanic ash soil is desirable as a raw material for arsenic (III, V) and fluorine adsorbents.

【0035】実施例21〜22および比較例3、4 各土壌37.5gに硫酸第一鉄10gを加えて、混練し
た。次に、押し出して直径3.0mm、長さ約5mmの
円柱状体を作成し、乾燥後、電気炉の中において、30
0℃で20分間焼成した。なお、フッ素吸着材の焼成温
度は400℃であった。このようにして得られた吸着ろ
過材は多孔質な粒状物であり、全孔隙率は73%であっ
た。
Examples 21 to 22 and Comparative Examples 3 and 4 10 g of ferrous sulfate was added to 37.5 g of each soil and kneaded. Next, it was extruded to form a columnar body having a diameter of 3.0 mm and a length of about 5 mm.
Baking at 0 ° C. for 20 minutes. The firing temperature of the fluorine adsorbent was 400 ° C. The adsorptive filter material thus obtained was a porous granular material, and the total porosity was 73%.

【0036】次に、得られた吸着ろ過材を用い、実施例
1と同様の方法で、砒素(III、V)、フッ素吸着率試
験を行った。それらの結果を表3に示す。
Next, an arsenic (III, V) and fluorine adsorption rate test was conducted in the same manner as in Example 1 using the obtained adsorption filter material. Table 3 shows the results.

【0037】[0037]

【表3】 [Table 3]

【0038】表3に示したように実施例21〜22における
砒素(III、V)、フッ素吸着率は比較例3、4よりも
増加し、とくに実施例22のように赤黄色土においては硫
酸第一鉄の添加により砒素(III、V)、フッ素吸着率
は著しく増加した。
As shown in Table 3, the adsorption rates of arsenic (III, V) and fluorine in Examples 21 to 22 were higher than those in Comparative Examples 3 and 4. Particularly, as in Example 22, sulfuric acid in red-yellow soil was The addition of ferrous iron significantly increased the arsenic (III, V) and fluorine adsorption rates.

【0039】実施例23〜24および比較例5、6 各土壌37.5gに硫酸第一鉄10gを加えて、その
後、水酸化カルシウム2.5gを加えたのち、混練し
た。次に、押し出して直径3.0mm、長さ約5mmの
円柱状体を作成し、乾燥後、電気炉の中において、30
0℃で20分間焼成した。なお、フッ素吸着材の焼成温
度は400℃であった。このようにして得られた吸着ろ
過材は多孔質な粒状物(pH=6。吸着ろ過材10gを
純水25mlに懸濁させた場合のpH値)であり、全孔
隙率は73%であった。
Examples 23 to 24 and Comparative Examples 5 and 6 10 g of ferrous sulfate was added to 37.5 g of each soil, and then 2.5 g of calcium hydroxide was added, followed by kneading. Next, it was extruded to form a columnar body having a diameter of 3.0 mm and a length of about 5 mm.
Baking at 0 ° C. for 20 minutes. The firing temperature of the fluorine adsorbent was 400 ° C. The adsorptive filter material thus obtained is a porous granular material (pH = 6, pH value when 10 g of the adsorptive filter material is suspended in 25 ml of pure water), and the total porosity is 73%. Was.

【0040】次に、得られた吸着材を用い、実施例1と
同様の方法で、砒素(III、V)、フッ素吸着率の試験
を行った。それらの結果を表4に示す。
Next, a test for the arsenic (III, V) and fluorine adsorption rates was performed in the same manner as in Example 1 using the obtained adsorbent. Table 4 shows the results.

【0041】[0041]

【表4】 [Table 4]

【0042】表4に示したように実施例23〜24における
砒素(III、V)、フッ素吸着率は比較例5、6よりも
増加し、とくに実施例24の砒素(III、V)、フッ素吸
着率が水酸化カルシウムの添加により実施例22よりさら
に増加した。
As shown in Table 4, the arsenic (III, V) and fluorine adsorption rates in Examples 23 to 24 were higher than those in Comparative Examples 5 and 6, and in particular, the arsenic (III, V) and fluorine The adsorption rate was further increased than in Example 22 by the addition of calcium hydroxide.

【0043】実施例25〜26 実施例23で作られた吸着材を用い、カラム実験で砒素
(III)の吸着持続性試験を行った。カラム1に吸着材
10gを入れ、定量ポンプを用いて、0.50ppmの
砒素(III)溶液を連続注入し、流入水および流出水の
砒素濃度を連日測定した。なお、空間流入速度(SVは
一時間当たり流出水の容積と吸着ろ過材の容積の比であ
る。)は0.1であった。カラム2に吸着材10gを入
れ、定量ポンプを用いて、5.00ppmの砒素(II
I)溶液を連続注入し、流入水および流出水の砒素濃度
を連日測定した。なお、空間流入速度(SV)は0.2
であった。それらの結果を表5に示す。
Examples 25 to 26 Using the adsorbent prepared in Example 23, an adsorption sustainability test of arsenic (III) was conducted in a column experiment. 10 g of the adsorbent was put into the column 1, and a 0.50 ppm arsenic (III) solution was continuously injected using a metering pump, and the arsenic concentration of the inflow water and the outflow water was measured every day. In addition, the space inflow velocity (SV is the ratio of the volume of the effluent per hour to the volume of the adsorption filter material per hour) was 0.1. 10 g of the adsorbent was placed in column 2 and 5.00 ppm of arsenic (II
I) The solution was continuously injected, and the arsenic concentration of the inflow and outflow water was measured every day. The space inflow velocity (SV) is 0.2
Met. Table 5 shows the results.

【0044】砒素の試験方法は、原子吸光光度法で測定
した。
The test method for arsenic was measured by atomic absorption spectrophotometry.

【0045】[0045]

【表5】 [Table 5]

【0046】表5に示したように実施例23で作られた
吸着材の砒素(III)吸着能力は低濃度、高濃度とも著
しく高く、長時間吸着できることが明らかになった。ま
た、我が国が定める飲料水の砒素濃度0.01ppmを
クリアすることができた。
As shown in Table 5, the arsenic (III) adsorption capacity of the adsorbent prepared in Example 23 was remarkably high at both low and high concentrations, and it was found that the adsorbent was capable of adsorbing for a long time. Also, it was able to clear the arsenic concentration of drinking water specified by Japan of 0.01 ppm.

【0047】実施例27〜28 実施例23で作られた吸着材を用い、フッ素の吸着試験
を行った。吸着材1gに1.0ppm、10.0ppm
のフッ素溶液を100ml添加し、10分間振蕩した。
その後、ろ過してフッ素濃度を測定した。それらの結果
を表6に示す。
Examples 27 to 28 Using the adsorbent prepared in Example 23, a fluorine adsorption test was conducted. 1.0 ppm, 10.0 ppm in 1 g of adsorbent
Was added and shaken for 10 minutes.
Then, it filtered and measured the fluorine concentration. Table 6 shows the results.

【0048】フッ素の試験方法は、JIS K0102
のイオン電極法に準じて行った。
The test method for fluorine is described in JIS K0102.
The method was performed according to the ion electrode method.

【0049】[0049]

【表6】 [Table 6]

【0050】表6に示したように実施例27〜28にお
けるフッ素の吸着能力は低濃度、高濃度とも高く、短時
間で吸着できることが明らかになった。
As shown in Table 6, it was found that the adsorption capacity of fluorine in Examples 27 to 28 was high at both low and high concentrations, and that the adsorption was possible in a short time.

【0051】[0051]

【発明の効果】本発明による土壌から製造する砒素(II
I、V)、フッ素吸着ろ過材は、砒素、フッ素の吸着、
固定能力が優れており、また、ろ過剤や凝集剤としても
使用することができる。さらに焼成により本吸着ろ過材
は水中で崩壊したり、懸濁したりすることもない。その
上、長期間効果は持続し、排水および飲用水などの水質
浄化材として非常に有用である。
The arsenic (II) produced from the soil according to the present invention
I, V), fluorine adsorption filter media, arsenic, fluorine adsorption,
It has excellent fixing ability and can be used as a filtering agent and a flocculant. Further, the adsorption filter material does not disintegrate or suspend in water due to firing. In addition, the effect lasts for a long time, and is very useful as a water purification material for drainage water and drinking water.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 土壌を200〜700℃で焼成する工程
を具備することを特徴とする砒素(III、V)、フッ素
吸着ろ過材およびその製造方法。
1. An arsenic (III, V), fluorine-adsorbing filter and a method for producing the same, comprising a step of firing the soil at 200 to 700 ° C.
【請求項2】 土壌に鉄塩から選ばれる1種以上を加え
て混合する工程、その後、200〜700℃で焼成する
工程を具備することを特徴とする砒素(III、V)、フ
ッ素吸着ろ過材およびその製造方法。
2. An arsenic (III, V), fluorine adsorption filtration comprising a step of adding and mixing at least one selected from iron salts to soil, and a step of firing at 200 to 700 ° C. Material and its manufacturing method.
【請求項3】 土壌に鉄塩から選ばれる1種以上を加え
て混合する工程、その後、焼成後のpHが4以上になる
ように酸又はアルカリを加える工程、並びに200〜7
00℃で焼成する工程を具備することを特徴とする砒素
(III、V)、フッ素吸着ろ過材およびその製造方法。
3. A step of adding and mixing one or more kinds selected from iron salts to soil, a step of adding an acid or an alkali so that the pH after firing becomes 4 or more, and a step of adding 200 to 7
An arsenic (III, V), fluorine-adsorbing filter and a method for producing the same, comprising a step of firing at 00 ° C.
JP13426898A 1998-04-30 1998-04-30 Arsenic (iii, v), and fluorine adsorbing filter medium and production thereof Pending JPH11309448A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13426898A JPH11309448A (en) 1998-04-30 1998-04-30 Arsenic (iii, v), and fluorine adsorbing filter medium and production thereof
CNB991048601A CN1163299C (en) 1998-04-30 1999-04-06 Arsenic adsorbent and fluorine adsorbent using soil as raw material and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13426898A JPH11309448A (en) 1998-04-30 1998-04-30 Arsenic (iii, v), and fluorine adsorbing filter medium and production thereof

Publications (1)

Publication Number Publication Date
JPH11309448A true JPH11309448A (en) 1999-11-09

Family

ID=15124329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13426898A Pending JPH11309448A (en) 1998-04-30 1998-04-30 Arsenic (iii, v), and fluorine adsorbing filter medium and production thereof

Country Status (2)

Country Link
JP (1) JPH11309448A (en)
CN (1) CN1163299C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004089513A1 (en) * 2003-04-04 2004-10-21 Yoshizawa Kayoko Method for clarifying toxic gas, contaminated soil or contaminated water
WO2005080274A1 (en) * 2004-02-19 2005-09-01 Environment Technology Research Institute Corporation Water purification material
JP2011206694A (en) * 2010-03-30 2011-10-20 Kurita Water Ind Ltd Permeable reactive wall and ground water purifying structure
CN106943801A (en) * 2017-03-24 2017-07-14 孙志廷 A kind of waste modified activated carbon of egg shell is combined the preparation method of arsenic removal filter core

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100593433C (en) * 2006-06-23 2010-03-10 中国科学院地理科学与资源研究所 Agent for removing fluorin, preparation method, and application
CN102795700A (en) * 2011-05-24 2012-11-28 中国科学院地理科学与资源研究所 Defluorinating agent for naturally treating high-fluorine hot spring drinking water and application method thereof
CN109850978B (en) * 2019-01-23 2022-05-27 昆明理工大学 Integrated treatment method for heavy color smelting sewage and sludge
CN114950433A (en) * 2022-06-24 2022-08-30 河北科技大学 Fe 0 @Fe 3 O 4 Preparation method and application of volcanic catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004089513A1 (en) * 2003-04-04 2004-10-21 Yoshizawa Kayoko Method for clarifying toxic gas, contaminated soil or contaminated water
WO2005080274A1 (en) * 2004-02-19 2005-09-01 Environment Technology Research Institute Corporation Water purification material
JP2011206694A (en) * 2010-03-30 2011-10-20 Kurita Water Ind Ltd Permeable reactive wall and ground water purifying structure
CN106943801A (en) * 2017-03-24 2017-07-14 孙志廷 A kind of waste modified activated carbon of egg shell is combined the preparation method of arsenic removal filter core

Also Published As

Publication number Publication date
CN1235868A (en) 1999-11-24
CN1163299C (en) 2004-08-25

Similar Documents

Publication Publication Date Title
Kalaruban et al. Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies
Wasay et al. Adsorption of fluoride, phosphate, and arsenate ions on lanthanum‐impregnated silica gel
Al-Anber Thermodynamics approach in the adsorption of heavy metals
Lai et al. Evaluating an iron-coated sand for removing copper from water
CN101119934A (en) Method for producing iron oxyhydroxide and adsorbing material comprising iron oxyhydroxide
CN105148833A (en) Modified compound kieselguhr adsorbing agent for treating industrial wastewater and preparation method
CN112169748B (en) Adsorbent and preparation method and application thereof
WO2021054116A1 (en) Phosphorus adsorbent
CN113145073A (en) Preparation method and application of secondary lanthanum carbide modified sludge biochar
CN104645932B (en) A kind of composite modified zeolite of iron and manganese oxides and preparation method and application
JPH11309448A (en) Arsenic (iii, v), and fluorine adsorbing filter medium and production thereof
Singh et al. The use of hematite for chromium (VI) removal
JP5137232B2 (en) Method for producing porous iron oxide and method for treating water to be treated
US3728257A (en) Methods and means for removing heavy metal ions from liquids containing such ions
JP2004066161A (en) Water treatment method
CN110354798A (en) A kind of cerium zirconium zinc metal composite adsorbent and the preparation method and application thereof
Hesnawi et al. Heavy metal removal from aqueous solution using natural libyan zeolite and activated carbon
JPH1057804A (en) Absorbent for phosphoric acid, arsenic, and fluorine manufactured from clear-water-generating soil and its manufacture
JPH1157695A (en) Treatment process for phosphorus-containing wastewaer
JP7236143B2 (en) Water purification material containing iron as main component and method for producing the same
Rinkus et al. NaOH regeneration of Pb and phenol-laden activated carbon. I. Batch study results
RU2676977C1 (en) Method of obtaining filtering material for water purification from manganese and hydrosulfide ion
RU2689576C1 (en) Method of purifying high-arsenic-containing waste water
KR101927288B1 (en) Manufacturing method of surface modified activated carbon and the surface modified activated carbon manufacturing by the method
JP2005028272A (en) Phosphorus-component adsorbent and method for wastewater treatment by using the adsorbent