JPS6115092B2 - - Google Patents

Info

Publication number
JPS6115092B2
JPS6115092B2 JP53053799A JP5379978A JPS6115092B2 JP S6115092 B2 JPS6115092 B2 JP S6115092B2 JP 53053799 A JP53053799 A JP 53053799A JP 5379978 A JP5379978 A JP 5379978A JP S6115092 B2 JPS6115092 B2 JP S6115092B2
Authority
JP
Japan
Prior art keywords
cation exchange
ion
group
membrane
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53053799A
Other languages
Japanese (ja)
Other versions
JPS54146282A (en
Inventor
Toshikatsu Sada
Akihiko Nakahara
Yasuo Murata
Hideji Baba
Masaki Shiromizu
Keizo Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP5379978A priority Critical patent/JPS54146282A/en
Publication of JPS54146282A publication Critical patent/JPS54146282A/en
Publication of JPS6115092B2 publication Critical patent/JPS6115092B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、陽イオン交換基に対して、少なくと
もα位の炭素原子に弗素原子を結合している陽イ
オン交換樹脂、特にパーフロロカーボンを主鎖と
し、側鎖に陽イオン交換基を結合して有する陽イ
オン交換樹脂の陽イオン交換基を酸クロライド基
に変換する方法に関する。 イオン交換樹脂は、種々の用途に使用されるた
め、その使用条件下で耐久性を持たせる必要上、
種々の配慮がなされている。それらの一つとして
は、陽イオン交換基に対してα位の炭素原子、即
ちイオン交換基が結合している炭素原子に少なく
とも1個の弗素原子を結合している構造のイオン
交換樹脂が開発されている。 このような陽イオン交換樹脂、とりわけパーフ
ロロカーボンを主鎖とし、側鎖にイオン交換基を
有するものは特に耐薬品性及び耐酸化性を有する
ため、陽イオン交換膜に成形し、アルカリ金属塩
の電解用隔膜として好適に使用されるものであ
る。 他方イオン交換樹脂は、種々の使用の態様によ
り好ましく適合されるため、種々の改質が試みら
れている。しかるに極めて安定な陽イオン交換樹
脂である本発明の対象は、極めて激烈な反応条件
によらなければ、化学的変化をあたえ難く、しか
もこのような激烈な条件での反応は、十分な制御
が困難である。従つて上記の如き安定なイオン交
換樹脂について、これを改質するため活性基を導
入する方法が望まれている。そこで本発明は、上
記の如き耐薬品性の大きい、即ち化学的に安定な
陽イオン交換樹脂のイオン交換基を酸クロライド
基に変換する方法を提供する。本発明者等はすで
に、陽イオン交換基に対して少なくともα位の炭
素原子に弗素原子を結合してなる酸(水素イオ
ン)型の含弗素系陽イオン交換膜の少なくとも片
面を五塩化りんの蒸気と、該陽イオン交換基が実
質的に離脱しない条件下に接触せしめることを特
徴とする陽イオン交換基を酸クロライド基に変換
する方法を特願昭52−68823号として提案してい
る。 上記方法を適用する場合は、気相反応であるた
め、種々の利点はあつたが、陽イオン交換基が酸
クロライド基に変換すると同時に一部酸無水物基
が副生することが避けられなかつた。 この酸無水物基は、その後の加水分解処理等に
よつて再度イオン交換基に変換することが可能で
あり、イオン交換樹脂に障害とはならないが酸ク
ロライド基の生成率を低下させるので、更に改良
することも有意義であつた。 本発明の方法は、陽イオン交換基に対して、少
なくともα位の炭素原子に弗素原子を結合してい
る陽イオン交換樹脂であつて、該陽イオン交換基
の対イオンがアンモニウムイオン又は置換アンモ
ニウムイオンである陽イオン交換樹脂を五塩化り
んの蒸気と該陽イオン交換基が実質的に離脱しな
い条件下に接触させることを特徴とする。 本発明を有効に応用する一つの態様として、ア
ルカリ金属塩の電解槽の隔膜としての使用があ
る。この場合には、イオン交換膜としての利用で
あり、特に表面部分のイオン交換基のみを酸クロ
ライド基に交換することが望まれる場合がある。
従つてこのような場合には陽イオン交換樹脂が有
する全イオン交換基のうち、表面部分のイオン交
換基の対イオンがアンモニウム又は置換アンモニ
ウムイオンであり、内部のイオン交換基の対イオ
ンが水素イオン或いはアルカリ金属等の金属イオ
ンとした状態で、五塩化りんの蒸気と接触させる
ことも好ましい。 本発明において、陽イオン交換基の対イオンと
してアンモニウムイオン又は置換アンモニウムイ
オンを用いる。利点は、該イオン交換基が、酸ク
ロライド基に変換される率が大きく、酸無水物基
の副生が少ないことにある。即ち、第1図にアン
モニウムイオン型(対イオンがアンモニウムイオ
ンである陽イオン交換基、以後のように略称す
る)とした場合と水素イオン型とした場合とにつ
いて、一定時間における五塩化りん蒸気との接触
温度とイオン交換基の減少量(膜の電気抵抗の増
加で示す)との関係を示す。本図よりアンモニウ
ムイオン型とした場合が、水素イオン型とした場
合に比して酸クロライド基の形成が容易となるこ
とがわかる。即ち、より低温下に反応せしめるこ
とができるのである。 更に第2図においては同じくアンモニウムイオ
ン型とした陽イオン交換膜と水素イオン型とした
陽イオン交換膜とについて、同一条件下に五塩化
りん蒸気と接触させた場合の、酸クロライド基と
酸無水物基との生成比と温度との関係を示す。本
図より、酸無水物基の生成はアンモニウムイオン
型とした場合が少ないことがわかる。 本発明におけるアンモニウムイオン又は置換ア
ンモニウムイオン型への変換方法は限定されない
が通常アンモニア、アミン類の溶液等を用いて、
常法によりイオン交換すればよい。 特に水素イオン型の陽イオン交換樹脂をアンモ
ニウムイオン及び/又は置換アンモニウムイオン
型に変換する場合には、所望のアンモニア及び/
又はアミン類の蒸気と該陽イオン交換樹脂を接触
させることにより、気一固相間の交換反応により
達成することができる。この場合アンモニア及
び/又はアミン類の蒸気圧の減少量を測定するこ
とにより陽イオン交換樹脂にイオン交換して吸着
されたアンモニウムイオン及び/又は置換アンモ
ニウムイオンの量を知ることができるので、該陽
イオン交換樹脂に吸着されるアンモニウムイオン
及び/又は置換アンモニウムイオンの量をコント
ロールすることが可能となる。従つて、該陽イオ
ン交換樹脂の陽イオン交換基を部分的にアンモニ
ウムイオン又は置換アンモニウムイオンに変換す
る場合には気一固相間の交換が極めて有利とな
る。 また本発明において置換アンモニウムイオンと
は、アンモニウムイオンを構成する水素原子の1
個乃至4個が他の置換基、例えばメチル基、エチ
ル基、プロピル基、ブチル基等のアルキル基;フ
エニル基、ナフチル基等のアリール基:置換基を
有するアキル基、ピリジル基、その他で置換され
たものをいい、イオン交換樹脂に作用せしめる形
態はアミン類である。この場合アミン類はモノア
ミン、ジアミンのみならず、例えばポリビニルピ
リジン、ポリエチレンポリアミン等の高分子量体
であつてもよい。陽イオン交換樹脂の表層部のイ
オン交換基のみに置換アンモニウムイオンを導入
する場合には、むしろ高分子量のアミン類の方
が、樹脂内部に浸入し難いので都合がよい。 このような高分子量のアミン類を用いる場合に
は水又は有機物、或いはこれらの混合溶媒中で陽
イオン交換基に置換アンモニウムイオンを導入す
るのが便利である。 次に陽イオン交換樹脂と五塩化りんとの接触方
法は、特に限定されないが、一般に五塩化りん蒸
気分圧は100mmHg以上、好ましくは、200mmHg
以上とするのがよく、接触時に実質的に水が存在
しないことが望ましい。従つて五塩化りん蒸気と
接触する以前に陽イオン交換樹脂を乾燥させるべ
きである。 一般に本発明の対象となる陽イオン交換樹脂の
イオン交換基と五塩化りんとの反応条件は、該イ
オン交換基の種類によつて相違する。 例えばスルホン酸基の場合は80〜190℃、好ま
しくは120〜170℃であり、カルボン酸基の場合は
80〜180℃、好ましくは、100〜160℃で、各数分
乃至数拾時間、被処理陽イオン交換樹脂の交換基
の何パーセントを酸クロライド基に変換するかに
よつて適宜選択される。 上記のいずれの場合にあつても、イオン交換基
自体が実質的に分解消失する如き条件は避けられ
るべきであり、その判定の一つとして該イオン交
換樹脂の表層部における少なくとも5μ程度まで
の内部のイオン交換基が3%以上分解しない条
件、即ち、温度、五塩化りん蒸気の分圧及び反応
時間をあらかじめ予備的実験によつて確認してお
くのがよい。 以上説明した本発明において用いられるイオン
交換樹脂はα位の炭素原子に弗素原子を結合して
なるものであれば特に制限されず、特に、パーフ
ロロカーボン系である陽イオン交換膜例えばパー
フロロアルキルビニルエーテルスルホニルフルオ
ライドと四弗化エチレンの共重合物、具体的には
パーフロロアルキルビニルエーテルスルホニルフ
ルオライドとしてパーフロロ(3,6−ジオキサ
−4−メチル−7−オクテンスルホニルフルオラ
イド)を主成分に用いた高分子膜状物が好まし
い。また陽イオン交換基としては、好ましくはス
ルホン酸基であるが、その他カルボン酸基、亜リ
ン酸基、リン酸基等も適当であり、これら一種以
上を0.3ミリ当量/グラム乾燥膜(H型)以上有
する陽イオン交換樹脂が何ら制限なく用いられ
る。 本発明により、酸クロライド基を導入された陽
イオン交換樹脂は、酸クロライド基の反応性を利
用し、更に他の化合物、例えば一級、二級アミン
を少くとも1ケ以上有する化合物と反応させて酸
アミド結合を膜面上に形成する方法、或は酸アミ
ド結合を介して他の官能基を結合させる方法、又
は架橋構造を形成する方法、エステル結合を形成
する方法、還元処理する方法、酸化処理をする方
法、酸クロライド基を分解する方法、或は分解と
同時にその点を活性点としてクラフト重合する方
法等種々の改善を施すことができる。特に、スル
ホニルクロライド型の場合これを酸化剤で処理す
ることにより、カルボキシル基に変換し、強酸及
び弱酸の両イオン交換基を有するイオン交換樹脂
とすることができる。 このようにして、変性したイオン交換樹脂は
種々の特徴を持つが、例えばイオン交換樹脂の表
層部だけをアンモニウムイオン、置換アンモニウ
ムイオン型として、内部又は膜状の場合には裏面
のイオン交換基を水素イオン型又は金属イオン型
とし五塩化りんに対する反応性の差を利用し、表
層部だけに酸クロライド基を導入する技術或い
は、均一にアンモニウムイオン又は置換アンモニ
ウムイオン型にしておいて表層部分のみに五塩化
りんを作用させて、酸クロライド基を導入する技
術はイオン交換樹脂の本質を変化させることな
く、イオン交換樹脂の対汚染性、選択吸着性を改
良し得る。またイオン交換膜にあつては選択透過
性等の改良することができる。これらの特性を付
与されたイオン交換膜の重要な用途は、イオン交
換膜法によるアルカリ金属塩水溶液の電解槽用隔
膜として用いることである。 実施例 1 ナフイオン(パーフロロスルホン酸型の陽イオ
ン交換膜の商品名、デユポン社製)のXR−120を
濃硝酸に45℃で16時間浸漬し、完全に水素イオン
型に変換した。充分水洗後、3N−アンモニア水
中に室温下に2日間浸漬し、アンモニウムイオン
型に変換した。 アンモニウムイオン型の膜の充分乾燥を行なつ
た。2つの室よりなるガラス製アンプル(総容積
40c.c.)中の1つの室に10cm2の上記乾燥膜を、他方
の室に0.4gの五塩化りん粉末を入れアンプルを
封じた。このアンプルを160℃のオイルバス中に
30分間浸漬し、反応を行なつた。反応後アンプル
を開封し、膜を15時間水洗した。減圧乾燥後、反
射赤外スペクトルを測定したところ五塩化りん蒸
気処理前の膜で認められた1060cmのスルホン酸基
に起因する吸収帯は消失し、代りに1420cm-1にス
ルホニルクロライド基に起因する吸収帯が強く認
められた。 酸無水物基(−SQ2−O−SO2−)に相当する
1460〜1480cm-1の吸収帯も認められたが、スルホ
ニルクロライド基に対する吸収の強度比は約0.02
であり、実質上、スルホン酸基は殆どスルホニル
クロライド基に変化していることが判つた。 一方濃硝酸処理後の膜、アンモニア水処理後の
膜及び五塩化りん処理後の膜を、0.5%のクリス
タルバイオレツトを含むイソプロパノール−水
(容量比1/1)混合溶液中で室温下で15時間染
色を行い膜断面を光学顕微鏡で観察したところ、
前二者は膜断面が均一に濃柴色に染色されていた
が、五塩化りん処理後の膜は膜断面において両表
面から約20μが全く染色されず残りの部分が濃柴
色に染色されていた。このことから、膜表面から
約20μの部分がスルホニルクロライド基となつて
いることが判つた。 実施例 2 実施例1の方法で水素イオン及びアンモニウム
イオン型に変換したナフイオンのXR−425をそれ
ぞれ4倍量(膜中の陽イオン交換基に対するモル
比)の五塩化りんと実施例1と同様のアンプル中
に封入し、表−1の各反応温度で15分間反応を行
なつた。反応後、アンプルを開封し、処理膜を水
で還流下に3時間洗浄を行なつた。 常温N−HCl中で各処理膜の膜低抗を測定し反
応温度と反応進行度{イオン交換基(−SO3NH49
−SO3H)が五塩化りん蒸気との反応により非イ
オン交換基(−SO2Ol)になることを利用し反応
の進行度を膜抵抗の増加をもつてその尺度とし
た}の関係を調べた。結果を表−1及び第1図に
示す、この結果から、水素イオン型膜でも160℃
以上の温度においては反応は充分進行するが、ア
ンモニウムイオン型膜は水素イオン型膜にくらべ
130℃位の比較的抵温下でも反応が充分進行して
いることが判る。 膜抵抗を測定後、10%の苛性ソーダを含むエタ
ノール−水(1:1容量比)溶液中に各処理膜を
45℃、15hre浸漬し、スルホニルクロライド基を
加水分解し、常温のN−HCl中で膜抵抗を測定し
たところ、いづれも0.70〜0.75Ω・cm2で、処理前
の膜抵抗と同程度であり五塩化りんの蒸気処理に
よりイオン交換基の脱離は実質的にないことが判
つた。
The present invention uses a cation exchange resin in which a fluorine atom is bonded to at least the carbon atom at the alpha position with respect to a cation exchange group, in particular a perfluorocarbon main chain, and a cation exchange group bonded to the side chain. The present invention relates to a method for converting a cation exchange group of a cation exchange resin into an acid chloride group. Ion exchange resins are used for a variety of purposes, so they need to be durable under the conditions of use.
Various considerations have been made. One of these is an ion exchange resin with a structure in which at least one fluorine atom is bonded to the carbon atom at the alpha position to the cation exchange group, that is, the carbon atom to which the ion exchange group is bonded. has been done. Such cation exchange resins, especially those with perfluorocarbon as the main chain and ion exchange groups in the side chains, have particularly good chemical resistance and oxidation resistance, so they are formed into cation exchange membranes and coated with alkali metal salts. It is suitably used as a diaphragm for electrolysis. On the other hand, ion exchange resins are more suitable for various usage modes, and various modifications have been attempted. However, the object of the present invention, which is an extremely stable cation exchange resin, is difficult to chemically change unless it is subjected to extremely violent reaction conditions, and it is difficult to adequately control the reaction under such violent conditions. It is. Therefore, there is a need for a method of introducing active groups in order to modify the above-mentioned stable ion exchange resins. Therefore, the present invention provides a method for converting the ion exchange group of a cation exchange resin having high chemical resistance, that is, chemically stable, into an acid chloride group. The present inventors have already discovered that at least one side of an acid (hydrogen ion) type fluorine-containing cation exchange membrane, which has a fluorine atom bonded to a carbon atom at the alpha position relative to a cation exchange group, is coated with phosphorus pentachloride. Japanese Patent Application No. 52-68823 proposes a method for converting a cation exchange group into an acid chloride group, which is characterized by bringing the cation exchange group into contact with steam under conditions such that the cation exchange group does not substantially dissociate. When applying the above method, since it is a gas phase reaction, it has various advantages, but it is inevitable that some acid anhydride groups will be produced as by-products at the same time as the cation exchange groups are converted to acid chloride groups. Ta. This acid anhydride group can be converted into an ion exchange group again by subsequent hydrolysis treatment, etc., and although it does not pose a problem to the ion exchange resin, it reduces the production rate of acid chloride groups, so it can be further converted into an ion exchange group. It was also meaningful to make improvements. The method of the present invention provides a cation exchange resin in which a fluorine atom is bonded to at least an α-position carbon atom with respect to a cation exchange group, and the counter ion of the cation exchange group is an ammonium ion or a substituted ammonium ion. It is characterized in that the cation exchange resin, which is an ion, is brought into contact with the vapor of phosphorus pentachloride under conditions such that the cation exchange group is not substantially removed. One embodiment in which the present invention is effectively applied is the use of an alkali metal salt as a diaphragm in an electrolytic cell. In this case, the membrane is used as an ion exchange membrane, and it may be particularly desirable to exchange only the ion exchange groups on the surface with acid chloride groups.
Therefore, in such a case, among all the ion exchange groups that the cation exchange resin has, the counter ion of the ion exchange group on the surface portion is ammonium or substituted ammonium ion, and the counter ion of the internal ion exchange group is hydrogen ion. Alternatively, it is also preferable to contact the phosphorus pentachloride vapor in the form of metal ions such as alkali metals. In the present invention, ammonium ions or substituted ammonium ions are used as counter ions of cation exchange groups. The advantage is that the ion exchange group is converted to an acid chloride group at a high rate, and the by-product of an acid anhydride group is small. That is, Figure 1 shows the relationship between phosphorus pentachloride vapor and phosphorus pentachloride vapor over a certain period of time for the ammonium ion type (a cation exchange group whose counter ion is an ammonium ion, abbreviated as follows) and the hydrogen ion type. The relationship between the contact temperature and the amount of reduction in ion exchange groups (indicated by an increase in the electrical resistance of the membrane) is shown. From this figure, it can be seen that when the ammonium ion type is used, the formation of acid chloride groups is easier than when the hydrogen ion type is used. In other words, the reaction can be carried out at lower temperatures. Furthermore, in Figure 2, the acid chloride groups and acid anhydride groups of ammonium ion type cation exchange membranes and hydrogen ion type cation exchange membranes are shown when they are brought into contact with phosphorus pentachloride vapor under the same conditions. The relationship between the production ratio of chemical substances and temperature is shown. This figure shows that acid anhydride groups are rarely produced in the ammonium ion type. The method of converting into ammonium ion or substituted ammonium ion type in the present invention is not limited, but usually uses a solution of ammonia, amines, etc.
Ion exchange may be performed by a conventional method. In particular, when converting a hydrogen ion type cation exchange resin to an ammonium ion and/or substituted ammonium ion type, the desired ammonia and/or
Alternatively, it can be achieved by an exchange reaction between gas and solid phase by contacting the cation exchange resin with the vapor of amines. In this case, by measuring the amount of decrease in the vapor pressure of ammonia and/or amines, the amount of ammonium ions and/or substituted ammonium ions adsorbed by ion exchange on the cation exchange resin can be determined. It becomes possible to control the amount of ammonium ions and/or substituted ammonium ions adsorbed on the ion exchange resin. Therefore, when the cation exchange groups of the cation exchange resin are partially converted into ammonium ions or substituted ammonium ions, exchange between gas and solid phase is extremely advantageous. In the present invention, a substituted ammonium ion refers to one of the hydrogen atoms constituting the ammonium ion.
Substituted with 1 to 4 substituents, such as alkyl groups such as methyl, ethyl, propyl, and butyl; aryl groups such as phenyl and naphthyl; alkyl, pyridyl, and other substituents; The form that acts on ion exchange resins is amines. In this case, the amines are not limited to monoamines and diamines, but may also be high molecular weight substances such as polyvinylpyridine and polyethylenepolyamine. When introducing substituted ammonium ions only into the ion exchange groups in the surface layer of the cation exchange resin, high molecular weight amines are more convenient because they are less likely to penetrate into the resin. When such high molecular weight amines are used, it is convenient to introduce substituted ammonium ions into the cation exchange group in water, an organic substance, or a mixed solvent thereof. Next, the method of contacting the cation exchange resin with phosphorus pentachloride is not particularly limited, but generally the partial pressure of phosphorus pentachloride is 100 mmHg or more, preferably 200 mmHg.
or more, and it is desirable that substantially no water be present at the time of contact. Therefore, the cation exchange resin should be dried before contacting the phosphorus pentachloride vapor. Generally, the conditions for the reaction between the ion exchange group of the cation exchange resin and phosphorus pentachloride, which is the object of the present invention, differ depending on the type of the ion exchange group. For example, in the case of a sulfonic acid group, the temperature is 80 to 190°C, preferably 120 to 170°C, and in the case of a carboxylic acid group, the temperature is
The temperature is 80 to 180°C, preferably 100 to 160°C, for several minutes to several tens of hours each, and is appropriately selected depending on what percentage of the exchange groups of the cation exchange resin to be treated is to be converted into acid chloride groups. In any of the above cases, conditions in which the ion exchange group itself substantially decomposes and disappears should be avoided, and one of the judgments is that the inner layer of the ion exchange resin up to at least 5 μm in the surface layer should be avoided. It is advisable to confirm in advance through preliminary experiments the conditions under which 3% or more of the ion exchange groups will not be decomposed, that is, temperature, partial pressure of phosphorus pentachloride vapor, and reaction time. The ion exchange resin used in the present invention described above is not particularly limited as long as it has a fluorine atom bonded to the α-position carbon atom, and in particular, perfluorocarbon-based cation exchange membranes such as perfluoroalkyl vinyl ether A copolymer of sulfonyl fluoride and tetrafluoroethylene, specifically, perfluoro(3,6-dioxa-4-methyl-7-octensulfonyl fluoride) was used as the main component as perfluoroalkyl vinyl ether sulfonyl fluoride. Polymer membranes are preferred. The cation exchange group is preferably a sulfonic acid group, but other carboxylic acid groups, phosphorous acid groups, phosphoric acid groups, etc. are also suitable, and one or more of these groups are used in an amount of 0.3 meq/g dry membrane (H type ) or more cation exchange resins can be used without any restrictions. According to the present invention, the cation exchange resin into which an acid chloride group has been introduced can be reacted with another compound, such as a compound having at least one primary or secondary amine, by utilizing the reactivity of the acid chloride group. A method of forming an acid amide bond on the membrane surface, a method of bonding other functional groups via an acid amide bond, a method of forming a crosslinked structure, a method of forming an ester bond, a method of reduction treatment, oxidation Various improvements can be made, such as a treatment method, a method of decomposing the acid chloride group, or a method of craft polymerization using the decomposed point as an active site simultaneously with the decomposition. In particular, in the case of a sulfonyl chloride type, by treating it with an oxidizing agent, it can be converted into a carboxyl group and can be made into an ion exchange resin having both strong acid and weak acid ion exchange groups. The ion exchange resin modified in this way has various characteristics, but for example, only the surface layer of the ion exchange resin is ammonium ion or substituted ammonium ion type, and if it is internal or membrane-like, the ion exchange group on the back side is changed. A technique is to use hydrogen ion type or metal ion type and introduce acid chloride groups only to the surface layer by taking advantage of the difference in reactivity to phosphorus pentachloride, or to uniformly form ammonium ion or substituted ammonium ion type and introduce acid chloride groups only to the surface layer. The technique of introducing acid chloride groups through the action of phosphorus pentachloride can improve the anti-fouling properties and selective adsorption properties of ion exchange resins without changing the essence of the ion exchange resin. Furthermore, in the case of ion exchange membranes, permselectivity and the like can be improved. An important use of ion exchange membranes endowed with these properties is to use them as diaphragms for electrolytic cells for aqueous solutions of alkali metal salts using the ion exchange membrane method. Example 1 Nafion (trade name of perfluorosulfonic acid type cation exchange membrane, manufactured by Dupont) XR-120 was immersed in concentrated nitric acid at 45°C for 16 hours to completely convert it to the hydrogen ion type. After thorough washing with water, it was immersed in 3N ammonia water at room temperature for 2 days to convert it into ammonium ion form. The ammonium ion type membrane was thoroughly dried. Glass ampoule consisting of two chambers (total volume
40 c.c.), 10 cm 2 of the above dried membrane was placed in one chamber, 0.4 g of phosphorus pentachloride powder was placed in the other chamber, and the ampoule was sealed. Place this ampoule in an oil bath at 160℃.
The reaction was carried out by immersion for 30 minutes. After the reaction, the ampoule was opened and the membrane was washed with water for 15 hours. After drying under reduced pressure, the reflection infrared spectrum was measured, and the absorption band at 1060 cm caused by the sulfonic acid group observed in the film before phosphorus pentachloride vapor treatment disappeared, and instead it was found to be caused by the sulfonyl chloride group at 1420 cm -1 . A strong absorption band was observed. Corresponds to acid anhydride group (-SQ 2 -O-SO 2 -)
An absorption band from 1460 to 1480 cm -1 was also observed, but the intensity ratio of the absorption to the sulfonyl chloride group was approximately 0.02.
It was found that most of the sulfonic acid groups were substantially changed to sulfonyl chloride groups. On the other hand, the membranes treated with concentrated nitric acid, the membranes treated with ammonia water, and the membranes treated with phosphorus pentachloride were heated for 15 minutes at room temperature in a mixed solution of isopropanol and water (volume ratio 1/1) containing 0.5% crystal violet. After time staining and observing the cross section of the membrane with an optical microscope, we found that
For the first two, the cross section of the membrane was uniformly stained dark brown, but after the phosphorus pentachloride treatment, about 20μ from both surfaces of the membrane cross section was not stained at all, and the remaining portion was stained dark brown. was. From this, it was found that a portion approximately 20μ from the membrane surface was a sulfonyl chloride group. Example 2 XR-425, a naphion converted into hydrogen ion and ammonium ion forms by the method of Example 1, was mixed with 4 times the amount (molar ratio to the cation exchange group in the membrane) of phosphorus pentachloride and the same amount as in Example 1. The mixture was sealed in an ampoule and reacted for 15 minutes at each reaction temperature shown in Table 1. After the reaction, the ampoule was opened and the treated membrane was washed with water under reflux for 3 hours. The membrane resistance of each treated membrane was measured in N-HCl at room temperature, and the reaction temperature and reaction progress {ion exchange group (-SO 3 NH 49
-SO 3 H) becomes a non-ion exchange group (-SO 2 Ol) by reaction with phosphorus pentachloride vapor, and the progress of the reaction was measured by the increase in membrane resistance. Examined. The results are shown in Table 1 and Figure 1.From these results, even hydrogen ion type membranes can be heated at 160℃.
Although the reaction proceeds sufficiently at temperatures above, ammonium ion type membranes are less effective than hydrogen ion type membranes.
It can be seen that the reaction proceeded satisfactorily even at a relatively low temperature of about 130°C. After measuring the membrane resistance, each treated membrane was placed in an ethanol-water (1:1 volume ratio) solution containing 10% caustic soda.
When the membrane resistance was measured in N-HCl at room temperature after immersion at 45°C for 15 hours to hydrolyze the sulfonyl chloride groups, the resistance was 0.70 to 0.75Ωcm2 , which was about the same as the membrane resistance before treatment. It was found that the ion exchange group was not substantially eliminated by the steam treatment of phosphorus pentachloride.

【表】 実施例 3 実施例1の方法で水素イオン及びアンモニウム
イオンに変換したナフイオンのXR−120をそれぞ
れ四倍量(膜中の陽イオン交換基に対するモル
比)の五塩化りんとアンプル中に封入し表−2に
示す各反応温度で30分間反応を行なつた。反応
後、処理膜を水洗し、減圧乾燥後、反射赤外スペ
クトルを測定した。スペクトル中1420cm-1及び
1460〜1480cm-1の吸収帯を、それぞれスルホニル
クロライド基、及び酸無水物(−SO2−O−SO2
−)に帰属し、酸無水物基とスルホニルクロライ
ド基の強度比、吸収ピークの高さの比{以下単に
I(−SO−O−SO−)/I(−SOOl)と
表わす}を表−2の各反 応温度について求めた。結果を表−2及び第2図
に示す。 この結果からアンモニウムイオン型膜は水素イ
オン型膜にくらべ比較的低温下でも酸無水物基の
生成量は少なく、スルホニルクロライド基の生成
量が著しく多いことが判る。
[Table] Example 3 Nafion XR-120, which was converted into hydrogen ions and ammonium ions by the method of Example 1, was encapsulated in an ampoule with four times the amount (molar ratio to the cation exchange group in the membrane) of phosphorus pentachloride. The reaction was carried out for 30 minutes at each reaction temperature shown in Table 2. After the reaction, the treated membrane was washed with water, dried under reduced pressure, and then its reflection infrared spectrum was measured. 1420 cm -1 in the spectrum and
The absorption band from 1460 to 1480 cm -1 is determined by the sulfonyl chloride group and the acid anhydride (-SO 2 -O-SO 2 ) , respectively.
-), the intensity ratio of the acid anhydride group and the sulfonyl chloride group, the ratio of the absorption peak height {hereinafter simply expressed as I(-SO 2 -O-SO 2 -)/I(-SO 2 Ol) } was determined for each reaction temperature in Table 2. The results are shown in Table 2 and Figure 2. These results show that the ammonium ion type membrane produces less acid anhydride groups and significantly more sulfonyl chloride groups than the hydrogen ion type membrane even at relatively low temperatures.

【表】 実施例 4 ナフイオンのKR−415を実施例1の方法で完全
に水素イオン型に変えた後、乾燥を行なつた。減
圧乾燥後の膜を片面のみが反応試薬と接触可能な
ステンレス製反応器(反応面積100cm2、反応室容
積500c.c.)反応室及び膜の背面(反応試薬と接触
しない部分)の圧を−760mmHgに減圧後、反応
室内に室温下で50mmHgのメチルアミンガスを導
入した。導入後、メチルアミンガスの圧力が33mm
Hgに低下した時、真空ポンプで反応室内に残つ
たメチルアミンガスを脱気した。反応器の温度を
140℃まで昇温し、他方、別途用意した140℃の五
塩化りんの飽和蒸気を含む窒素を反応器内に760
mmHgまで導入した。この状態で1時間反応を続
けた。反応後膜を取り出し、赤外スペクトル測定
用及び染色用に一部を切り取り室温下に3N−
HCl、及び水洗を各々8時間づつ行なつた。又、
残りの部分はn−ブタノール中に室温下に16時間
浸漬した。赤外スペクトル測定用のサンプルは減
圧乾燥後、五塩化りんの蒸気処理面、及び末処理
面をペーパーで削り、透過赤外スペクトルを測定
した。その結果、処理面を除去したものは1060cm
-1のスルホン酸基がつよく認められ、420cm-1
スルホニルクロライド基、1460〜1480cm-1の酸無
水物基に相当する吸収帯は殆んど認められなかつ
た。他方、末処理面を削り取つたものは、1060cm
-1,1460〜1480cm-1の吸収帯は殆んど認められ
ず、1420cm-1の吸収帯が強く認められた。又、実
施例1の染色液で同様の染色条件下で染色テスト
を行なつたところ、五塩化りん蒸気処理面の側が
表面から約15μが全く染色されず残りの部分が濃
紫色に強く染色されていた。メチルアミンの吸着
量及び交換容量から計算したメチルアンモニウム
型に変換されたスルホン酸基の層の厚みとほぼ一
致した。又、n−ブタノールに浸漬した膜及び
500c.c.のn−ブタノールを還流器つきの1のセ
パラプルフラスコ中に入れ、空気をフラスコ底部
より500c.c./分の流速で吹込みながら110℃まで昇
温し、この温度で8時間反応を続けた。反応後、
膜を取り出し、水洗を行なつた。さらに、10%の
苛性ソーダを含むエタノール−水(容量比1/
1)混合溶液中で末反応のスルホニルクロライド
基の加水分解を行なつた。 加水分解後、水洗し膜の一部を前述の方法で透
過赤外スペクトルを測定した。五塩化りん蒸気処
理を行なつてない面は原膜(ナフイオンXR−
415)のスペクトルに殆んど一致したが、五塩化
りん蒸気処理を行なつた面はスルホニルクロライ
ド基に起因する1420cm-1の吸収帯は消失し、代り
に1680cm-1のカルボン酸のナトリウム型塩型に相
当する吸収帯が認められた。さらに、加水分解後
の膜を次の条件下で五塩化りん蒸気処理面を陰極
に向けて飽和食塩水の電解性能の測定を行なつ
た。 条 件
[Table] Example 4 Nafion KR-415 was completely converted into a hydrogen ion type by the method of Example 1, and then dried. A stainless steel reactor (reaction area 100 cm 2 , reaction chamber volume 500 c.c.) in which only one side of the membrane can be in contact with the reaction reagent after drying under reduced pressure is used. After reducing the pressure to -760 mmHg, 50 mmHg of methylamine gas was introduced into the reaction chamber at room temperature. After introduction, the pressure of methylamine gas is 33mm
When the temperature decreased to Hg, the methylamine gas remaining in the reaction chamber was degassed using a vacuum pump. Reactor temperature
The temperature was raised to 140℃, and nitrogen containing saturated vapor of phosphorus pentachloride at 140℃ was introduced into the reactor at 760℃.
It was introduced up to mmHg. The reaction was continued in this state for 1 hour. After the reaction, take out the membrane, cut out a part for infrared spectrum measurement and staining, and leave it at room temperature for 3N−
Washing with HCl and water was performed for 8 hours each. or,
The remaining part was immersed in n-butanol at room temperature for 16 hours. After drying the sample for infrared spectrum measurement under reduced pressure, the phosphorus pentachloride vapor-treated surface and the end-treated surface were scraped with paper, and the transmitted infrared spectrum was measured. As a result, the one with the treated surface removed is 1060 cm
The sulfonic acid group at -1 was strongly observed, and the absorption bands corresponding to the sulfonyl chloride group at 420 cm -1 and the acid anhydride group at 1460 to 1480 cm -1 were hardly observed. On the other hand, the one with the finished surface removed is 1060 cm.
-1 , the absorption band from 1460 to 1480 cm -1 was hardly observed, and the absorption band at 1420 cm -1 was strongly observed. Furthermore, when a staining test was carried out under the same staining conditions using the staining solution of Example 1, about 15 μm from the surface of the phosphorus pentachloride vapor-treated side was not dyed at all, and the remaining portion was strongly stained deep purple. was. The thickness almost coincided with the thickness of the layer of sulfonic acid groups converted to methylammonium type calculated from the adsorption amount and exchange capacity of methylamine. Also, the membrane soaked in n-butanol and
500 c.c. of n-butanol was placed in a separate flask with a reflux device, and while blowing air from the bottom of the flask at a flow rate of 500 c.c./min, the temperature was raised to 110°C, and at this temperature for 8 hours. continued to react. After the reaction,
The membrane was taken out and washed with water. Furthermore, ethanol-water containing 10% caustic soda (volume ratio 1/
1) Hydrolysis of the terminally reacted sulfonyl chloride group was carried out in a mixed solution. After hydrolysis, a portion of the membrane was washed with water and its transmission infrared spectrum was measured using the method described above. The surface that has not been subjected to phosphorus pentachloride vapor treatment is coated with raw film (Nafion XR-
415), but on the surface treated with phosphorus pentachloride vapor treatment, the absorption band at 1420 cm -1 due to the sulfonyl chloride group disappeared and was replaced by the sodium form of the carboxylic acid at 1680 cm -1 . An absorption band corresponding to the salt type was observed. Furthermore, the electrolytic performance of saturated saline was measured with the hydrolyzed membrane facing the phosphorus pentachloride vapor treated side toward the cathode under the following conditions. condition

【表】 上記条件下での電解テストの結果、槽電圧
3.62V、電流効率92%であつた。 実施例 5〜10 パーフロロ系陽イオン交換樹脂を実施例1の方
法で水素イオン型とした後、表−3に示す各種ア
ミンの5%、エタノール−水(容量比1/1)混
合溶液中に室温撹拌下に15時間浸漬し、水素イオ
ン型から置換アンモニウム型に変換した。得られ
た膜を水洗、乾燥後、実施例1と同様アンプル中
に五塩化りん粉末と共に減圧下に封入し、表−3
に示す条件下に反応を行なつた。反応条件、及び
反応後の膜の染色結果及び赤外スペクトルの測定
結果を表−3に示す。
[Table] Results of electrolysis test under the above conditions, cell voltage
It had a current efficiency of 3.62 V and 92%. Examples 5 to 10 After converting the perfluorinated cation exchange resin into a hydrogen ion type by the method of Example 1, it was added to a mixed solution of 5% of the various amines shown in Table 3 and ethanol-water (volume ratio 1/1). It was immersed for 15 hours under stirring at room temperature to convert from hydrogen ion type to substituted ammonium type. After washing the obtained membrane with water and drying, it was sealed in an ampoule together with phosphorus pentachloride powder under reduced pressure in the same manner as in Example 1.
The reaction was carried out under the conditions shown below. Table 3 shows the reaction conditions, the staining results of the membrane after the reaction, and the measurement results of the infrared spectrum.

【表】 実施例 11 実施例1で得られた水素イオン型の膜(10cm2
を5%のポリエチレンイミン(分子量1500〜
2000)水容液中に室温撹拌下に18時間浸漬した。
水洗後充分乾燥した。1gの五塩化りん及び膜を
総容積90c.c.のガラスアンプル中に封入し、150℃
のオイルバス中に1時間浸漬し、反応を行なつ
た。所定の時間径過後、アンプルをオイルバスよ
り取り出し、開封した。反応後の膜状物を3N−
HCl及び水洗減圧乾燥後、染色テスト、反射赤外
スペクトル、N−HCl中での膜抵抗の測定を行な
つた。染色テストの結果は、膜断面が均一に濃紫
色に染色されていた。又、反射赤外スペクトルを
測定した結果、スルホン酸基に相当する1060cm-1
の吸収帯が強く認められ、1420cm-1のスルホニル
クロライド基に相当する吸収帯は弱く認められ
た。又、IN−HCl中での室温下での膜抵抗は30
Ω・cm2であつた。 以上の結果からすると、染色テストでは判定し
得ない程の薄層で表面部分のスルホン酸基がスル
ホールハライド基に変換されているものと思われ
る。
[Table] Example 11 Hydrogen ion type membrane obtained in Example 1 (10cm 2 )
5% polyethyleneimine (molecular weight 1500~
2000) was immersed in an aqueous solution for 18 hours at room temperature with stirring.
After washing with water, it was thoroughly dried. 1 g of phosphorus pentachloride and membrane were sealed in a glass ampoule with a total volume of 90 c.c. and heated at 150°C.
The reaction was carried out by immersing it in an oil bath for 1 hour. After a predetermined period of time had elapsed, the ampoule was taken out from the oil bath and opened. After the reaction, the film-like substance was
After washing with HCl and water and drying under reduced pressure, a staining test, reflection infrared spectrum, and measurement of membrane resistance in N-HCl were performed. The staining test results showed that the cross section of the membrane was uniformly stained deep purple. In addition, as a result of measuring the reflection infrared spectrum, 1060 cm -1 corresponding to sulfonic acid group
A strong absorption band was observed, and a weak absorption band corresponding to the sulfonyl chloride group at 1420 cm -1 was observed. Also, the membrane resistance at room temperature in IN-HCl is 30
It was Ω・cm 2 . Judging from the above results, it seems that the sulfonic acid groups on the surface are converted to sulfole halide groups in a layer so thin that it cannot be determined by a dyeing test.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の態様(−×−)と水素イオ
ン型イオン交換樹脂における処理(−○−)と反
応温度によるイオン交換基の減少量を膜抵抗の変
化によつて測定した関係図である。第2図は、第
1図と同様の処理によつて変化したイオン交換基
について、酸無水物と酸クロライド基との生成比
と温度との関係を示した図である。
FIG. 1 is a diagram showing the relationship between the embodiment of the present invention (-×-), the treatment in the hydrogen ion type ion-exchange resin (-○-), and the amount of reduction in ion exchange groups due to reaction temperature measured by changes in membrane resistance. It is. FIG. 2 is a diagram showing the relationship between the production ratio of acid anhydride and acid chloride groups and temperature for ion exchange groups changed by the same treatment as in FIG. 1.

Claims (1)

【特許請求の範囲】 1 陽イオン交換基に対して、少なくともα位の
炭素原子に弗素原子を結合している陽イオン交換
樹脂であつて、該陽イオン交換基の対イオンがア
ンモニウムイオン又は置換アンモニウムイオンで
ある陽イオン交換樹脂を五塩化りんの蒸気と該陽
イオン交換基が実質的に離脱しない条件下に接触
させることを特徴とする陽イオン交換基を酸クロ
ライド基に変換する方法。 2 対イオンがアンモニウムイオンである特許請
求の範囲第1項記載の方法。 3 対イオンが炭素数1〜6のアルキル基よりな
る置換基を有する置換アンモニウムイオンである
特許請求の範囲第1項記載の方法。 4 対イオンがピリジニウムイオンである特許請
求の範囲第1項記載の方法。 5 陽イオン交換樹脂が、パーフロロカーボンを
主鎖とし、側鎖にイオン交換基を結合している特
許請求の範囲第1項記載の方法。 6 陽イオン交換樹脂が陽イオン交換膜である特
許請求の範囲第1項記載の方法。 7 陽イオン交換基がスルホン酸基である特許請
求の範囲第1項記載の方法。 8 陽イオン交換基の対イオンのうち、一部がア
ンモニウムイオン又は置換アンモニウムイオンで
ある陽イオン交換樹脂である特許請求の範囲第1
項記載の方法。 9 対イオンとして実質的に陽イオン交換樹脂内
に浸透しない分子量を有する置換アンモニウムイ
オンを用いる特許請求の範囲第8項記載の方法。
[Scope of Claims] 1. A cation exchange resin in which a fluorine atom is bonded to at least the α-position carbon atom with respect to a cation exchange group, wherein the counter ion of the cation exchange group is an ammonium ion or a substituted A method for converting a cation exchange group into an acid chloride group, which comprises contacting a cation exchange resin, which is an ammonium ion, with a vapor of phosphorus pentachloride under conditions such that the cation exchange group is not substantially removed. 2. The method according to claim 1, wherein the counter ion is an ammonium ion. 3. The method according to claim 1, wherein the counter ion is a substituted ammonium ion having a substituent consisting of an alkyl group having 1 to 6 carbon atoms. 4. The method according to claim 1, wherein the counter ion is a pyridinium ion. 5. The method according to claim 1, wherein the cation exchange resin has a perfluorocarbon main chain and an ion exchange group bonded to the side chain. 6. The method according to claim 1, wherein the cation exchange resin is a cation exchange membrane. 7. The method according to claim 1, wherein the cation exchange group is a sulfonic acid group. 8. Claim 1, which is a cation exchange resin in which some of the counter ions of the cation exchange group are ammonium ions or substituted ammonium ions.
The method described in section. 9. The method according to claim 8, wherein a substituted ammonium ion having a molecular weight that does not substantially penetrate into the cation exchange resin is used as a counter ion.
JP5379978A 1978-05-08 1978-05-08 Converting method for cation exchange guoup into acid chloride one Granted JPS54146282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5379978A JPS54146282A (en) 1978-05-08 1978-05-08 Converting method for cation exchange guoup into acid chloride one

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5379978A JPS54146282A (en) 1978-05-08 1978-05-08 Converting method for cation exchange guoup into acid chloride one

Publications (2)

Publication Number Publication Date
JPS54146282A JPS54146282A (en) 1979-11-15
JPS6115092B2 true JPS6115092B2 (en) 1986-04-22

Family

ID=12952854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5379978A Granted JPS54146282A (en) 1978-05-08 1978-05-08 Converting method for cation exchange guoup into acid chloride one

Country Status (1)

Country Link
JP (1) JPS54146282A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638330A (en) * 1979-09-05 1981-04-13 Asahi Chem Ind Co Ltd Preparation of intermediate of ion exchange membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187183A (en) * 1975-01-30 1976-07-30 Asahi Chemical Ind Yoionkokanmaku oyobi sonoseizohoho
JPS52134888A (en) * 1976-04-16 1977-11-11 Asahi Chem Ind Co Ltd Method of sulfuryl chlorination
JPS52138489A (en) * 1976-05-17 1977-11-18 Tokuyama Soda Co Ltd Treatment of cation exchanger
JPS544289A (en) * 1977-06-13 1979-01-12 Tokuyama Soda Co Ltd Converting method for cation exchange groups into acid chloride groups

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187183A (en) * 1975-01-30 1976-07-30 Asahi Chemical Ind Yoionkokanmaku oyobi sonoseizohoho
JPS52134888A (en) * 1976-04-16 1977-11-11 Asahi Chem Ind Co Ltd Method of sulfuryl chlorination
JPS52138489A (en) * 1976-05-17 1977-11-18 Tokuyama Soda Co Ltd Treatment of cation exchanger
JPS544289A (en) * 1977-06-13 1979-01-12 Tokuyama Soda Co Ltd Converting method for cation exchange groups into acid chloride groups

Also Published As

Publication number Publication date
JPS54146282A (en) 1979-11-15

Similar Documents

Publication Publication Date Title
US6465120B1 (en) Composite polymer membrane, method for producing the same and solid polymer electrolyte membrane
JP2010248499A (en) Cross-linkable bisulphonyl derivative and use thereof for preparing ion-exchanging membrane
WO2011129967A2 (en) Proton conducting materials
JPS602394B2 (en) Method for manufacturing ion exchange membrane-catalyst metal assembly
CA1079914A (en) Method for preparation of cation exchange membrane
JPS5833886B2 (en) Cation exchange membrane and its manufacturing method
JPS6115092B2 (en)
EP0750531A1 (en) Processes for forming thin, durable coatings of ion-containing polymers on selected substrates
JP3339961B2 (en) Method for producing amphoteric membrane and aqueous alkali metal hydroxide solution
CN116036889A (en) Perfluorinated bipolar membrane and preparation method thereof
JPH0412458A (en) Solid polymer electrolyte type fuel cell
CA1083312A (en) Process for production of perfluorocarbon type cation exchange membrane
JP7133661B2 (en) Polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen and method for producing the same
DE60113458T2 (en) ORGANIC POLYMERS CONTAINING FLUOROSULFONIC ACID
JPS6011932B2 (en) Method for converting cation exchange groups to acid chloride groups
JPH06251782A (en) Manufacture of joined body of membrane having high electric conductivity with electrode
JPS6317293B2 (en)
JPS5939452B2 (en) Treatment method for cation exchanger
JPH0374693B2 (en)
JPS59258B2 (en) Method for producing perfluorocarbon cation exchanger
JPS5925036B2 (en) Fluorine resin cation exchange membrane for electrolysis
JPS6031216B2 (en) Manufacturing method of cation exchange membrane
JPS6023777B2 (en) Improvement method for fluorine-based ion exchange membrane
CN118027613A (en) Fluoroalkyl chain-containing polyfluorene anion exchange membrane, fluoroalkyl chain-containing polyfluorene alkaline binder, and preparation method and application thereof
GB2040803A (en) A method for joining fluorinated polymer cation exchange membranes