JPS6031216B2 - Manufacturing method of cation exchange membrane - Google Patents

Manufacturing method of cation exchange membrane

Info

Publication number
JPS6031216B2
JPS6031216B2 JP52084291A JP8429177A JPS6031216B2 JP S6031216 B2 JPS6031216 B2 JP S6031216B2 JP 52084291 A JP52084291 A JP 52084291A JP 8429177 A JP8429177 A JP 8429177A JP S6031216 B2 JPS6031216 B2 JP S6031216B2
Authority
JP
Japan
Prior art keywords
membrane
group
acid halide
cation exchange
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52084291A
Other languages
Japanese (ja)
Other versions
JPS5420981A (en
Inventor
俊勝 佐田
昭彦 中原
順一 伊藤
正樹 白水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP52084291A priority Critical patent/JPS6031216B2/en
Publication of JPS5420981A publication Critical patent/JPS5420981A/en
Publication of JPS6031216B2 publication Critical patent/JPS6031216B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は陽イオン交換膜の製造方法に関し、より詳細に
は酸ハラィド基とふつ素原子を結合して有する高分子膜
状物をフェノール性水酸基を有し且つビニル基を有しな
い芳香族化合物と接触させ、これにより特に電解性能に
穣れた陽イオン交換膜を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cation exchange membrane, and more particularly to a method for producing a cation exchange membrane, in which a polymer film having an acid halide group and a fluorine atom bonded to each other has a phenolic hydroxyl group and a vinyl group. The present invention relates to a method for producing a cation exchange membrane having particularly good electrolytic performance by contacting the membrane with an aromatic compound that does not have an aromatic compound.

近年、アルカリ金属塩水溶液の電気分解によってアルカ
リ金属塩水酸化物、水素ガス、酸素ガス、ハロゲンガス
等を製造する方法は高純度のアルカリ金属水酸化物を取
得するための技術の確立が急がれている。
In recent years, there has been an urgent need to establish a method for producing alkali metal salt hydroxide, hydrogen gas, oxygen gas, halogen gas, etc. by electrolysis of aqueous alkali metal salt solutions to obtain highly pure alkali metal hydroxide. ing.

この技術において中心となるのは陽極室と陰極室を区分
する陽イオン交換膜であり、より高い濃度のアルカリ金
属水酸化物を、より高い電流効率で且つより低い電解電
圧で取得する目的で陽イオン交換膜の研究、改良が続け
られている。上記の目的に耐える陽イオン交換膜として
の基本的性質は耐酸化性があること、耐アルカリ性があ
ること及び耐熱性があることが必要である。そのために
含ふつ素系陽イオン交換膜が開発されているが、一般に
含ふっ秦系腸イオン交換膜を用いて濃厚なアルカリ金属
水酸化物を取得して高い電流効率を維持し且つ低い雷槽
電圧を保持することは容易でない。したがって含ふつ素
系陽イオン交換膜について各種の改良方法が提案され或
は試みられている。例えばパーフルオロカーボンスルホ
ン酸型膜の苛性ソーダに接する膜面をアンモニア、モノ
アルキルアミン、ジアミン或はポリアミンと処理しスル
ホン酸ァミドの層を形成する方法、陰イオン性の薄層を
形成する方法、中性の薄層を形成する方法、カルボン酸
基を有する層を形成する方法など、更にはカルボン酸基
のみを有する含ふっ素系腸イオン交換膜を用いる方法な
どがある。本発明者らは反応活性な芳香族化合物とスル
ホニルハラィド基を有する高分子膜状物とを反応させて
該高分子膜状物のスルホニルハラィド基と芳香環の反応
について種々検討を進めていた結果、意外にもフェノー
ル性水酸基を有する芳香族化合物とスルホニルハラィド
基を有する高分子膜状物を反応させることによって得た
含ふつ素系腸イオン交換膜を用いて、アルカリ金属塩の
電気分解を実施した場合には電解性能が著しく向上する
ことを見出し本発明を完成させるに至った。
The core of this technology is a cation exchange membrane that separates the anode chamber and the cathode chamber. Research and improvement of ion exchange membranes continues. The basic properties of a cation exchange membrane that can meet the above objectives are oxidation resistance, alkali resistance, and heat resistance. For this purpose, fluorine-containing cation exchange membranes have been developed, but in general, fluorine-containing cation exchange membranes are used to obtain concentrated alkali metal hydroxides, maintain high current efficiency, and have a low lightning tank. Maintaining voltage is not easy. Therefore, various methods of improving fluorine-containing cation exchange membranes have been proposed or attempted. For example, a method of forming a sulfonic acid amide layer by treating the surface of a perfluorocarbon sulfonic acid type membrane in contact with caustic soda with ammonia, monoalkylamine, diamine, or polyamine, a method of forming an anionic thin layer, and a method of forming an anionic thin layer. There are methods of forming a thin layer of , a method of forming a layer having carboxylic acid groups, and a method of using a fluorine-containing intestinal ion exchange membrane having only carboxylic acid groups. The present inventors conducted various studies on the reaction between the sulfonyl halide groups and aromatic rings of the polymer membrane by reacting a reactive aromatic compound with a polymer membrane having sulfonyl halide groups. As a result of this progress, we unexpectedly discovered that alkali metal The present invention was completed based on the discovery that electrolytic performance is significantly improved when salt electrolysis is carried out.

即ち、本発明は酸ハラィド基とふっ素原子を結合し且つ
少くとも該ハラィド基に対してQ位の炭素にふっ素原子
を結合して有する高分子膜状物を、フェノール性水酸基
を少くとも1ケ月以上有し且つビニル基を有しない芳香
族化合物と接触せしめた後、必要に応じて加水分解処理
をすることを特徴とする陽イオン交換膜の製造方法であ
る。本発明に用いられる高分子膜状物はふつ素原子と駿
ハラィド基を結合して有しており、少なくとも酸ハラィ
ド基に対してQ位の炭素にふっ素原子が結合しているこ
とが必要である。
That is, the present invention provides a polymer film having a fluorine atom bonded to an acid halide group and a fluorine atom bonded to at least a carbon at the Q position with respect to the halide group, and a phenolic hydroxyl group bonded to the phenolic hydroxyl group for at least one month. This is a method for producing a cation exchange membrane, which is characterized in that after contacting with an aromatic compound having the above-mentioned properties and not having a vinyl group, hydrolysis treatment is performed as necessary. The polymer film used in the present invention has a fluorine atom and a halogen halide group bonded to each other, and it is necessary that a fluorine atom is bonded to at least the carbon at the Q position with respect to the acid halide group. be.

この場合の酸ハラィド基としては従来公知の酸ハライド
基なら特に制限はない。即ちスルホン酸ハラィド、カル
ボン酸ハラィド、リン酸ハラィド、亜リン酸ハラィド等
であり、ハラィドとしてはフルオライド、クロラィド、
フロマィド、アィオタ11ィドで特に制限ないが、特に
クロラィド、フロマィド、アィオ夕11ィドが好ましい
。また少くとも酸ハラィド基に対してQ位の炭素にふつ
素原子が結合している高分子膜状物としては、特にパー
フルオロカーボン系の高分子鎖に酸ハラィド基が結合し
たものが最も望ましい。例えばパーフルオロ(3・6ー
ジオキサ−4−メチル−7−オクテンスルホニルフルオ
ラィド)とテトラフルオロェチレンの共重合体、或はそ
れを加水分解して陽イオン交換膜としたものを五塩化リ
ン、三塩化リン、オキシ塩化リン、塩化チオニル、五臭
化リン、ふつ素ガス等々従来公知の方法で酸ハラィド基
に変換した基を結合した高分子膜状物である。他方、本
発明において酸ハラィド基を有する高分子膜状物に反応
させるフェノール性水酸基を少なくとも1ケ月以上結合
して有し且つビニル基を有しない芳香族化合物としては
フェノール、ピロガロール、レゾルシン、力テコール、
ヒドロキノン、フロログルシン、没食子酸、ナフトール
類、ナフタレンジオール類、或はこれらの謙導体でハロ
ゲン、アルキル基、アルコキシ基、ァミノ基、スルホン
基、ニトロ基、リン酸基、カルボン酸基等を結合した化
合物で、例えばクレゾール類、エチルフェノール類、ク
ロルフェノール類、ヨードフェノール類、メトキシフェ
ノール類、ジメトキシフェノール類、メトキシカテコー
ル類、ジイソプロピルカテコール類、ヘキサヒドロキシ
ベソゼン、クロルレゾルシン類、メチルヒドロキノン類
、ジヒドロキシナフタレン類、テトラヒドロキシアンス
ラセン類、ビス→ヒドロキシフェニル)−メタン類等々
の化合物で有機・無機系の溶媒に可溶なものが望ましい
The acid halide group in this case is not particularly limited as long as it is a conventionally known acid halide group. That is, sulfonic acid halides, carboxylic acid halides, phosphoric acid halides, phosphorous halides, etc. The halides include fluoride, chloride,
Although there are no particular limitations on fromide and iota-11ide, chloride, furomide, and iota-11ide are particularly preferred. Furthermore, as the polymer film-like material in which a fluorine atom is bonded to at least the carbon at the Q position relative to the acid halide group, it is most desirable to use a polymer film in which the acid halide group is bonded to a perfluorocarbon polymer chain. For example, a copolymer of perfluoro(3,6-dioxa-4-methyl-7-octensulfonyl fluoride) and tetrafluoroethylene, or a cation exchange membrane made by hydrolyzing it, is used as phosphorus pentachloride. , phosphorus trichloride, phosphorus oxychloride, thionyl chloride, phosphorus pentabromide, fluorine gas, etc., are bonded to groups converted to acid halide groups by conventionally known methods. On the other hand, in the present invention, aromatic compounds having a phenolic hydroxyl group bonded for at least one month and having no vinyl group to be reacted with a polymer film having an acid halide group include phenol, pyrogallol, resorcinol, and tecol. ,
Hydroquinone, phloroglucin, gallic acid, naphthols, naphthalene diols, or their humble conductors, compounds with halogens, alkyl groups, alkoxy groups, amino groups, sulfonic groups, nitro groups, phosphoric acid groups, carboxylic acid groups, etc. Examples include cresols, ethylphenols, chlorophenols, iodophenols, methoxyphenols, dimethoxyphenols, methoxycatechols, diisopropylcatechols, hexahydroxybesozene, chlorresorcinols, methylhydroquinones, and dihydroxynaphthalenes. , tetrahydroxyanthracenes, bis→hydroxyphenyl)-methanes, etc., which are soluble in organic and inorganic solvents are desirable.

次に、これらのフェノール性水酸基を有し且つビニル基
を有しない芳香族化合物を酸ハラィド基と接触させる手
段は特に限定的ではない。
Next, the means by which these aromatic compounds having a phenolic hydroxyl group and not having a vinyl group are brought into contact with an acid halide group is not particularly limited.

上記フェノール性水酸基を有する化合物が液状である場
合には、酸ハラィド基を有する高分子膜状物を浸債すれ
ばよく、また固体である場合には適当な有機・無機系の
溶媒に溶解して該膜状物を浸債すればよい。上記の有機
・無機系の溶媒としてはアルコール類、ケトン類、エー
テル類、有機酸類、四塩化炭素、クロロホルム等のハロ
ゲン化炭化水素類、芳香族化合物、水等が何ら制限なく
用いられる。これらフェノール性水酸基を有する芳香族
化合物、或はそれを含む水溶液を酸ハラィド基を有する
高分子膜状物と接触させる場合には膜状物を溶液中に浸
潰して、液を燈拝した方が望ましく、或は膜状物の膜面
上を一定の流速で流すことも場合に応じて好適に用いら
れる。上記の接触温度はフェノール性水酸基を有する芳
香族化合物或はそれを溶解した溶液が凝固しない温度か
ら孫とうする温度範囲ならば特に制限はなく、一般に温
度を高くすれば短時間の接触によって速やかに目的を達
成することが出来る。またフェノール性水酸基を有する
芳香族化合物を適当な溶媒に溶解した場合、その濃度は
飽和溶液まで使うことが出来、また溶解度が小さいとき
にはスラリー状にして実施してもよい。上記の接触させ
る時間は一般に1分間ないし200時間が工業的に有意
であるが、更に20加持間以上接触させても特に問題は
ない。なお接触させるとき膜の片面のみを接触させても
よく或は膜の両面を援触させてもよいが、特に好ましい
のは一方の膜面のみに接触させるときである。また高分
子膜状物の内部にまで反応を進めたいときには該高分子
膜状物を膨潤させる能力のある溶媒を用いて反応させれ
ばよく、或は膜表層部のみ薄層状に反応させたいときに
は該膜状物に対して親和性の乏しい溶媒を用いればよい
。上記したようにフェノール性水酸基を有する芳香族化
合物と醗ハラィド基を有する高分子膜状物とを接触させ
ることによって、得られる該高分子膜状物をアルカリ金
属水酸化物の水溶液或は有機溶媒溶液に浸潰して、残余
の酸ハラィド基を腸イオン交換基に変換する。
When the above-mentioned compound having a phenolic hydroxyl group is in a liquid state, a polymer film having an acid halide group may be impregnated with the compound, or if it is a solid, it may be dissolved in an appropriate organic or inorganic solvent. The film-like material may be impregnated. As the above-mentioned organic/inorganic solvents, alcohols, ketones, ethers, organic acids, carbon tetrachloride, halogenated hydrocarbons such as chloroform, aromatic compounds, water, etc. can be used without any restriction. When bringing these aromatic compounds with phenolic hydroxyl groups or aqueous solutions containing them into contact with polymer membranes having acid halide groups, it is best to immerse the membrane in the solution and soak the liquid. is desirable, or it may be preferable to flow the liquid at a constant flow rate over the membrane surface of the membrane-like material depending on the case. The above contact temperature is not particularly limited as long as the aromatic compound having a phenolic hydroxyl group or the solution containing it is within the temperature range from which it does not coagulate. You can achieve your purpose. Furthermore, when an aromatic compound having a phenolic hydroxyl group is dissolved in a suitable solvent, it can be used at a concentration up to a saturated solution, or when the solubility is low, it may be made into a slurry. The above-mentioned contact time is generally industrially significant from 1 minute to 200 hours, but there is no particular problem if the contact time is further extended for 20 hours or more. Note that when bringing into contact, only one side of the membrane may be brought into contact, or both sides of the membrane may be brought into contact, but it is particularly preferable to bring into contact only one side of the membrane. In addition, if you want to advance the reaction to the inside of the polymer membrane, you can use a solvent that has the ability to swell the polymer membrane, or if you want to cause the reaction to occur only in a thin layer on the surface of the membrane, A solvent having poor affinity for the film-like material may be used. As described above, by bringing an aromatic compound having a phenolic hydroxyl group into contact with a polymer film having a halide group, the resulting polymer film is mixed with an aqueous solution of an alkali metal hydroxide or an organic solvent. The remaining acid halide groups are converted into enteric ion exchange groups by immersion in a solution.

この陽イオン交換膜を例えばアルカリ金属塩水溶液を電
気分解してアルカリ金属水酸化物を取得する電解反応の
隔腰として用いると著しく高い電流効率を示す。このよ
うな作用機構については充分に解明されていないが、フ
ェノール性水酸基と酸ハラィド基がェステル結合を形成
して芳香環の著しい疎水結合性のために膜の含水量が低
減し固定イオン濃度の向上があること、酸ハラィド基と
反応活性な芳香環との反応の結果として疎水結合性の芳
香環の導入と同時に弱酸性の陽イオン交換基であるフェ
ノール性水酸基が導入され、膜の固定イオン濃度が高く
なること、更には新しい別のイオン交換能を有する官能
基が生成している可能性、酸ハラィド基がイオン交換能
のない不活性なものに変換されている可能性が考えられ
る。一般にイオン交換膜にあっては膜の電気化学的性質
として重要な異符号イオン間選択透過性(輪率、電流効
率)と膜の電気抵抗とは相反する要素であり、輸率を高
めるためには腰の交換容量を増し舎水量を低くして固定
イオン濃度を高くする必要があるが、固定イオン濃度を
高くすると膜の電気抵抗は高騰する。
When this cation exchange membrane is used, for example, as a barrier in an electrolytic reaction in which an aqueous alkali metal salt solution is electrolyzed to obtain an alkali metal hydroxide, it exhibits extremely high current efficiency. Although the mechanism of action is not fully understood, the phenolic hydroxyl group and the acid halide group form an ester bond, and due to the remarkable hydrophobic bonding of the aromatic ring, the water content of the membrane decreases and the fixed ion concentration decreases. As a result of the reaction between the acid halide group and the reactive aromatic ring, a phenolic hydroxyl group, which is a weakly acidic cation exchange group, is introduced at the same time as the hydrophobically binding aromatic ring, and the fixed ion of the membrane is improved. There is a possibility that the concentration increases, that another new functional group having ion exchange ability is generated, and that the acid halide group is converted to an inert group that does not have ion exchange ability. In general, in ion-exchange membranes, the selective permeability between ions of opposite sign (ring ratio, current efficiency), which is important as the electrochemical properties of the membrane, and the electrical resistance of the membrane are contradictory elements. It is necessary to increase the fixed ion concentration by increasing the exchange capacity of the membrane and lowering the amount of water in the building, but increasing the fixed ion concentration will increase the electrical resistance of the membrane.

したがって輸率を高く保ち且つ電気抵抗を低くするため
に、膜のイオン交換基と同じ符号の電荷を有するイオン
が侵入する可能性の大きい膜面上のみに固定イオン濃度
の高い層を形成することが望ましい。即ち、本発明にお
いても前記したように酸ハラィド基を有する高分子膜状
物の一方の膜面のみに、薄層状に実質的に膜の電気抵抗
の増大を招かない厚みにフェノール性水酸基を有する芳
香族化合物と反応させることが有効である。本発明で得
られた陽イオン交換膜は従来公知の陽イオン交換膜を用
いる系に何ら制限なく用いることが出来る。
Therefore, in order to keep the transference number high and the electrical resistance low, a layer with a high concentration of fixed ions is formed only on the membrane surface where there is a high possibility that ions having the same sign of charge as the ion exchange group of the membrane will enter. is desirable. That is, in the present invention, as described above, the polymer membrane having acid halide groups has phenolic hydroxyl groups only on one membrane surface in a thin layer with a thickness that does not substantially increase the electrical resistance of the membrane. It is effective to react with an aromatic compound. The cation exchange membrane obtained in the present invention can be used without any restriction in systems using conventionally known cation exchange membranes.

例えば有機塩、有機酸、有機塩基の電気分解を実施する
ときの隔膜;無機塩、無機酸、無機塩基の電気分解を実
施するときの隔膜;電気透析を実施するときの陽イオン
交換膜;燃料電池の電解質、逆に水を電気分解して水素
と酸素を発生する装置における電解質等々、或は拡散透
析その他一般に酸化剤が含まれている系に好適に用いら
れる。以下の実施例によって本発明の内容を具体的に説
明するが以下の実施例によって本発明の内容は拘束され
るものではない。
For example, diaphragms for electrolysis of organic salts, organic acids, and organic bases; diaphragms for electrolysis of inorganic salts, inorganic acids, and inorganic bases; cation exchange membranes for electrodialysis; fuels It is suitably used as an electrolyte in batteries, an electrolyte in devices that electrolyze water to generate hydrogen and oxygen, or diffusion dialysis and other systems that generally contain an oxidizing agent. The contents of the present invention will be specifically explained with reference to the following examples, but the contents of the present invention are not restricted by the following examples.

なお実施例中において膜の電気抵抗は3.弧−NaCI
と6.0N−NaOHの間に膜を配して1000サイク
ル交流によって8000で測定したものである。
In the examples, the electrical resistance of the membrane was 3. Arc-NaCI
The measurement was performed at 8,000 ℃ by placing a membrane between 1,000 cycles of AC and 6.0N-NaOH.

また得られた膜の電気化学的な性質の評価としては飽和
アルカリ金属塩水溶液の電気分解と中性隔膜とを対にし
た多室式電気透析装置によって行なった。アルカリ金属
塩水溶液の電気分解に用いた装置は有効通電面積0.恐
れの二室式電解槽で陽極としてはチタンの金網の上に酸
化チタンと酸化ルテニウムをコーティングした不溶性陽
極で陰極には敏鉄の金網を用いた。電流密度は30A/
dめで電解温度は80〜9000であった。また電気透
析は希アルカリを含んだ水溶液を電気透析脱アルカリし
、濃縮側に濃厚なアルカリを回収しようということを目
的とし、有効通電面積ld〆の陽イオン交換膜と中性隔
膜を対にして、電気透析して濃縮した。実施例 1テト
ラフルオロヱチレンとパーフルオロ(3・6−ジオキサ
−4−メチル−7−オクテンスルホニルフルオラィド)
の共重合膜状物を水60碇都、ジメチルスルホキシド4
00部、苛性ソーダ15部からなる俗が浸潰して加水分
解処理してスルホン酸ソーダ型の腸イオン交換膜とした
Further, the electrochemical properties of the obtained membrane were evaluated using a multi-chamber electrodialysis device that combines electrolysis of a saturated alkali metal salt aqueous solution and a neutral diaphragm. The device used for electrolysis of aqueous alkali metal salt solutions has an effective current carrying area of 0. In the feared two-chamber electrolytic cell, the anode was an insoluble anode made of a titanium wire mesh coated with titanium oxide and ruthenium oxide, and the cathode was a metal wire mesh. Current density is 30A/
The electrolysis temperature was 80-9000℃. In addition, electrodialysis is used to dealkalize an aqueous solution containing dilute alkali and recover the concentrated alkali on the concentration side. , and concentrated by electrodialysis. Example 1 Tetrafluoroethylene and perfluoro(3,6-dioxa-4-methyl-7-octensulfonyl fluoride)
A copolymerized film of 60 parts of water and 4 parts of dimethyl sulfoxide
00 parts of sodium hydroxide and 15 parts of caustic soda were soaked and hydrolyzed to obtain a sodium sulfonate type intestinal ion exchange membrane.

この膜の厚みは0.25帆で交換容量は0.91ミリ当
量/グラム乾燥膜(日型)であった。この膜を6000
の60%の濃硝酸中に浸潰して完全に酸型に変換後、減
圧乾燥し片面のみ反応させることの出釆る装置に締めつ
けて一方の膜面上に五塩化リンの結晶を均一に分散させ
、これを150qoに保った熱板の間にはさんで、五塩
化リンの結晶を昇華させて1時間放置した。膜を取り出
したあと水洗して、減圧乾燥した後、反射赤外吸収スペ
クトルによって五塩化リンの蒸気と反応させた膜面と未
反応の膜面を分析したところ、未反応の膜面には850
伽‐1、109比ネ‐1に吸収が見られ、反応させた膜
面ではこれらの吸収は消失して新らたに580cの‐1
、1430cM‐1の位置に吸収が現われていた。次い
で、この膜をシクロヘキサノン25の都、ピロカテキン
5碇部の溶液中に35q0で4錨時間浸潰して後、充分
にメタノール洗糠、水洗後再び反射赤外吸収スペクトル
を測定したところ、五塩化リン処理をした膜面の580
伽‐1、1430肌‐1の吸収は消滅し、1410肌‐
1、1790弧‐1、3200〜3400肌‐1、29
50cの‐1に新しい吸収が出現した。
The thickness of this membrane was 0.25 mm, and the exchange capacity was 0.91 meq/g dry membrane (Japan type). This film is 6000
After completely converting to the acid form by immersing it in 60% concentrated nitric acid, it was dried under reduced pressure and tightened in a device that allows only one side to react, to uniformly disperse phosphorus pentachloride crystals on one membrane surface. This was placed between hot plates maintained at 150 qo, and the phosphorus pentachloride crystals were sublimated and left for 1 hour. After taking out the membrane, washing it with water and drying it under reduced pressure, we analyzed the membrane surface that had reacted with phosphorus pentachloride vapor and the unreacted membrane surface using reflection infrared absorption spectroscopy.
Absorption was observed in Ka-1 and 109-ratio Ne-1, but these absorptions disappeared on the reacted film surface and new 580c-1
, absorption appeared at the position of 1430 cM-1. Next, this film was immersed in a solution of 25 parts of cyclohexanone and 5 parts of pyrocatechin at 35q0 for 4 hours, thoroughly washed with methanol and water, and the reflection infrared absorption spectrum was measured again. 580 on the membrane surface treated with phosphorus
Ka-1, 1430 skin-1 absorption disappears, 1410 skin-
1, 1790 arc-1, 3200-3400 skin-1, 29
A new absorption appeared at -1 of 50c.

この膜を10%の苛性ソーダのエタノール溶液中に浸潰
して、加水分解し、水洗後減圧乾燥して再び上記五塩化
リン処理した膜面を赤外反射スペクトルで観察したとこ
ろ、1410弧‐1、1680肌‐1、3200〜34
00伽‐1、2950伽‐1に赤外吸収スペクトルが認
められた。上記と同一条件で処理した0.母での二室電
解槽に組み込める大きさの膜を作り、飽和食塩水を陽極
液として電気分解したところ、7.州−NaOHを取得
して電流効率は95%、亀槽電圧は3.72V、苛性ソ
ーダ中のNaCIは48%NaOH換算で1&めであっ
た。なお電解は五塩化リンで処理した膜面を陰極に向け
て実施した。また上記の膜を8000の濃硝酸中で2餌
時間反応処理し、反射赤外スペクトルで測定した結果3
200〜3400cの‐1、2950弧‐1、1410
肌‐1の吸収は弱くなり、1790肌‐1の吸収帯が残
った。
This membrane was immersed in a 10% caustic soda ethanol solution, hydrolyzed, washed with water, dried under reduced pressure, and the surface of the membrane treated with phosphorus pentachloride was observed again using an infrared reflection spectrum. 1680 skin-1, 3200-34
Infrared absorption spectra were observed for 00ka-1 and 2950ka-1. 0. treated under the same conditions as above. When we made a membrane large enough to be incorporated into a two-chamber electrolytic cell and electrolyzed it using saturated saline as the anolyte, we found 7. After obtaining state-NaOH, the current efficiency was 95%, the tank voltage was 3.72 V, and the NaCI in caustic soda was 48%, 1&me in terms of NaOH. Note that electrolysis was performed with the membrane surface treated with phosphorus pentachloride facing the cathode. In addition, the above film was subjected to a reaction treatment for 2 hours in 8,000 ml of concentrated nitric acid, and the results were measured using a reflection infrared spectrum.
200~3400c-1, 2950 arc-1, 1410
The absorption of Hada-1 became weaker, and the absorption band of 1790 Hada-1 remained.

この処理を施した膜を用いて飽和食塩水の電気分解を実
施した結果、電槽電圧は5.3V、7.州−NaOH取
得時の電流効率は85%であった。他方、単にスルホン
酸基のみ有する膜を用いて飽和食塩水の電気分解を実施
したところ7.州−NaOHを取得して電流効率は51
%、電槽電圧は3.65V、苛性ソーダ中のNaCIの
量は48%NaOH換算で6頚柵であった。
As a result of electrolysis of saturated saline using the membrane subjected to this treatment, the cell voltage was 5.3V, 7. The current efficiency during state-NaOH acquisition was 85%. On the other hand, electrolysis of saturated saline was carried out using a membrane having only sulfonic acid groups.7. Obtained state-NaOH and current efficiency is 51
%, the cell voltage was 3.65 V, and the amount of NaCI in the caustic soda was 48% NaOH equivalent.

実施例 2 テトラフルオロエチレンとパーフルオロ(3・6−ジオ
キサ−4−メチル一7ーオクテンスルホニルフルオラィ
ド)の共重合物で2ミルの厚みのシート2枚の間にポリ
テトラフルオロェチレン製の平織布(400デニールの
糸をタテ、ョコともにィンチあたり50本打ち込んだも
の)をはさみ加熱融着して一枚の高分子膜状物とした。
Example 2 A copolymer of tetrafluoroethylene and perfluoro(3,6-dioxa-4-methyl-7-octensulfonyl fluoride) was placed between two 2 mil thick sheets made of polytetrafluoroethylene. A plain woven fabric (50 400 denier threads per inch both vertically and horizontally) was sandwiched and heat fused to form a single polymer membrane.

これの一方の面に厚さ2ミルの同じ共重合体のシートを
加熱融着して貼り合わせた。これをジメチルスルホキシ
ド40碇部、水60碇部、水酸化ナトリウム15部から
なる加水分解格に80ooで3時間浸潰してスルホニル
フルオラィド基を加水分解してスルホン酸ソーダに変換
した。これの交換容量は0.83ミリ当量/グラム乾燥
膜(日型)であった。この膜を60qo、60%の濃硝
酸中に1餌時間浸潰してスルホン酸ソーダをスルホン酸
基に変換したのち、減圧乾燥しこれを五塩化リン2部に
オキシ塩化リン1礎邦を溶解したものの中に130午○
で浸潰して加熱還流反応を実施した。膜を取り出して四
塩化炭素で洗糠後、水浄してスルホニルクロラィド基を
有する膜とした。他方、同じ五塩化リンーオキシ塩化リ
ンの反応浴中に前記と同じ共重合体で補強布の入ってい
ないシートを同一条件で浸渡して後反射赤外吸収スペク
トルをとったところ、反応前は580cの‐1、850
肌‐1、1060肌‐1に吸収が認められたのが、反応
後は前記吸収スペクトルは消失し1430仇‐1に新し
い吸収が認められた。
A 2 mil thick sheet of the same copolymer was heat-fused and bonded to one side of this. This was immersed in a hydrolyzate consisting of 40 parts of dimethyl sulfoxide, 60 parts of water, and 15 parts of sodium hydroxide at 80°C for 3 hours to hydrolyze the sulfonyl fluoride groups and convert them into sodium sulfonate. Its exchange capacity was 0.83 milliequivalents/gram dry membrane (Japan type). This membrane was immersed in 60 qo, 60% concentrated nitric acid for 1 hour to convert sodium sulfonate into sulfonic acid groups, and then dried under reduced pressure and dissolved in 2 parts of phosphorus pentachloride and 1 part of phosphorus oxychloride. 130pm in things
A heating reflux reaction was carried out by immersion in water. The membrane was taken out, washed with carbon tetrachloride, and then washed with water to obtain a membrane having sulfonyl chloride groups. On the other hand, when a sheet of the same copolymer without reinforcing cloth was immersed in the same phosphorus pentachloride-phosphorus oxychloride reaction bath under the same conditions and the post-reflection infrared absorption spectrum was taken, it was found that before the reaction, it was 580c. -1,850
Absorption was observed in Hada-1 and 1060 Hada-1, but after the reaction, the absorption spectra disappeared and new absorption was observed in 1430 Hada-1.

これら補強材の入っていない膜は赤外吸収スペクトル測
定用として、補強材の入ったものは電気化学的性能の評
価用として製造した。
The membranes without reinforcement were used for infrared absorption spectroscopy, and the membranes with reinforcement were manufactured for evaluation of electrochemical performance.

なお電解性能の評価は飽和食塩水の電気分解によった。
上託した2種の膜について、次の表に示すフェノール性
水酸基を有する芳香族化合物と実施例1で用いた片面処
理装置中で接触したのちにジメチルスルホキシド、水、
苛性ソーダからなる加水分解格に浸簿して赤外吸収スペ
クトル及び飽和食塩水として8.0N−NaOHを取得
する電解性能の評価を実施した。反射赤外吸収スペクト
ルを測定するためのものは上記化合物の溶液中に浸潰し
、電解性能の評価に用いる膜は片面のみ反応させること
の出釆る反応装置によって処理した。なお接触させると
きの温度は4す0に保った。なお電解はフェノール性化
合物を反応させた膜面を陰極に向けて実施した。それら
の結果を第1表に示す。第 1 表 実施例 3 テトラフルオロヱチレンと CF2ごCF CF3 OCF2CF− OCF2CF2CoF の共重合体を
17000で加熱成型して厚みが0.1肋の高分子膜状
物とした。
The electrolytic performance was evaluated by electrolysis of saturated saline.
The two deposited membranes were contacted with the aromatic compounds having phenolic hydroxyl groups shown in the following table in the single-sided processing apparatus used in Example 1, and then dimethyl sulfoxide, water,
The infrared absorption spectrum was immersed in a hydrolyzed solution consisting of caustic soda, and the electrolytic performance was evaluated to obtain 8.0N-NaOH as a saturated saline solution. The membrane used for measuring the reflected infrared absorption spectrum was immersed in a solution of the above compound, and the membrane used for evaluating electrolytic performance was treated with a reaction apparatus capable of reacting only one side. The temperature during contact was maintained at 4.0°C. Note that electrolysis was performed with the membrane surface on which the phenolic compound was reacted facing the cathode. The results are shown in Table 1. Table 1 Example 3 A copolymer of tetrafluoroethylene and CF2/CFCF3OCF2CF-OCF2CF2CoF was heat-molded at 17,000 to form a polymer membrane with a thickness of 0.1 rib.

これを10%のNaOHのエタノール溶液中に60q○
で浸潰して加水分解したところ交換容量は1.45ミリ
当量/グラム乾燥膜であった。この膜を用いて飽和食塩
水の電気分解を実施したところ、7.州−NaOHを陰
極室から取得して電流効率は59%であった。この膜の
加水分解処理しないカルボン酸フルオラィド型のものを
レゾルシソの10%メタノール溶液に6000で4観音
間浸潰した後、これをメタノール洗総して後10%のN
aOH−メタノール溶液に浸潰して残余のカルボン酸フ
ルオラィドを加水分解処理した。
60q○ of this was added to a 10% NaOH ethanol solution.
The exchange capacity was 1.45 milliequivalents/g dry membrane when hydrolyzed by soaking with water. When electrolysis of saturated saline was carried out using this membrane, 7. State-NaOH was obtained from the cathode chamber and the current efficiency was 59%. A carboxylic acid fluoride type of this membrane that has not been hydrolyzed was soaked in a 10% methanol solution of Resorciso at 6000°C for 4 hours, washed with methanol, and then diluted with 10% N.
The remaining carboxylic acid fluoride was hydrolyzed by soaking in aOH-methanol solution.

交換容量を上記と同じ方法で測定したところ1.15ミ
リ当量/グラム乾燥膜であった。この膜を用いて前実施
例と同様に飽和食塩水の電気分解を実施したところ7.
州−NaOHを取得して電流効率92%であった。なお
、この膜の赤外吸収スペクトルをとったところ、レゾル
シンに浸潰しない膜と比較したとき3200弧‐1、2
950肌‐1、285比の‐1付近に新しい吸収が認め
られた。実施例 4実施例1で合成した陽イオン交換膜
と電気抵抗が3.80一塊の透水量0.01cc/hr
・地肌日20の非荷電性の膜(ポリテトラフルオロェチ
レン製)を対にして用い、この対を5対作り両側に陽極
室、陰極室を設けて0.州−NaOHを電気透析濃縮す
ることを試みた。
The exchange capacity was measured in the same manner as above and was 1.15 meq/g dry membrane. Using this membrane, electrolysis of saturated saline solution was carried out in the same manner as in the previous example.7.
State-NaOH was obtained and the current efficiency was 92%. In addition, when the infrared absorption spectrum of this film was taken, it was found that 3200 arc-1, 2
New absorption was observed near 950 skin -1 and 285 skin -1. Example 4 The cation exchange membrane synthesized in Example 1 has an electrical resistance of 3.80 and a water permeation rate of 0.01 cc/hr.
・Pairs of non-charged membranes (made of polytetrafluoroethylene) with a skin temperature of 20% are used, five pairs are made, and an anode chamber and a cathode chamber are provided on both sides. An attempt was made to electrodialytically concentrate NaOH.

電流密度10A/d〆で希釈側苛性ソ−ダ溶液の流速5
肌/secで0.が−NaOHとなるように半バッチ方
式による電気透析法で苛性ソーダを濃縮回収した。濃縮
室側に五塩化リン処理した膜面を向けて電気透析を実施
し、濃縮液として8.印の苛性ソーダを電流効率63%
で取得出来た。他方、実施例1に於いて五塩化リン処理
し、フェノ−ル性化合物と反応させる前の膜を同じ様に
用いて、同じ条件で、0.弧−NaOHの電気透析濃縮
を実施した。
The flow rate of the caustic soda solution on the dilution side is 5 at a current density of 10 A/d.
0. skin/sec. The caustic soda was concentrated and recovered by a semi-batch electrodialysis method so that -NaOH was obtained. 8. Perform electrodialysis with the membrane surface treated with phosphorus pentachloride facing the concentration chamber side, and use it as a concentrated solution. The current efficiency of the caustic soda marked is 63%.
I was able to obtain it. On the other hand, the membrane treated with phosphorus pentachloride in Example 1 and before being reacted with the phenolic compound was used in the same manner as in Example 1, and the membrane was treated with 0.0% under the same conditions. Electrodialytic concentration of arc-NaOH was performed.

Claims (1)

【特許請求の範囲】 1 酸ハライド基とふつ素原子を結合し且つ少くとも該
ハライド基に対してα位の炭素にふつ素原子を結合して
有する高分子膜状物を、フエノール性水酸基を少くとも
1ケ以上有し且つビニル基を有しない芳香族化合物と接
触せしめた後、必要に応じて加水分解処理をすることを
特徴とする陽イオン交換膜の製造方法。 2 酸ハライド基がスルホン酸ハライドである特許請求
の範囲第1項記載の方法。 3 酸ハライド基がカルボン酸ハライドである特許請求
の範囲第1項記載の方法。 4 高分子膜状物がパーフルオロ系である特許請求の範
囲第1項記載の方法。 5 フエノール性水酸基を少くとも1ケ以上有する芳香
族化合物がフエノール、ピロガロール、レゾルシン、カ
テコール、ヒドロキノン、フロログルシン、没食子酸、
ナフトール類、ナフタレンジオール類及びこれらの誘導
体から選ばれた少くとも1種である特許請求の範囲第1
項記載の方法。
[Scope of Claims] 1. A polymer film having a fluorine atom bonded to an acid halide group and a fluorine atom bonded to at least a carbon at the α position with respect to the halide group, and a phenolic hydroxyl group. A method for producing a cation exchange membrane, which comprises bringing the membrane into contact with an aromatic compound having at least one group and not having a vinyl group, and then subjecting the membrane to hydrolysis treatment if necessary. 2. The method according to claim 1, wherein the acid halide group is a sulfonic acid halide. 3. The method according to claim 1, wherein the acid halide group is a carboxylic acid halide. 4. The method according to claim 1, wherein the polymer film is perfluorinated. 5 Aromatic compounds having at least one phenolic hydroxyl group include phenol, pyrogallol, resorcinol, catechol, hydroquinone, phloroglucin, gallic acid,
Claim 1 is at least one selected from naphthols, naphthalene diols, and derivatives thereof.
The method described in section.
JP52084291A 1977-07-15 1977-07-15 Manufacturing method of cation exchange membrane Expired JPS6031216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52084291A JPS6031216B2 (en) 1977-07-15 1977-07-15 Manufacturing method of cation exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52084291A JPS6031216B2 (en) 1977-07-15 1977-07-15 Manufacturing method of cation exchange membrane

Publications (2)

Publication Number Publication Date
JPS5420981A JPS5420981A (en) 1979-02-16
JPS6031216B2 true JPS6031216B2 (en) 1985-07-20

Family

ID=13826355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52084291A Expired JPS6031216B2 (en) 1977-07-15 1977-07-15 Manufacturing method of cation exchange membrane

Country Status (1)

Country Link
JP (1) JPS6031216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120274A (en) * 1986-11-08 1988-05-24 Satake Eng Co Ltd Detecting apparatus for grain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120274A (en) * 1986-11-08 1988-05-24 Satake Eng Co Ltd Detecting apparatus for grain

Also Published As

Publication number Publication date
JPS5420981A (en) 1979-02-16

Similar Documents

Publication Publication Date Title
KR840001538B1 (en) Improved composite ion exchange memhraneo
KR100806416B1 (en) Acid Functional Fluoropolymer Membranes and Method of Manufacture
US4169023A (en) Electrolytic diaphragms, and method of electrolysis using the same
WO2005029624A1 (en) Membrane-electrode assembly for solid polymer fuel cell
JPS63297406A (en) Sulfonic fluoro polymer with low equivalent weight
EP2656425B1 (en) Ionomers and ionically conductive compositions for use as one or more electrode of a fuel cell
KR20180118525A (en) Method of preparing ion-exchange membrane using chemical modification and ion-exchange membrane produced by the same method
KR19990044970A (en) Ion exchange membrane
JPS62500243A (en) Novel ionic fluorinated polymer and its manufacturing method
US4584071A (en) Process for electrolysis of brine with iodide impurities
JPH036240A (en) Method for hydrolyzing ion exchange fluororesin film
JPS609053B2 (en) Manufacturing method of cation exchange membrane
JPS58199884A (en) Improved cation exchange membrane for electrolysis
JPS6031216B2 (en) Manufacturing method of cation exchange membrane
JPS5939452B2 (en) Treatment method for cation exchanger
JPS61185507A (en) Production of anion exchange material
JPS5925036B2 (en) Fluorine resin cation exchange membrane for electrolysis
JPS6128378B2 (en)
JPS5837185A (en) Cation exchange membrane and electrolyzing method for alkali metal salt by ion exchange membrane method
JPS6011932B2 (en) Method for converting cation exchange groups to acid chloride groups
KR810001353B1 (en) Process for electrolysis
JPS6118929B2 (en)
CA1052858A (en) Trifluorostyrene sulfonic acid membranes
JPS621601B2 (en)
WO2023111750A1 (en) Process for recycling a solid article including a fluorinated polymer