JPS6115066B2 - - Google Patents

Info

Publication number
JPS6115066B2
JPS6115066B2 JP715977A JP715977A JPS6115066B2 JP S6115066 B2 JPS6115066 B2 JP S6115066B2 JP 715977 A JP715977 A JP 715977A JP 715977 A JP715977 A JP 715977A JP S6115066 B2 JPS6115066 B2 JP S6115066B2
Authority
JP
Japan
Prior art keywords
hpg
salt
optically active
water
mns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP715977A
Other languages
Japanese (ja)
Other versions
JPS5392728A (en
Inventor
Daigaku Takiguchi
Takashi Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP715977A priority Critical patent/JPS5392728A/en
Publication of JPS5392728A publication Critical patent/JPS5392728A/en
Publication of JPS6115066B2 publication Critical patent/JPS6115066B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、DL−2−(4−ヒドロキシフエニ
ル)グリシンの光学分割による光学活性2−(4
−ヒドロキシフエニル)グリシンの製造方法に関
するものである。
Detailed Description of the Invention The present invention provides optically active 2-(4-hydroxyphenyl) glycine by optical resolution of DL-2-(4-hydroxyphenyl)glycine.
-Hydroxyphenyl)glycine.

光学活性2−(4−ヒドロキシフエニル)グリ
シンは医薬中間体として有用な化合物である。
Optically active 2-(4-hydroxyphenyl)glycine is a compound useful as a pharmaceutical intermediate.

従来より、DL−2−(4−ヒドロキシフエニ
ル)グリシンの光学分割法としては、酵素法、ジ
アステレオマー法、選択晶出法等が知られてい
る。
Conventionally, enzymatic methods, diastereomer methods, selective crystallization methods, and the like have been known as optical resolution methods for DL-2-(4-hydroxyphenyl)glycine.

酵素法としては、化学反応によりアシル化し、
酵素処理により不斉加水分解し光学分割した後加
水分解により脱アシル化する方法等があるが、こ
れらの方法では光学分割後脱アシル化が必要とな
り、また、酵素法による場合は反応液は希薄であ
るため多量の水分を蒸発させる必要がある。更に
は収率も低い。
As an enzymatic method, acylation is performed by a chemical reaction,
There are methods such as asymmetric hydrolysis by enzymatic treatment, optical resolution, and deacylation by hydrolysis, but these methods require deacylation after optical resolution, and when using the enzymatic method, the reaction solution is diluted. Therefore, it is necessary to evaporate a large amount of water. Furthermore, the yield is also low.

ジアステレオマー法においては、高価な光学活
性物質(例えば、特開昭51−32541号ではα−3
−ブロモカンフアー −10−スルホン酸)を使用
する必要がある。
In the diastereomer method, expensive optically active substances (for example, in JP-A-51-32541, α-3
-bromocamphor -10-sulfonic acid) must be used.

選択晶出法によれば、高価な光学活性物質や特
殊な酵素は必要なく、従来の酵素法、ジアステレ
オマー法等に比べ経済的にDL−2−(4−ヒドロ
キシフエニル)グリシンを分割できることが予想
される。選択晶出法としては、p−トルエンスル
ホン酸塩又はm−キシレンスルホン酸塩による方
法が知られている(特開昭50−111033号、同50−
142534号)。これらの方法では、DL−2−(4−
ヒドロキシフエニル)グリシンのp−トルエンス
ルホン酸塩又はm−キシレンスルホン酸塩の水に
対する溶解度が光学活性体塩の溶解度よりも大き
いことを利用して、光学活性体塩のみを水溶液中
から結晶化させ、次いで光学活性2−(4−ヒド
ロキシフエニル)グリシンを分離するのである。
According to the selective crystallization method, expensive optically active substances and special enzymes are not required, and DL-2-(4-hydroxyphenyl)glycine can be separated more economically than conventional enzyme methods, diastereomer methods, etc. It is expected that it will be possible. As a selective crystallization method, a method using p-toluenesulfonate or m-xylenesulfonate is known (JP-A-50-111033, JP-A-50-111033).
No. 142534). In these methods, DL-2-(4-
Crystallizing only the optically active salt from an aqueous solution by utilizing the fact that the solubility of p-toluenesulfonate or m-xylenesulfonate of hydroxyphenyl)glycine in water is greater than the solubility of the optically active salt. The optically active 2-(4-hydroxyphenyl)glycine is then separated.

しかしながら、m−キシレンスルホン酸塩又は
p−トルエンスルホン酸塩による方法では、得ら
れる光学活性体塩の光学純度が低く、そのままで
は医薬中間体として使用するに不充分であり、再
結晶により光学純度を上げる必要がある。また、
光学活性2−(4−ヒドロキシフエニル)グリシ
ンを分離した後のスルホン酸類の回収は、それ自
身又はその塩、例えばNa塩等が水に対して大き
な溶解度を有するため、非常に困難である。
However, in the method using m-xylene sulfonate or p-toluene sulfonate, the optical purity of the optically active salt obtained is low, and it is insufficient to be used as a pharmaceutical intermediate as it is, and the optical purity can be improved by recrystallization. need to be raised. Also,
Recovery of sulfonic acids after separation of optically active 2-(4-hydroxyphenyl)glycine is very difficult because sulfonic acids themselves or their salts, such as Na salts, have a high solubility in water.

これらの難点により、m−キシレンスルホン酸
又はp−トルエンスルホン酸によるDL−2−(4
−ヒドロキシフエニル)グリシンの選択晶出によ
る光学分割法は工業的に有利とは言い難い。
Due to these drawbacks, DL-2-(4
-Hydroxyphenyl)glycine by selective crystallization is not industrially advantageous.

従来アミノ酸の選択晶出法による光学分割は
種々のアミノ酸の塩について研究されて来たが、
両性物質であるアミノ酸と酸又は塩基とで形成す
る塩の化学構造や物理化学的性質、例えば安定
性、結晶構造、溶解度等によつて選択晶出の可否
は全く予測困難である。また光学活性アミノ酸の
光学純度、分割剤の回収、再生、及び不要な方の
光学活性アミノ酸若しくは塩のラセミ化等の要素
をも満足させるものでなければ工業的に採用する
ことは不可能である。
Conventionally, optical resolution of amino acids by selective crystallization has been studied for various amino acid salts;
It is completely difficult to predict whether selective crystallization will occur depending on the chemical structure and physicochemical properties of the salt formed by an amphoteric amino acid and an acid or base, such as stability, crystal structure, solubility, etc. In addition, it is impossible to use it industrially unless it satisfies factors such as optical purity of optically active amino acids, recovery and regeneration of resolving agents, and racemization of unnecessary optically active amino acids or salts. .

本発明者らは2−(4−ヒドロキシフエニル)
グリシンについて種々の塩を合成し、前述したよ
うな問題点を遂一究明することにより選択晶出法
による光学分割の可否を検討したところ、光学的
に高純度のものが得られ、しかも分割剤の回収が
より簡単な、工業的に有利な選択晶出法を見い出
し、本発明を完成した。
The inventors have discovered that 2-(4-hydroxyphenyl)
By synthesizing various salts of glycine and finally investigating the problems mentioned above, we investigated the feasibility of optical resolution by selective crystallization, and found that we obtained products with high optical purity, and that the resolving agent The present invention has been completed by discovering an industrially advantageous selective crystallization method that facilitates the recovery of .

本発明は、DL−2−(4−ヒドロキシフエニ
ル)グリシン(以下、DL−HPGと略記する)に
鉱酸と2−メチル−7−ナフタレンスルホン酸
(以下、MNSと略記する)若しくは2−ナフトー
ル−6−スルホン酸(以下、NLSと略記する)と
を混合して調製したDL−HPG・MNS塩又はDL
−HPG・NLS塩の過飽和水溶液に光学活性
HPG・MNS塩又は光学活性HPG・NLS塩を接種
して同種の光学活性体塩を選択晶出させ、該光学
活性体塩を常法により脱スルホン酸処理すること
からなる光学活性HPGの製造方法である。DL体
塩水溶液中にいずれか一方の光学活性体塩が過剰
に存在してもよいが、その場合は過剰に存在する
光学活性体塩と同種の光学活性体塩を接種する。
The present invention combines DL-2-(4-hydroxyphenyl)glycine (hereinafter abbreviated as DL-HPG) with a mineral acid and 2-methyl-7-naphthalenesulfonic acid (hereinafter abbreviated as MNS) or 2-methyl-7-naphthalenesulfonic acid (hereinafter abbreviated as MNS). DL-HPG/MNS salt or DL prepared by mixing with naphthol-6-sulfonic acid (hereinafter abbreviated as NLS)
−Optically active in supersaturated aqueous solutions of HPG/NLS salts
A method for producing optically active HPG, which comprises inoculating HPG/MNS salt or optically active HPG/NLS salt, selectively crystallizing the optically active salt of the same type, and desulfonating the optically active salt by a conventional method. It is. Either one of the optically active salts may be present in excess in the DL salt aqueous solution, but in that case, an optically active salt of the same type as the optically active salt present in excess is inoculated.

本発明方法において使用される又は経由する化
合物であるDL体塩及び光学活性体塩は新規化合
物であるが、本発明方法の実施にあたつては、従
来の選択晶出法による光学分割において使用され
る通常の方法を適用することができる。即ち、ま
ずDL体塩の飽和又はそれに近い鉱酸水溶液を調
製する。この場合、DL体塩及び鉱酸を水に溶解
するか、又はDL−HPG、MNS又はNLS、及び鉱
酸をそれぞれ水に添加してDL体塩鉱酸水溶液を
調製してもよい。この場合、前述の如く一方の光
学活性体塩を過剰にしてもよい。
The DL salts and optically active salts used in or via the method of the present invention are new compounds, but when carrying out the method of the present invention, they are The usual methods can be applied. That is, first, a saturated or nearly saturated mineral acid aqueous solution of the DL salt is prepared. In this case, the DL salt and mineral acid may be dissolved in water, or DL-HPG, MNS or NLS, and the mineral acid may be added to water to prepare a DL salt mineral acid aqueous solution. In this case, one of the optically active salts may be used in excess as described above.

工業的には、温時、2−(4−ヒドロキシフエ
ニル)グリシンとMNS又はNLSと鉱酸とを水に
添加して塩の水溶液を調整するのが簡便である。
Industrially, it is convenient to prepare an aqueous salt solution by adding 2-(4-hydroxyphenyl)glycine, MNS or NLS, and a mineral acid to water at a warm temperature.

DL−HPGに対するMNS又はNLSなるナフタレ
ンスルホン酸誘導体及び鉱酸の添加割合は、DL
−HPG1モルに対して、ナフタレンスルホン酸誘
導体0.2〜3モル、好ましくは0.25〜1.5モル、鉱
酸0〜3モル、好ましくは0.1〜1モルである。
上記においてナフタレンスルホン酸誘導体と鉱酸
との合計量は1モル以上であることが必要であ
り、通常5モル以下、好ましくは3モル以下であ
る。
The addition ratio of naphthalene sulfonic acid derivatives (MNS or NLS) and mineral acids to DL-HPG is DL-HPG.
- 0.2 to 3 mol, preferably 0.25 to 1.5 mol, of the naphthalene sulfonic acid derivative and 0 to 3 mol, preferably 0.1 to 1 mol of the mineral acid, per 1 mol of HPG.
In the above, the total amount of the naphthalene sulfonic acid derivative and the mineral acid must be 1 mol or more, and is usually 5 mol or less, preferably 3 mol or less.

鉱酸としては硫酸、塩酸等が使用できるが、通
常、硫酸が使用される。塩酸の場合は上記の鉱酸
量の1.5〜2.0倍量を使用するのが好ましい。
As the mineral acid, sulfuric acid, hydrochloric acid, etc. can be used, but sulfuric acid is usually used. In the case of hydrochloric acid, it is preferable to use an amount 1.5 to 2.0 times the amount of mineral acid mentioned above.

最も光学純度の高い光学活性体塩が収率よく得
られる各成分の比率の具体例を挙げると、DL−
HPG:ナフタレンスルホン酸誘導体:鉱酸のモ
ル比が1:1:0.2又は1:0.4:0.6又は1:
0.5:0.5の場合である。
To give a specific example of the ratio of each component that allows the optically active salt with the highest optical purity to be obtained in good yield, DL-
The molar ratio of HPG: naphthalene sulfonic acid derivative: mineral acid is 1:1:0.2 or 1:0.4:0.6 or 1:
This is the case of 0.5:0.5.

上記の如くして得られたDL体塩の過飽和水溶
液に一方の光学活性体塩の結晶を微量接種して、
静置又は緩やかな撹拌をしながら冷却することに
より接種した光学活性体塩と同種の光学活性体塩
を結晶化させることができる。
A supersaturated aqueous solution of the DL salt obtained as above was inoculated with a small amount of crystals of one of the optically active salts,
Optically active salts of the same type as the inoculated optically active salts can be crystallized by cooling while standing still or with gentle stirring.

次いで、液・晶を分離することにより純粋な光
学活性体塩が得られる。
Next, a pure optically active salt is obtained by separating the liquid and crystal.

母液には、DL−2−(4−ヒドロキシフエニ
ル)グリシン及び上記のナフタレンスルホン酸誘
導体を、若しくは両者の塩を加え飽和又はそれに
近い水溶液を調製する。斯る操作により、先に晶
出したものと対掌の光学活性体塩が過剰に存在す
るDL体塩の飽和又はそれに近い水溶液が調製さ
れる。該水溶液に、過剰に存在する方の光学活性
体塩の結晶を接種し、前述の光学活性体塩の晶出
と同様にして他方の純粋な光学活性体塩が得られ
る。
DL-2-(4-hydroxyphenyl)glycine and the above naphthalenesulfonic acid derivative, or salts of both, are added to the mother liquor to prepare a saturated or nearly saturated aqueous solution. Through this operation, an aqueous solution of DL salt at or close to saturation is prepared, in which an optically active salt opposite to that crystallized previously is present in excess. The aqueous solution is inoculated with crystals of the optically active salt present in excess, and the other pure optically active salt is obtained in the same manner as the crystallization of the optically active salt described above.

以下、同様の操作を繰り返すことにより交互に
D体塩及びL体塩を晶出分離し、定量的分割収率
とすることができる。
Thereafter, by repeating the same operation, the D-form salt and the L-form salt can be crystallized and separated alternately, and a quantitative split yield can be obtained.

光学分割処理の対象となるDL体塩水溶液中に
おける光学活性体の過剰量は、DL体の0〜25重
量%、好ましくは5〜15重量%である。D体塩及
びL体塩を交互に選択晶出する操作においては、
該過剰量は、分割前の一方の光学活性体の過剰量
を表わすと同様に、分割後の母液にDL体塩を飽
和した状態における、他方の光学活性体の過剰量
を表わすことになる。
The excess amount of the optically active substance in the aqueous solution of the DL substance salt to be subjected to the optical resolution treatment is 0 to 25% by weight, preferably 5 to 15% by weight of the DL substance. In the operation of selectively crystallizing D-form salt and L-form salt alternately,
The excess amount represents the excess amount of one optically active substance before separation, as well as the excess amount of the other optically active substance when the mother liquor after separation is saturated with DL body salt.

得られた光学活性体塩は、常法により中和して
光学活性2−(4−ヒドロキシフエニル)グリシ
ンとすることができる。即ち、アルカリ金属、ア
ルカリ土金属又はそれらの塩、例えば、カ性ソー
ダ、塩化ナトリウム、塩化カルシウム若しくは消
石灰等、又はアンモニア、アミン類等で中和す
る。また常法によりイオン交換樹脂で処理しても
よい。
The obtained optically active salt can be neutralized by a conventional method to obtain optically active 2-(4-hydroxyphenyl)glycine. That is, it is neutralized with alkali metals, alkaline earth metals, or their salts, such as caustic soda, sodium chloride, calcium chloride, or slaked lime, or with ammonia, amines, and the like. Alternatively, it may be treated with an ion exchange resin by a conventional method.

本発明で得られる光学活性体は必要により水か
ら再結晶して精製できるが、そのままでも光学純
度の高いものであり、再結晶等の精製を要せず、
医薬品中間体として使用することができる。
The optically active substance obtained in the present invention can be purified by recrystallizing from water if necessary, but it has high optical purity as it is, and does not require purification such as recrystallization.
Can be used as a pharmaceutical intermediate.

一方の光学活性体のみを目的化合物とする場合
は、選択晶出された他の一方の光学活性体塩は常
法に従つて、例えば、水溶液中140〜180℃程度に
加熱することによりラセミ化してDL体塩とする
ことが出来、これを再び本発明方法における原料
として利用できる。
When only one optically active substance is used as the target compound, the selectively crystallized salt of the other optically active substance can be racemized by heating in an aqueous solution to about 140 to 180°C according to a conventional method. can be used as a raw material in the method of the present invention.

以下実施例により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to Examples.

実施例 1 2−メチルナフタレン100g(0.70モル)を加
熱溶融し、撹拌下これに98%硫酸84.5g(0.84モ
ル)を加え、160℃に4時間保つた。この間、生
成した水は留去させた。冷却後塩酸で再結晶して
未反応の硫酸等を除去し、更にベンゼンで洗つて
未反応2−メチルナフタレンや他の副生物を除去
した。生成物の収量119.7で主成分はMNSであつ
た。
Example 1 100 g (0.70 mol) of 2-methylnaphthalene was heated and melted, and 84.5 g (0.84 mol) of 98% sulfuric acid was added thereto while stirring, and the mixture was kept at 160°C for 4 hours. During this time, the water produced was distilled off. After cooling, it was recrystallized with hydrochloric acid to remove unreacted sulfuric acid and the like, and was further washed with benzene to remove unreacted 2-methylnaphthalene and other by-products. The yield of the product was 119.7, and the main component was MNS.

DL−HPG15.9g(0.095モル)、D−HPG0.83
g(0.005モル)、上記の如くして得られた
MNS11.1g(0.05モル)、95%硫酸5.2g(0.05モ
ル)及び水120gの混合物を撹拌し70℃に加温し
て溶解した。透明液を50℃に冷却し、D−
HPG・MNSの結晶20mgを加えて静置し、1時間
放冷した。針状晶が析出したので遠心分離機で振
切つて分離し、得られた結晶は5℃の水10mlを3
回に分けて加えて洗浄し、次いで70℃で恒量にな
る迄乾燥した。得られたD−HPG・MNS塩3.8
g、比旋光度〔α〕22 −56.4゜(C=1、水)で
あつた。
DL-HPG15.9g (0.095mol), D-HPG0.83
g (0.005 mol), obtained as above
A mixture of 11.1 g (0.05 mol) of MNS, 5.2 g (0.05 mol) of 95% sulfuric acid, and 120 g of water was stirred and heated to 70°C to dissolve. Cool the transparent liquid to 50℃ and
20 mg of HPG/MNS crystals were added and allowed to stand for 1 hour. Needle-shaped crystals were precipitated, so they were separated by shaking in a centrifuge.
It was added in batches and washed, and then dried at 70°C until it reached a constant weight. Obtained D-HPG・MNS salt 3.8
g, specific optical rotation [α] 22 D -56.4° (C=1, water).

別途に純粋なD−HPGとMNSより合成したD
−HPG・MNS塩の〔α〕22 −57.0゜(C=1、
水)であつたので、分割によつて得られたD−
HPG・NMS塩の光学純度は98.9%であつた。
D synthesized separately from pure D-HPG and MNS
-[α] of HPG/MNS salt 22 D -57.0° (C=1,
water), so the D− obtained by splitting
The optical purity of the HPG/NMS salt was 98.9%.

得られたD−HPG・MNS塩を熱湯より再結晶
した。
The obtained D-HPG·MNS salt was recrystallized from hot water.

〔α〕22 −57.0゜(C=1、水)、光学純度100
%であつた。
[α] 22 D -57.0° (C=1, water), optical purity 100
It was %.

結晶の洗液は減圧乾固して回収し、これは実施
例3で再使用した。
The washing solution of the crystals was collected by drying under reduced pressure and was reused in Example 3.

実施例 2 実施例1で結晶を分離した母液にDL−HPG2.0
g及びMNS2.7gを加え70℃に加温して溶解し
た。透明液を50℃に冷却し、L−HPG・MNSの
結晶20mgを加えて静置し、1時間放冷した。
Example 2 DL-HPG2.0 was added to the mother liquor from which the crystals were separated in Example 1.
g and 2.7 g of MNS were added and heated to 70°C to dissolve. The transparent liquid was cooled to 50° C., 20 mg of L-HPG·MNS crystals were added thereto, and the mixture was allowed to stand still for 1 hour.

針状晶が析出したので遠心分離機で振切つて分
離し、得られた結晶は5℃の水10mlを3回に分け
て加えて洗浄し、次いで70℃で恒量になる迄乾燥
した。得られたL−HPG・MNS塩3.9g〔α〕22
55.8゜(C=1、水)であつた。
Needle-shaped crystals were precipitated and separated by shaking with a centrifuge, and the obtained crystals were washed by adding 10 ml of water at 5°C in three portions, and then dried at 70°C until a constant weight was reached. Obtained L-HPG・MNS salt 3.9 g [α] 22 D +
It was 55.8° (C=1, water).

別途に純粋なL−HPGとMNSより合成したL
−HPG・MNS塩の〔α〕22 +56.3゜(C=1、
水)であつたので、分割によつて得られたL−
HPG・MNS塩の光学純度は99%であつた。
L separately synthesized from pure L-HPG and MNS
-[α] of HPG/MNS salt 22 D +56.3° (C=1,
water), so the L-
The optical purity of the HPG/MNS salt was 99%.

結晶の洗液は減圧乾固して回収し、これは実施
例4で再使用した。
The washing solution of the crystals was collected by drying under reduced pressure and was reused in Example 4.

実施例 3 実施例2で結晶を分離した母液に実施例1の回
収HPG・MNS、DL−HPG1.8g及びMNS2.5gを
加え70℃に加温して溶解した。透明液を50℃に冷
却しD−HPG・MNSの結晶20mgを加えて静置
し、1時間放冷した。針状晶が析出したので遠心
分離機で振切つて分離し、得られた結晶は5℃の
水10mlを3回に分けて加えて洗浄し、次いで70℃
で恒量になる迄乾燥した。得られたD−HPG・
MNS塩4.5g、〔α〕22 −57.0゜(C=1、水)光
学純度100%であつた。
Example 3 To the mother liquor from which the crystals were separated in Example 2, the recovered HPG/MNS, 1.8 g of DL-HPG, and 2.5 g of MNS from Example 1 were added and dissolved by heating to 70°C. The transparent liquid was cooled to 50°C, 20 mg of D-HPG/MNS crystals were added thereto, and the mixture was allowed to stand still for 1 hour. Needle-shaped crystals were precipitated, so they were separated by shaking with a centrifuge, and the obtained crystals were washed by adding 10 ml of water at 5°C in three portions, and then heated at 70°C.
It was dried until it reached a constant weight. The obtained D-HPG・
4.5 g of MNS salt, [α] 22 D -57.0° (C=1, water), with an optical purity of 100%.

結晶の洗液は減圧乾固して回収し、再使用し
た。
The washing solution of the crystals was collected by drying under reduced pressure and reused.

実施例 4 実施例3で結晶を分離した母液に実施例2の回
収HPG・MNS、DL−HPG1.8g及びNMS2.5gを
加え、以下は実施例2及び実施例3の操作を繰返
して、L−HPG・MNS及びD−HPG・MNSを交
互に得ることができた。分割収率は定量的であつ
た。
Example 4 The recovered HPG/MNS, DL-HPG 1.8 g and NMS 2.5 g of Example 2 were added to the mother liquor from which the crystals were separated in Example 3, and the operations of Example 2 and Example 3 were repeated to obtain L. -HPG/MNS and D-HPG/MNS could be obtained alternately. The split yield was quantitative.

実施例 5 D−HPG・MNS塩11.7g(0.03モル)を50℃の
水20mlに加え撹拌しながらこれに40%カ性ソーダ
水溶液6.8g(0.068モル)を加え、次いで氷冷し
た。吸引濾過し結晶は1%カ性ソーダ水溶液30ml
で洗浄した。この結晶はMNSのナトリウム塩で
あり、イオン交換樹脂処理により定量的にMNS
に再生できた。濾液及び洗液を合せ約半量になる
迄減圧濃縮した後、50℃に加温し、撹拌下塩酸で
液のPHを6.0に調整した後1時間氷冷し、濾別、
水洗及び乾燥してD−HPGの結晶4.6gを得た。
収率92%、〔α〕22 −160゜(C=1、N−HCl)、
光学純度100%であつた。
Example 5 11.7 g (0.03 mol) of D-HPG/MNS salt was added to 20 ml of water at 50°C, and 6.8 g (0.068 mol) of a 40% caustic soda aqueous solution was added thereto with stirring, followed by cooling on ice. Suction filter the crystals with 30ml of 1% caustic soda aqueous solution.
Washed with. This crystal is the sodium salt of MNS, and MNS can be quantitatively determined by treatment with an ion exchange resin.
I was able to play it. The filtrate and washing solution were combined and concentrated under reduced pressure until the volume was reduced to about half, then heated to 50°C, adjusted the pH of the liquid to 6.0 with hydrochloric acid under stirring, cooled on ice for 1 hour, filtered,
After washing with water and drying, 4.6 g of D-HPG crystals were obtained.
Yield 92%, [α] 22 D −160° (C=1, N-HCl),
The optical purity was 100%.

実施例 6 DL−HPG7.93g(0.0475モル)、L−HPG0.42
g(0.0025モル)、NLS6.2g(0.025モル)、95%
硫酸2.58g、(0.025モル)及び水25gを混合し、
70℃に加温して溶解した。この水溶液を60℃に冷
却し、静置してこれにL−HPG・NLS塩10mgを
加え20分間放冷した。この間液温は20℃に降下し
た。粉状晶が析出したので吸引濾感し、結晶は少
量の冷水で洗つてから、70℃で恒量になる迄乾燥
した。得られたL−HPG・NLS塩2.5g、比旋光
度〔α〕22 +43.9゜(C=1、水)であつた。
Example 6 DL-HPG7.93g (0.0475mol), L-HPG0.42
g (0.0025 mol), NLS6.2 g (0.025 mol), 95%
Mix 2.58g of sulfuric acid (0.025mol) and 25g of water,
It was heated to 70°C and dissolved. This aqueous solution was cooled to 60° C., left to stand, and 10 mg of L-HPG/NLS salt was added thereto and allowed to cool for 20 minutes. During this time, the liquid temperature dropped to 20°C. Powdery crystals were precipitated and filtered with suction, and the crystals were washed with a small amount of cold water and dried at 70°C until they reached a constant weight. 2.5 g of the obtained L-HPG/NLS salt had a specific optical rotation [α] 22 D +43.9° (C=1, water).

別途に純粋なL−HPGとNLSとから合成し、
再結晶したL−HPG・NLS塩の〔α〕22 +57.1゜
(C=1、水)であつたので本品の光学純度は
76.9%であつた。
separately synthesized from pure L-HPG and NLS,
[α] of the recrystallized L-HPG・NLS salt was 22 D +57.1° (C=1, water), so the optical purity of this product was
It was 76.9%.

実施例 7 実施例6で結晶を分離した母液にDL−
HPG1.19g(0.0071モル)、NLS1.77g(0.0071モ
ル)及び水4gを加え、70℃に加温して溶解し
た。この水溶液を60℃に冷却し、静置してこれに
D−HPG・NLS塩10mgを加え20分間放冷した。
この間液温は20℃に降下した。粉状晶が析出した
ので吸引濾過し、結晶は少量の冷水で洗つてか
ら、70℃で恒量になる迄乾燥した。得られたD−
HPG・NLS塩2.65g、比旋光度〔α〕22 −46.1゜
(C=1、水)であつた。
Example 7 DL- was added to the mother liquor from which the crystals were separated in Example 6.
1.19 g (0.0071 mol) of HPG, 1.77 g (0.0071 mol) of NLS, and 4 g of water were added and dissolved by heating to 70°C. This aqueous solution was cooled to 60° C., allowed to stand, and 10 mg of D-HPG/NLS salt was added thereto and allowed to cool for 20 minutes.
During this time, the liquid temperature dropped to 20°C. Powdery crystals were precipitated, so they were filtered with suction, washed with a small amount of cold water, and dried at 70°C until they reached a constant weight. The obtained D-
The HPG/NLS salt was 2.65 g, and the specific optical rotation [α] 22 D -46.1° (C=1, water).

別途に純粋なD−HPGとNLSとから合成し、
再結晶したD−HPG・NLS塩の〔α〕22 −57.6゜
(C=1、水)であつたので本品の光学純度は
80.0%であつた。得られた粗D−HPG・NLS塩の
結晶を熱湯10gに溶解し、徐冷してから精D−
HPG・NLS晶5mgを加え、室温になる迄静置し
た後析出晶を濾別、水洗して精D−HPG・NLS
晶1.5gを得た。〔α〕22 −57.1(C=1、水)光

純度99.1%であつた。
separately synthesized from pure D-HPG and NLS,
[α] of the recrystallized D-HPG・NLS salt was 22 D −57.6° (C=1, water), so the optical purity of this product was
It was 80.0%. The obtained crude D-HPG/NLS salt crystals were dissolved in 10 g of boiling water, slowly cooled, and purified D-HPG/NLS salt crystals were dissolved in 10 g of boiling water.
Add 5 mg of HPG/NLS crystals, let it stand until it reaches room temperature, then filter out the precipitated crystals, wash with water, and refine D-HPG/NLS.
1.5 g of crystal was obtained. [α] 22 D -57.1 (C=1, water) Optical purity was 99.1%.

実施例 8 実施例7で結晶を分離した母液にDL−
HPG1.19g(0.0071モル)、NLS1.77g(0.0071モ
ル)及び水4gを加え、70℃に加温して溶解し
た。以下実施例6に準じて操作し、L−HPG・
NLS塩2.6g、〔α〕22 +49.7゜(C=1、水)、光
学純度87.0%を得た。
Example 8 DL- was added to the mother liquor from which the crystals were separated in Example 7.
1.19 g (0.0071 mol) of HPG, 1.77 g (0.0071 mol) of NLS, and 4 g of water were added and dissolved by heating to 70°C. The following operation was performed according to Example 6, and L-HPG・
2.6 g of NLS salt, [α] 22 D +49.7° (C=1, water), optical purity 87.0% was obtained.

実施例 9 実施例7で得た精D−HPG・2−NLS塩の結
晶を水15gに溶解し、強酸型イオン交換樹脂アン
バーライトIR−120Bのカラム(樹脂量14ml、径
12mm、樹脂の長さ120mm)を通し、水洗後、吸着
されたD−HPGをアンモニア水で溶出し、減圧
濃縮乾固してD−HPG0.60gを得た。収率95%、
〔α〕22 −157.8゜(C=1、1N−塩酸)であつ
た。
Example 9 The purified D-HPG/2-NLS salt crystals obtained in Example 7 were dissolved in 15 g of water, and a column of strong acid type ion exchange resin Amberlite IR-120B (resin amount 14 ml, diameter
After washing with water, the adsorbed D-HPG was eluted with aqueous ammonia and concentrated to dryness under reduced pressure to obtain 0.60 g of D-HPG. Yield 95%,
[α] 22 D −157.8° (C=1, 1N-hydrochloric acid).

Claims (1)

【特許請求の範囲】[Claims] 1 DL−2−(4−ヒドロキシフエニル)グリシ
ンに鉱酸と2−メチル−7−ナフタレンスルホン
酸又は2−ナフトール−6−スルホン酸とを混合
して調整したDL−2−(4−ヒドロキシフエニ
ル)グリシン・2−メチル−7−ナフタレンスル
ホン酸塩又はDL−2−(4−ヒドロキシフエニ
ル)グリシン・2−ナフトール−6−スルホン酸
塩の過飽和水溶液に光学活性2−(4−ヒドロキ
シフエニル)グリシンの2−メチル−7−ナフタ
レンスルホン酸塩又は2−ナフトール−6−スル
ホン酸塩を接種して同種の光学活性体塩を選択晶
出させることを特徴とする光学活性2−(4−ヒ
ドロキシフエニル)グリシンの製造方法。
1 DL-2-(4-hydroxyphenyl)glycine prepared by mixing mineral acid and 2-methyl-7-naphthalenesulfonic acid or 2-naphthol-6-sulfonic acid The optically active 2-(4-hydroxy Optically active 2-(phenyl)glycine characterized by inoculating 2-methyl-7-naphthalenesulfonate or 2-naphthol-6-sulfonate to selectively crystallize the same optically active salt. A method for producing 4-hydroxyphenyl)glycine.
JP715977A 1977-01-25 1977-01-25 Preparation of optical active 2-(4-hydroxyphenyl)gylcine Granted JPS5392728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP715977A JPS5392728A (en) 1977-01-25 1977-01-25 Preparation of optical active 2-(4-hydroxyphenyl)gylcine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP715977A JPS5392728A (en) 1977-01-25 1977-01-25 Preparation of optical active 2-(4-hydroxyphenyl)gylcine

Publications (2)

Publication Number Publication Date
JPS5392728A JPS5392728A (en) 1978-08-15
JPS6115066B2 true JPS6115066B2 (en) 1986-04-22

Family

ID=11658283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP715977A Granted JPS5392728A (en) 1977-01-25 1977-01-25 Preparation of optical active 2-(4-hydroxyphenyl)gylcine

Country Status (1)

Country Link
JP (1) JPS5392728A (en)

Also Published As

Publication number Publication date
JPS5392728A (en) 1978-08-15

Similar Documents

Publication Publication Date Title
EP0127411B1 (en) Method of preparing alpha-l-aspartyl-l-phenylalanine methyl ester and its hydrochloride
JPH02231457A (en) Method for synthesizing l-(-)-2-amino-3-(3,4- dihydroxyphenyl)propanoic acid, product thereby, and use of said product in said synthesis
JPS6115066B2 (en)
US4346045A (en) Process for resolving DL-S-benzoyl-β-mercaptoisobutyric acid, and products obtained
EP0158301B1 (en) Process for producing optically active phenylalanine
US4526727A (en) Process for preparation of an S-alpha-cyano S-alpha-isopropylphenylacetate
JPS6025959A (en) Optical resolution of amino acid complex and dl-amino acid
JPH0574583B2 (en)
US3904646A (en) Resolution of tryptophan using benzenesulfonic acid and p-phenolsulfonic acid
JP2533864B2 (en) Optical resolution method of DL-alanine
US4072691A (en) Process for the resolution of DL-6-chlorotryptophan
JP2917495B2 (en) Method for producing optically active 1,2-propanediamine
JPS5829941B2 (en) Method for producing optically active p-hydroxyphenylglycine
JPH01131143A (en) Optical resolution of d,l-carnitinenitrile chloride
JP3316917B2 (en) New phenylalanine salt crystals and their production
JPH035382B2 (en)
JPS6261584B2 (en)
JPS6121939B2 (en)
JPS5857420B2 (en) DL- Phenylglycinno Kogakubunkatsuhouhou
JPS591702B2 (en) Method for producing optically active tryptophan/P-phenolsulfonate
JPS61172846A (en) Method of optical resolution of (+-)-2-chloroprorionic acid
JPH10316646A (en) Production of high-purity crystalline o-methyliso urea acetate and crystalline o-methylisourea acetate obtained by the same
JPS62114970A (en) Production of optically active alpha-amino-epsilon-caprolactam
JPH021429A (en) Production of optically active 1-methyl-3-phenylpropylamine
JPS6236345A (en) Optical resolution of dl-phenylalanine