JPS6261584B2 - - Google Patents

Info

Publication number
JPS6261584B2
JPS6261584B2 JP15004781A JP15004781A JPS6261584B2 JP S6261584 B2 JPS6261584 B2 JP S6261584B2 JP 15004781 A JP15004781 A JP 15004781A JP 15004781 A JP15004781 A JP 15004781A JP S6261584 B2 JPS6261584 B2 JP S6261584B2
Authority
JP
Japan
Prior art keywords
hydroxyphenylglycine
optically active
pes
hpg
phenylethanesulfonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15004781A
Other languages
Japanese (ja)
Other versions
JPS5852253A (en
Inventor
Ichiro Senhata
Shigeki Yamada
Chikara Ppongo
Ryuzo Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Seiyaku Co Ltd
Original Assignee
Tanabe Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co Ltd filed Critical Tanabe Seiyaku Co Ltd
Priority to JP15004781A priority Critical patent/JPS5852253A/en
Priority to US06/416,338 priority patent/US4415504A/en
Priority to EP82108709A priority patent/EP0075318B1/en
Priority to DE8282108709T priority patent/DE3265433D1/en
Publication of JPS5852253A publication Critical patent/JPS5852253A/en
Publication of JPS6261584B2 publication Critical patent/JPS6261584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規p−ヒドロキシフエニルグリシ
ン・α−フエニルエタンスルホン酸塩およびその
光学分割法に関する。 光学活性p−ヒドロキシフエニルグリシンのう
ち、D−p−ヒドロキシフエニルグリシンは半合
成ペニシリンや半合成セフアロスポリンの原料化
合物として有用な物質であり、又、L−p−ヒド
ロキシフエニルグリシンは近年虚血性心臓疾患、
心機能不全或いは糖尿病などの治療に用いうる
(特開昭52−41432号)。しかしながらp−ヒドロ
キシフエニルグリシンは天然には存在せず、また
合成されたp−ヒドロキシフエニルグリシンは
DL一体であるためその光学分割が必要である。
従来、化学的光学分割法としては例えばDL−p
−ヒドロキシフエニルグリシンをN−ベンジルオ
キシカルボニル誘導体、N−クロロアセチル誘導
体、N−ベンゾイル誘導体に変換し、これら誘導
体をキニン、デヒドロアビエチルアミン、光学活
性α−フエネチルアミンなどで分割する方法(J.
Chem.Soc(C),1920〜1922(1971),;特開昭
49−56946号、特開昭50−69039号)が知られてい
る。しかしながら、これらの方法ではいずれも
DL−p−ヒドロキシフエニルグリシンを一旦ア
シル誘導体に変換しなければならない上、分割剤
も高価であり、また光学分割後脱アシル化の工程
を必要とするがその際ラセミ化を伴う危険性があ
る。又、DL−p−ヒドロキシフエニルグリシン
をd−3−ブロムカンフアー−10−スルホン酸塩
として分割する方法(特開昭51−32541号)又は
d−3−ブロムカンフア−8−スルホン酸塩とし
て分割する方法(特公昭55−45069号)が知られ
ているが、前者は結晶として得られるのがL体塩
のみであり高純度のD体塩を得る適切な方法とは
いい難く、又、後者についても分割剤が天然物に
由来する高価なものであり、化学的にも充分安定
とは言い難い。他方(±)−α−フエニルエタン
スルホン酸は(±)−フエネチルアルコールをブ
ロム化したのちスルホン化して得られる強酸性化
合物であるが、これを光学分割する方法としては
わずかにストリキニンを用いる方法(J.Chem.
Soc.,1159(1927))が知られているにすぎな
い。 本発明者らはかかる状況に鑑み鋭意研究を重ね
た結果、(1)p−ヒドロキシフエニルグリシンとα
−フエニルエタンスルホン酸とは水性溶媒中で塩
を形成すること;(2)しかもその一方に光学活性体
を用いれば、形成される2種ジアステレオマーの
内D−p−ヒドロキシフエニルグリシン・(+)−
α−フエニルエタンスルホン酸塩又はL−p−ヒ
ドロキシフエニルグリシン・(−)−α−フエニル
エタンスルホン酸塩が難溶性塩として、また他方
のジアステレオマーが常に易溶性塩として得られ
ること;(3)そのためp−ヒドロキシフエニルグリ
シンとα−フエニルエタンスルホン酸塩とはそれ
ぞれその一方のラセミ体の光学分割に他方の光学
活性体を分割剤として利用することができ、これ
によつて工業的有利に光学活性p−ヒドロキシフ
エニルグリシン及び光学活性α−フエニルエタン
スルホン酸を製造し得ることを見出した。 かかる知見に基く本発明はp−ヒドロキシフエ
ニルグリシン及びα−フエニルエタンスルホン酸
から選ばれるいずれか一方の光学活性体を分割剤
とし、他方の化合物のラセミ体を光学分割するこ
とを特徴とするp−ヒドロキシフエニルグリシン
又はα−フエニルエタンスルホン酸の光学分割法
である。 本発明によれば、水性溶媒中でDL−p−ヒド
ロキシフエニルグリシンに光学活性α−フエニル
エタンスルホン酸を分割剤として作用させるか、
或いは(±)−α−フエニルエタンスルホン酸に
光学活性p−ヒドロキシフエニルグリシンを分割
剤として作用せしめ、生成する塩〔即ち、DL−
p−ヒドロキシフエニルグリシン・光学活性α−
フエニルエタンスルホン酸塩又は光学活性p−ヒ
ドロキシフエニルグリシン・(±)−α−フエニル
エタンスルホン酸塩〕の2種ジアステレオマーの
溶解度差を利用してその難溶性ジアステレオマー
たる一方の光学活性p−ヒドロキシフエニルグリ
シン・光学活性α−フエニルエタンスルホン酸塩
〔即ち,D−p−ヒドロキシフエニルグリシン・
(±)−α−フエニルエタンスルホン酸塩はL−p
−ヒドロキシフエニルグリシン・(−)−α−フエ
ニルエタンスルホン酸塩〕を分離・採取し、必要
とあればこの塩を更に脱塩処理することにより光
学活性p−ヒドロキシフエニルグリシン、光学活
性α−フエニルエタンスルホン酸又はそれらの塩
を製することができる。 分割剤たる光学活性p−ヒドロキシフエニルグ
リシンとしてはそのD体及びL体、また分割剤た
る光学活性α−フエニルエタンスルホン酸として
はその(+)体及び(−)体のいずれをも用いる
ことができる。例えば適当な水性溶媒中DL−p
−ヒドロキシフエニルグリシンに(+)−α−フ
エニルエタンスルホン酸を作用させれば溶液中で
はD−p−ヒドロキシフエニグリシン・(+)−α
−フエニルエタンスルホン酸塩(以下、D−
HPG・(+)−PESと称する)とL−p−ヒドロ
キシフエニルグリシン・(+)−α−フエニルエタ
ンスルホン酸塩(以下、L−HPG・(+)−PES
と称する)との2種ジアステレオマーが生成する
が、これら両ジアステレオマーのうちD−
HPG・(+)−PESが該水性溶媒中で難溶性塩で
ありL−HPG・(+)−PESは易溶性塩であるた
め、D−HPG・(+)−PESのみが晶出する。こ
の場合分割剤として(−)−PESを用いても全く
同様に光学分割することができ、難溶性ジアステ
レオマーとしてL−HPG・(−)−PESが得ら
れ、易溶性塩としてD−HPG・(−)−PESが得
られる。 一方、(±)−α−フエニルエタンスルホン酸を
光学分割するに際して、その分割剤としてL−p
−ヒドロキシフエニルグリシンを作用させる場合
には、L−HPG・(±)−PESとL−HPG・(−)
−PESの2種のジアステレオマーが生成するが、
L−HPG・(−)−PESが難溶性ジアステレオマ
ーであり、L−HPG・(+)−PESが易溶性ジア
ステレオマーであるため、L−HPG・(−)−
PESが晶析し、L−HPG・(+)−PESは液中に溶
存する。これに対し、分割剤としてD−p−ヒド
ロキシフエニルグリシンを用いた場合にはD−
HPG・(+)−PESが難溶性、D−HPG・(−)−
PESが易溶性のジアステレオマーとして生成する
ため、D−HPG・(+)−PESのみを晶出させる
ことが可能となる。 被分割物質或いは分割剤たるp−ヒドロキシフ
エニルグリシンとしてはその遊離型に限らず、塩
酸塩、硫酸塩の如き鉱酸塩、シユウ酸塩、スルホ
ン酸の如き有機酸塩であつても用いることができ
る。同様にα−フエニルエタンスルホン酸も遊離
型であつても、ナトリウム塩、カリウム塩の如き
アルカリ金属塩、カルシウム塩、マグネシウム塩
の如きアルカリ土類金属塩の他、例えばアンモニ
ウム塩であつても用いることができる。更に被分
割物質たるp−ヒドロキシフエニルグリシン又は
α−フエニルエタンスルホン酸は化学合成により
得られるD体、L体の等量混合物の他、一方の光
学活性体を過剰に含む、いわゆる低純度の光学活
性体であつても用いることができる。 本発明は実施するに際し分割剤たるp−ヒドロ
キシフエニルグリシン又はα−フエニルエタンス
ルホン酸は上記被分割物質に対し約0.5以上、と
りわけ約0.8〜1.1モル比となるよう用いるのが適
当である。 造塩反応に用いる水性溶媒としては例えば水;
メタノール、エタノールの如き低級アルカノー
ル;アセトン;酢酸、プロピオン酸の如き脂肪
酸、或いはこれらの混合物を好適に用いることが
できるが、とりわけ水が好ましい。 造塩反応は例えば上記溶媒中で、DL−p−ヒ
ドロキシフエニルグリシンと光学活性α−フエニ
ルエタンスルホン酸又は光学活性p−ヒドロキシ
フエニルグリシンと(±)−α−フエニルエタン
スルホン酸を室温乃至加温下にかく拌することに
より実施できる。また、生成するジアステレオマ
ーのうち難溶性塩たるD−HPG・(+)−PES又
はL−HPG・(−)−PESの晶析操作は該反応液
を冷却するか、濃縮するか或いは有機溶媒を添加
することにより容易に行なうことができ、該塩を
高純度の結晶として析出せしめることができる。 析出した難溶性塩は通常の固液分離の方法例え
ばろ過、遠心分離等の方法により分離取得するこ
とができる。 上記により取得される難溶性ジアステレオマー
は必要とあらば更に洗浄、再結晶などの処理をす
ることができる。 尚、本発明で得られる各種ジアステレオマーは
いずれも光学的に純粋なp−ヒドロキシフエニル
グリシン1モルとα−フエニルエタンスルホン酸
1モルとからなる塩であつて新規化合物である。
その主な物性は下記第1表の通りである。
The present invention relates to a novel p-hydroxyphenylglycine/α-phenylethanesulfonate and a method for optical resolution thereof. Among optically active p-hydroxyphenylglycine, D-p-hydroxyphenylglycine is a useful substance as a raw material compound for semi-synthetic penicillin and semi-synthetic cephalosporin, and L-p-hydroxyphenylglycine has recently been bloody heart disease,
It can be used to treat cardiac dysfunction or diabetes (Japanese Patent Application Laid-open No. 41432/1983). However, p-hydroxyphenylglycine does not exist naturally, and the synthesized p-hydroxyphenylglycine
Since the DL is integrated, optical division is necessary.
Conventionally, as a chemical optical resolution method, for example, DL-p
- A method of converting hydroxyphenylglycine into N-benzyloxycarbonyl derivatives, N-chloroacetyl derivatives, and N-benzoyl derivatives, and resolving these derivatives with quinine, dehydroabiethylamine, optically active α-phenethylamine, etc. (J.
Chem.Soc (C), 1920-1922 (1971),; Tokukai Sho
No. 49-56946, Japanese Patent Application Laid-open No. 50-69039) are known. However, all of these methods
DL-p-hydroxyphenylglycine must be converted into an acyl derivative, the resolving agent is expensive, and a deacylation step is required after optical resolution, but there is a risk of racemization. be. Also, a method of dividing DL-p-hydroxyphenylglycine as d-3-bromocamphor-10-sulfonate (Japanese Patent Application Laid-open No. 32541/1989) or as d-3-bromocamphor-8-sulfonate A splitting method (Japanese Patent Publication No. 55-45069) is known, but the former yields only the L-form salt as crystals and is not an appropriate method for obtaining highly pure D-form salt. Regarding the latter, the resolving agent is derived from natural products and is expensive, and it is difficult to say that it is chemically stable enough. On the other hand, (±)-α-phenylethanesulfonic acid is a strongly acidic compound obtained by brominating (±)-phenethyl alcohol and then sulfonating it. Method used (J.Chem.
Soc., 1159 (1927)) is only known. In view of this situation, the present inventors have conducted intensive research and found that (1) p-hydroxyphenylglycine and α
- Phenylethanesulfonic acid forms a salt in an aqueous solvent; (2) If an optically active substance is used as one of the salts, one of the two diastereomers formed is D-p-hydroxyphenylglycine.・(+)−
α-Phenylethanesulfonate or L-p-hydroxyphenylglycine (-)-α-phenylethanesulfonate is obtained as a sparingly soluble salt, and the other diastereomer is always obtained as a readily soluble salt. (3) Therefore, the optically active form of p-hydroxyphenylglycine and α-phenylethanesulfonate can be used as a resolving agent for the optical resolution of the racemic form of the other; Thus, it has been found that optically active p-hydroxyphenylglycine and optically active α-phenylethanesulfonic acid can be produced industrially advantageously. Based on this knowledge, the present invention is characterized in that the racemic form of the other compound is optically resolved using an optically active substance selected from p-hydroxyphenylglycine and α-phenylethanesulfonic acid as a resolving agent. This is an optical resolution method for p-hydroxyphenylglycine or α-phenylethanesulfonic acid. According to the present invention, optically active α-phenylethanesulfonic acid is allowed to act as a resolving agent on DL-p-hydroxyphenylglycine in an aqueous solvent, or
Alternatively, optically active p-hydroxyphenylglycine is allowed to act on (±)-α-phenylethanesulfonic acid as a resolving agent to form a salt [i.e., DL-
p-hydroxyphenylglycine/optically active α-
Phenylethane sulfonate or optically active p-hydroxyphenylglycine/(±)-α-phenylethane sulfonate]. Optically active p-hydroxyphenylglycine and optically active α-phenylethanesulfonate [i.e., D-p-hydroxyphenylglycine]
(±)-α-phenylethanesulfonate is L-p
-Hydroxyphenylglycine (-)-α-phenylethanesulfonate] is separated and collected, and if necessary, this salt is further desalted to produce optically active p-hydroxyphenylglycine and optically active p-hydroxyphenylglycine. α-phenylethanesulfonic acid or salts thereof can be produced. As optically active p-hydroxyphenylglycine as a resolving agent, both the D and L forms are used, and as optically active α-phenylethanesulfonic acid as a resolving agent, both its (+) and (-) forms are used. be able to. For example, DL-p in a suitable aqueous solvent
- When (+)-α-phenylethanesulfonic acid is applied to hydroxyphenylglycine, D-p-hydroxyphenylglycine・(+)-α
-phenylethanesulfonate (hereinafter referred to as D-
HPG・(+)-PES) and L-p-hydroxyphenylglycine・(+)-α-phenylethanesulfonate (hereinafter referred to as L-HPG・(+)-PES)
D-
Since HPG·(+)-PES is a poorly soluble salt in the aqueous solvent and L-HPG·(+)-PES is an easily soluble salt, only D-HPG·(+)-PES crystallizes. In this case, even if (-)-PES is used as the resolving agent, optical resolution can be achieved in exactly the same way, L-HPG・(-)-PES is obtained as a poorly soluble diastereomer, and D-HPG is obtained as a readily soluble salt.・(-)-PES is obtained. On the other hand, when optically resolving (±)-α-phenylethanesulfonic acid, L-p is used as a resolving agent.
- When acting with hydroxyphenylglycine, L-HPG・(±)-PES and L-HPG・(−)
- Two diastereomers of PES are produced,
Since L-HPG・(-)-PES is a poorly soluble diastereomer and L-HPG・(+)-PES is a readily soluble diastereomer, L-HPG・(-)-
PES crystallizes, and L-HPG·(+)-PES is dissolved in the liquid. On the other hand, when D-p-hydroxyphenylglycine is used as a resolving agent, D-
HPG・(+)−PES is poorly soluble, D−HPG・(−)−
Since PES is produced as a readily soluble diastereomer, it is possible to crystallize only D-HPG·(+)-PES. p-hydroxyphenylglycine, which is the substance to be split or the splitting agent, can be used not only in its free form, but also in mineral acid salts such as hydrochloride and sulfate, and organic acid salts such as oxalate and sulfonic acid. Can be done. Similarly, α-phenylethanesulfonic acid may be in free form, alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts and magnesium salts, and even ammonium salts. Can be used. Furthermore, the substance to be resolved, p-hydroxyphenylglycine or α-phenylethanesulfonic acid, is not only a mixture of equal amounts of D-form and L-form obtained by chemical synthesis, but also a so-called low-purity product containing an excess of one of the optically active forms. It is also possible to use an optically active substance. In carrying out the present invention, it is appropriate to use p-hydroxyphenylglycine or α-phenylethanesulfonic acid as a resolving agent in a molar ratio of about 0.5 or more, especially about 0.8 to 1.1 to the substance to be separated. . Examples of the aqueous solvent used in the salt-forming reaction include water;
Lower alkanols such as methanol and ethanol; acetone; fatty acids such as acetic acid and propionic acid; or mixtures thereof can be suitably used; water is particularly preferred. For example, the salt formation reaction is performed by combining DL-p-hydroxyphenylglycine and optically active α-phenylethanesulfonic acid or optically active p-hydroxyphenylglycine and (±)-α-phenylethanesulfonic acid in the above-mentioned solvent. This can be carried out by stirring at room temperature or under heating. In addition, the crystallization operation of D-HPG・(+)-PES or L-HPG・(−)-PES, which are poorly soluble salts among the diastereomers produced, is performed by cooling the reaction solution, concentrating it, or using an organic This can be easily carried out by adding a solvent, and the salt can be precipitated as highly pure crystals. The precipitated poorly soluble salt can be separated and obtained by conventional solid-liquid separation methods such as filtration and centrifugation. The poorly soluble diastereomer obtained in the above manner can be further subjected to treatments such as washing and recrystallization, if necessary. Each of the various diastereomers obtained in the present invention is a salt consisting of 1 mol of optically pure p-hydroxyphenylglycine and 1 mol of α-phenylethanesulfonic acid, and is a new compound.
Its main physical properties are shown in Table 1 below.

【表】 かくして得られたD−HPG・(+)−PES又は
L−HPG・(−)−PESはイオン交換樹脂処理、
或いはアルカリ処理の如き常法によつて容易に光
学活性p−ヒドロキシフエニルグリシンと光学活
性α−フエニルエタンスルホン酸に分離すること
ができる。例えばD−HPG・(+)−PESの水溶
液をアルカリでp−ヒドロキシフエニルグリシン
の等電点に調整すればD−p−ヒドロキシフエニ
ルグリシンと(+)−α−フエニルエタンスルホ
ン酸に分離し、D−p−ヒドロキシフエニルグリ
シンのみが結晶として析出する。同様にL−
HPG・(−)−PESからはL−p−ヒドロキシフ
エニルグリシンのみが結晶として析出する。析出
した結晶はろ過等により固液分離すればD−又は
L−p−ヒドロキシフエニルグリシンを得ること
ができる。又母液中には光学的に純粋なα−フエ
ニルエタンスルホン酸アルカリ塩が溶存している
のでこれを中和することにより光学活性α−フエ
ニルエタンスルホン酸を溶液状態で得ることがで
きる。 以上の通り、本発明によれば、DL−p−ヒド
ロキシフエニルグリシンの光学分割に際し、分割
剤としてα−フエニルエタンスルホン酸の(+)
体又は(−)体を適宜用いることにより所望の光
学活性p−ヒドロキシフエニルグリシンを常に難
溶性ジアステレオマーとして選択的に晶析させる
ことができるという利点が得られる。又、(±)−
α−フエニルエタンスルホン酸の光学分割に際し
ても、分割剤たるp−ヒドロキシフエニルグリシ
ンのD体又はL体を適宜選択して使用するだけで
所望の光学活性フエニルエタンスルホン酸を難溶
性ジアステレオマーとして晶析せしめることがで
きる。 しかもいずれの場合も造塩反応・晶析操作は水
性溶媒中で実施でき操作が極めて簡単であるとい
う利点もあわせ得られる。 加えて、上記の如くすぐれた分割剤である光学
活性α−フエニルエタンスルホン酸は従来、試薬
としての入手も困難であつたが、本発明方法によ
り容易に製造できるので工業的規模においても大
量に供給可能となりその意義は大きい。 尚、本発明の一方の原料物質である(±)−α
−フエニルエタンスルホン酸は〔J.Chem.Soc.,
1159(1927)〕記載の方法に準じ、(±)−α−フ
エネチルアルコールをブロム化し、得られる
(±)−α−フエネチルブロミドをスルホン化して
製することができる。 以下、実施例により本発明をさらに詳細に説明
する。 実施例 1 (±)−PES19.0gを含す水溶液450gにL−
HPG16.7gを加えて加熱溶解し、ついで徐冷し室
温で2時間かつ拌する。析出晶をろ取し少量の冷
水で洗浄することにより(−)−PES・L−
HPG16.2gを得た。 〔α〕25 +79.0゜(C=1,メタノール) 実施例 2 (1) (±)−PES・NH4125g、D−HPG102.8g
および濃硫酸33.2gを水2.2に加熱溶解す
る。ついで室温で2時間かつ拌した。析出晶を
ろ取し水洗・乾燥することにより(+)−
PES・D−HPG95.1gを得た。 〔α〕25 −79.2゜(C=1,メタノール) (2) (1)で得られた(+)−PES・D−HPG29.0g
にメタノール87mlを加えかく拌下に水酸化ナト
リウム水溶液を加えてPH6に調整する。室温下
に2時間かつ拌しろ過することによりD−
HPG13.0gを得た。 〔α〕25 −155.0゜(C=1,N−HCl) 母液を濃縮してメタノールを留去し水を加えて
IR−120(H+)を充填したカラムに通導しカラム
は水で洗浄する。流出液及び洗液を合せ濃縮する
ことにより(+)−α−フエニルエタンスルホン
酸の10%溶液150gを得た。 実施例 3 (±)−α−フエニルエチルブロミド55.5gに
亜硫酸アンモニウムを作用させて調製した(±)
−PESの反応混合物(150g)にD−HPG27.6
g、濃塩酸45.3mlおよび水300mlを加え加熱溶解
し、ついで20℃で2時間かつ拌する。析出晶をろ
取し水洗乾燥することにより(+)−PES・D−
HPG23.3gを得た。 〔α〕25 −79.4℃(C=1,メタノール) 実施例 4 DL−HPG20gおよび濃塩酸11mlを水300mlに溶
解し、これに(+)−PES・NH424.3gを水200ml
に溶解した溶液を徐々に加え室温で2時間かく拌
した。析出晶をろ取し水洗乾燥することにより
(+)−PES・D−HPG19.7gを得た。 〔α〕25 −75.8゜(C=1,メタノール)
[Table] The thus obtained D-HPG/(+)-PES or L-HPG/(-)-PES was treated with an ion exchange resin,
Alternatively, it can be easily separated into optically active p-hydroxyphenylglycine and optically active α-phenylethanesulfonic acid by a conventional method such as alkali treatment. For example, if an aqueous solution of D-HPG/(+)-PES is adjusted to the isoelectric point of p-hydroxyphenylglycine with an alkali, it becomes D-p-hydroxyphenylglycine and (+)-α-phenylethanesulfonic acid. The mixture is separated, and only D-p-hydroxyphenylglycine is precipitated as crystals. Similarly, L-
Only L-p-hydroxyphenylglycine is precipitated as crystals from HPG.(-)-PES. If the precipitated crystals are subjected to solid-liquid separation by filtration or the like, D- or L-p-hydroxyphenylglycine can be obtained. Furthermore, since an optically pure alkali salt of α-phenylethanesulfonic acid is dissolved in the mother liquor, optically active α-phenylethanesulfonic acid can be obtained in a solution state by neutralizing this. As described above, according to the present invention, in the optical resolution of DL-p-hydroxyphenylglycine, the (+)
By appropriately using the isomer or the (-) isomer, there is an advantage that the desired optically active p-hydroxyphenylglycine can always be selectively crystallized as a poorly soluble diastereomer. Also, (±)−
When optically resolving α-phenylethanesulfonic acid, the desired optically active phenylethanesulfonic acid can be obtained by simply selecting and using the D-form or L-form of p-hydroxyphenylglycine as a resolving agent. It can be crystallized as a stereomer. Moreover, in either case, the salt-forming reaction and crystallization operation can be carried out in an aqueous solvent, and the operation is extremely simple. In addition, as mentioned above, optically active α-phenylethanesulfonic acid, which is an excellent resolving agent, has traditionally been difficult to obtain as a reagent, but since it can be easily produced by the method of the present invention, it can be produced in large quantities even on an industrial scale. This is of great significance. Note that (±)-α, which is one of the raw materials of the present invention
-Phenylethanesulfonic acid is [J.Chem.Soc.,
1159 (1927)], by brominating (±)-α-phenethyl alcohol and sulfonating the obtained (±)-α-phenethyl bromide. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 (±)- Add L- to 450 g of an aqueous solution containing 19.0 g of PES.
Add 16.7 g of HPG and dissolve by heating, then slowly cool and stir at room temperature for 2 hours. By filtering the precipitated crystals and washing with a small amount of cold water, (-)-PES・L-
Obtained 16.2 g of HPG. [α] 25 D +79.0° (C=1, methanol) Example 2 (1) (±)-PES・NH 4 125 g, D-HPG 102.8 g
Heat and dissolve 33.2 g of concentrated sulfuric acid in 2.2 g of water. The mixture was then stirred at room temperature for 2 hours. By filtering the precipitated crystals, washing with water, and drying, (+)−
95.1 g of PES・D-HPG was obtained. [α] 25 D -79.2° (C=1, methanol) (2) (+)-PES・D-HPG obtained in (1) 29.0 g
Add 87 ml of methanol to the solution, and while stirring, add an aqueous sodium hydroxide solution to adjust the pH to 6. D- by stirring for 2 hours at room temperature and filtering.
13.0g of HPG was obtained. [α] 25 D -155.0゜(C=1,N-HCl) Concentrate the mother liquor to remove methanol and add water.
The flow is passed through a column filled with IR-120 (H + ), and the column is washed with water. The effluent and washing liquid were combined and concentrated to obtain 150 g of a 10% solution of (+)-α-phenylethanesulfonic acid. Example 3 Prepared by reacting ammonium sulfite with 55.5 g of (±)-α-phenylethyl bromide (±)
- D-HPG27.6 in the reaction mixture (150 g) of PES
g, 45.3 ml of concentrated hydrochloric acid and 300 ml of water were added and dissolved by heating, followed by stirring at 20°C for 2 hours. By filtering the precipitated crystals, washing with water and drying, (+)-PES・D-
23.3g of HPG was obtained. [α] 25 D -79.4℃ (C=1, methanol) Example 4 20g of DL-HPG and 11ml of concentrated hydrochloric acid were dissolved in 300ml of water, and 24.3g of (+)-PES・NH 4 was added to 200ml of water.
A solution dissolved in was gradually added and stirred at room temperature for 2 hours. The precipitated crystals were collected by filtration, washed with water, and dried to obtain 19.7 g of (+)-PES.D-HPG. [α] 25 D -75.8° (C=1, methanol)

Claims (1)

【特許請求の範囲】 1 p−ヒドロキシフエニルグリシン・α−フエ
ニルエタンスルホン酸塩。 2 DL−p−ヒドロキシフエニルグリシン・光
学活性α−フエニルエタンスルホン酸塩である特
許請求の範囲第1項記載の化合物。 3 光学活性p−ヒドロキシフエニルグリシン・
(±)−α−フエニルエタンスルホン酸塩である特
許請求の範囲第1項記載の化合物。 4 D−p−ヒドロキシフエニルグリシン・
(+)−α−フエニルエタンスルホン酸塩である特
許請求の範囲第1項記載の化合物。 5 L−p−ヒドロキシフエニルグリシン・
(−)−α−フエニルエタンスルホン酸塩である特
許請求の範囲第1項記載の化合物。 6 p−ヒドロキシフエニルグリシン及びα−フ
エニルエタンスルホン酸から選ばれるいずれか一
方の化合物の光学活性体と他方の化合物のラセミ
体を水性溶媒中で反応させ生成する2種ジアステ
レオマーの溶解度差を利用してその難溶性ジアス
テレオマーたる一方の光学活性p−ヒドロキシフ
エニルグリシン・光学活性α−フエニルエタンス
ルホン酸塩を分離・採取することを特徴とする光
学活性p−ヒドロキシフエニルグリシン・光学活
性α−フエニルエタンスルホン酸塩の製造法。
[Claims] 1 p-Hydroxyphenylglycine/α-phenylethanesulfonate. 2. The compound according to claim 1, which is DL-p-hydroxyphenylglycine/optically active α-phenylethanesulfonate. 3 Optically active p-hydroxyphenylglycine
The compound according to claim 1, which is (±)-α-phenylethanesulfonate. 4 D-p-hydroxyphenylglycine
The compound according to claim 1, which is (+)-α-phenylethanesulfonate. 5 L-p-hydroxyphenylglycine
The compound according to claim 1, which is (-)-α-phenylethanesulfonate. 6 Solubility of two diastereomers produced by reacting an optically active form of one of the compounds selected from p-hydroxyphenylglycine and α-phenylethanesulfonic acid with a racemic form of the other compound in an aqueous solvent Optically active p-hydroxyphenyl, which is characterized by separating and collecting one of the poorly soluble diastereomers, optically active p-hydroxyphenylglycine and optically active α-phenylethanesulfonate, by utilizing the difference. A method for producing glycine/optically active α-phenylethanesulfonate.
JP15004781A 1981-09-21 1981-09-21 P-hydroxyphenylglycine-alpha-phenylethanesulfonic acid salt and its optical resolution Granted JPS5852253A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15004781A JPS5852253A (en) 1981-09-21 1981-09-21 P-hydroxyphenylglycine-alpha-phenylethanesulfonic acid salt and its optical resolution
US06/416,338 US4415504A (en) 1981-09-21 1982-09-09 p-Hydroxyphenylglycine.α-phenylethanesulfonate, process for production thereof and utilization thereof in resolution of p-hydroxyphenylglycine
EP82108709A EP0075318B1 (en) 1981-09-21 1982-09-21 P-hydroxyphenylglycine alpha-phenylethanesulfonate, process for production thereof and utilization thereof in resolution of p-hydroxyphenylglycine
DE8282108709T DE3265433D1 (en) 1981-09-21 1982-09-21 P-hydroxyphenylglycine alpha-phenylethanesulfonate, process for production thereof and utilization thereof in resolution of p-hydroxyphenylglycine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15004781A JPS5852253A (en) 1981-09-21 1981-09-21 P-hydroxyphenylglycine-alpha-phenylethanesulfonic acid salt and its optical resolution

Publications (2)

Publication Number Publication Date
JPS5852253A JPS5852253A (en) 1983-03-28
JPS6261584B2 true JPS6261584B2 (en) 1987-12-22

Family

ID=15488341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15004781A Granted JPS5852253A (en) 1981-09-21 1981-09-21 P-hydroxyphenylglycine-alpha-phenylethanesulfonic acid salt and its optical resolution

Country Status (1)

Country Link
JP (1) JPS5852253A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467856B1 (en) * 1990-07-19 1997-03-19 Nippon Zoki Pharmaceutical Co. Ltd. Aminoalkanesulfonic acid derivatives and pharmaceutical compositions for use in preventing or treating heart diseases
EP3174855B1 (en) * 2014-07-31 2023-05-10 Medivation Technologies LLC Coformer salts of (2s,3s)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(1-methyl-1h-1,2,4-triazol-5-yl)-4-oxo-1,2,3,4-tetrahydroquinoline-5-carboxylate and methods of preparing them

Also Published As

Publication number Publication date
JPS5852253A (en) 1983-03-28

Similar Documents

Publication Publication Date Title
JP2875894B2 (en) Formation and resolution of ibuprofen lysinate
US4415504A (en) p-Hydroxyphenylglycine.α-phenylethanesulfonate, process for production thereof and utilization thereof in resolution of p-hydroxyphenylglycine
US5166426A (en) Process for producing l-carnitine from d,l-carnitine nitrile salts
JPS6261584B2 (en)
US5210288A (en) Process for the preparation of d-(-)-4-hydroxyphenylglycine and l-(+)-4-hydroxyphenylglycine, starting from d.l.-4-hydroxyphenylglycine
US4520205A (en) Chemical resolution of (+)-2,3-dihydroindole-2-carboxylic acid
US3994962A (en) Method of manufacturing optically active p-hydroxyphenylglycine
US4346045A (en) Process for resolving DL-S-benzoyl-β-mercaptoisobutyric acid, and products obtained
JPH0118066B2 (en)
JPH11228512A (en) Production of d-alloisoleucine and intermediate therefor
US4551548A (en) Process for the recovery of S-(carboxymethyl)-(R)-cysteine and S-(carboxymethyl)-(S)-cysteine
JP3400105B2 (en) Optically active sulfonic acid derivative and production method thereof
EP0174358A1 (en) Novel diastereomer salts of phenylalanine and n-acyl derivatives thereof and process for the separation of optically active phenylalanine and n-acyl derivatives thereof
KR100235374B1 (en) Method for preparing optical isomers of a 2-amino naphthyridine derivative
JPH01131143A (en) Optical resolution of d,l-carnitinenitrile chloride
JP3316917B2 (en) New phenylalanine salt crystals and their production
JPH035382B2 (en)
JP2007526890A (en) Method for producing chiral pure N- (trans-4-isopropyl-cyclohexylcarbonyl) -D-phenylalanine and their crystal structure modified products
US5191085A (en) Optically active salts of a substituted thiazolidine-4-carboxylate and 3-cyano-hydroxypropyl trimethyl-ammonium, their production and uses
JPH029028B2 (en)
JP2576598B2 (en) Process for producing optically active 1-methyl-3-phenylpropylamine
JPS61172846A (en) Method of optical resolution of (+-)-2-chloroprorionic acid
JPS6121939B2 (en)
JPH0312051B2 (en)
JPH021429A (en) Production of optically active 1-methyl-3-phenylpropylamine