JPS6115007A - Method of controlling boiler - Google Patents

Method of controlling boiler

Info

Publication number
JPS6115007A
JPS6115007A JP13297784A JP13297784A JPS6115007A JP S6115007 A JPS6115007 A JP S6115007A JP 13297784 A JP13297784 A JP 13297784A JP 13297784 A JP13297784 A JP 13297784A JP S6115007 A JPS6115007 A JP S6115007A
Authority
JP
Japan
Prior art keywords
steam
temperature
boiler
water
dryness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13297784A
Other languages
Japanese (ja)
Inventor
鉄也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP13297784A priority Critical patent/JPS6115007A/en
Publication of JPS6115007A publication Critical patent/JPS6115007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ボイラの制御方法、詳しくは気水分離器付き
貫流ボイラの制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for controlling a boiler, and more particularly to a method for controlling a once-through boiler with a steam-water separator.

従来の技術 気水分離器付き貫流ボイラは蒸発部と過熱部の間に気水
分離器を設けた貫流式であり、蒸発部で90%以上の乾
き度となるまで加熱された蒸気社気水分離器で残りの1
0チの水分を除かれ、乾き蒸気だけが過熱器に入るので
、過熱器の長さ社常に一定であり【蒸発終了点の移動に
よる影響はない。
Conventional technology A once-through boiler with a steam-water separator is a once-through type boiler with a steam-water separator installed between the evaporating section and the superheating section. The remaining 1 in the separator
Since all the moisture is removed and only dry steam enters the superheater, the length of the superheater is always constant (it is not affected by the movement of the evaporation end point).

しかし、蒸発開始点社給水燃料比によって動くから、こ
の比が正しく保たれていないと気水分離器へ入る蒸気の
乾き度が変化する。
However, since the starting point of evaporation depends on the feedwater/fuel ratio, if this ratio is not maintained correctly, the dryness of the steam entering the steam separator will change.

そして、乾き度が低いと過熱器へゆく蒸気流量が減るこ
とになり、またブロー水が増して効率が下がると共に、
乾き度が100チを越せば蒸発管内で過熱が行なわれる
ことになって蒸発管が損傷する。
If the dryness is low, the flow rate of steam going to the superheater will decrease, and the amount of blow water will increase, reducing efficiency.
If the degree of dryness exceeds 100 degrees, overheating will occur within the evaporator tube and the evaporator tube will be damaged.

このために、従来は第4図に示すように、蒸発管1を複
数の並列構造とし、その内の一本だけに絞りを入れ流量
を他より少なくシ【気水分離器2の入口で僅かに過熱す
るようにし、その過熱程度で他の蒸気管の蒸気乾き度を
推定すると共に、その蒸気乾き度で給水量を制御してい
る。
For this purpose, conventionally, as shown in Fig. 4, the evaporator tube 1 was constructed with a plurality of parallel structures, and only one of them was equipped with a throttle to reduce the flow rate to a smaller amount than the others. The steam dryness of other steam pipes is estimated based on the degree of overheating, and the amount of water supplied is controlled based on the steam dryness.

具体的にはマルチサーモスタット3を設りて過熱程度を
検出することで蒸気乾き度を推定している。第十図で4
は予熱部、5・は蒸発部である。
Specifically, the steam dryness is estimated by installing a multi-thermostat 3 and detecting the degree of overheating. 4 in Figure 10
5 is a preheating section, and 5 is an evaporation section.

発明が解決しようとする問題点 蒸発管1を並列構造とする必要があるから設置スペース
が広(なつ工小盤ボイラでは利用できない。
Problems to be Solved by the Invention Since the evaporator tubes 1 need to be constructed in parallel, the installation space is large (cannot be used with the Natsuko Koban boiler).

絞りを設けるために、ゴミ等の影響又は経時変化により
特性が大きく変化することがある。
Since the aperture is provided, the characteristics may change significantly due to the influence of dust or the like or changes over time.

問題点を解決するための手段及び作用 予熱部の中間の温度に基づいて給水量を制御して乾き度
を一定に維持するようにしたもの。
Means and action for solving the problem The amount of water supplied is controlled based on the intermediate temperature of the preheating section to maintain a constant degree of dryness.

実施例 第1図は蒸気温度とボイラ長さとの関係を示し、予熱部
100入口+08で式(給水温度)であったものが出口
10bK達するまでIc’I”、に上昇し、蒸発部11
より気水分離器12に流れる。
Embodiment FIG. 1 shows the relationship between steam temperature and boiler length, and what was the formula (feed water temperature) at the preheating section 100 inlet +08 rises to Ic'I'' until it reaches the outlet 10bK, and the evaporating section 11
The water then flows to the steam separator 12.

そして、予熱部10の1ケ所10′の温度T、を測定し
、その温度で全体の乾き度を推定して給水量を自動制御
する。
Then, the temperature T at one location 10' of the preheating section 10 is measured, and the overall dryness is estimated based on that temperature, and the water supply amount is automatically controlled.

なお、前記温度T11は予熱部出口10bより十分離れ
蒸発する事のない位置10′の温度である。
Note that the temperature T11 is the temperature at a position 10' which is sufficiently far away from the preheating section outlet 10b to prevent evaporation.

ここで、蒸発管での熱伝達が均等だとすると伝熱量と伝
熱面積の関係は、 ((’II−Tl) Cp+xh ) : (Th−T
L) Cp=(4+4):L  ・・・(1) となる。
Here, assuming that the heat transfer in the evaporator tube is uniform, the relationship between the amount of heat transfer and the heat transfer area is (('II-Tl) Cp+xh) : (Th-T
L) Cp=(4+4):L...(1).

(1)式より となる。From equation (1) becomes.

但し、T、は予熱部入口給水温度、T、は測定温度、T
ISは蒸発温度、Cpは給水の比熱、Xは乾き度、hは
蒸発潜熱、tはT3温度測点までの伝熱面積割合、tl
は予熱部の伝熱面積割合、4は蒸発部の伝熱面積割合で
あり、4+4が1となるようにしである。
However, T is the preheating section inlet water supply temperature, T is the measured temperature, T
IS is the evaporation temperature, Cp is the specific heat of the feed water, X is the dryness, h is the latent heat of evaporation, t is the heat transfer area ratio to the T3 temperature measurement point, tl
is the heat transfer area ratio of the preheating section, and 4 is the heat transfer area ratio of the evaporation section, so that 4+4 equals 1.

そして、通常T1とT5は一定であるからcp−hも一
定となり、(2)式において測定温度T2と乾き度xl
i一定の関係(Ta = Cz x + CI )とな
る。但し、q、Cgは定数である。
Since T1 and T5 are usually constant, cp-h is also constant, and in equation (2), measured temperature T2 and dryness xl
i has a constant relationship (Ta = Cz x + CI). However, q and Cg are constants.

したがって、T1を測定してTa= CIX + Q+
となるように給水量を自動制御すれば乾き度を一定に維
持できる。・ 具体的に鉱第2図に示すように、設定温度Txと測定温
度T、とを突き合せ演算し、その値をPiD調節計13
を経て給水ポンプの給水量コントローラ14に送ってボ
イラ15への給水量を制御する。
Therefore, by measuring T1, Ta= CIX + Q+
By automatically controlling the amount of water supplied so that the dryness level is maintained constant.・Specifically, as shown in Figure 2, the set temperature Tx and the measured temperature T are compared and calculated, and the value is sent to the PiD controller 13.
The water is then sent to the water supply amount controller 14 of the water supply pump to control the amount of water supplied to the boiler 15.

なお、給水温度が変動する場合には予熱部入口温度Tx
で給水量を補正すれば良い。
In addition, if the feed water temperature fluctuates, the preheating section inlet temperature Tx
You can correct the amount of water supplied.

つまり、前述の(2)式社 ・・・ (3) となり、Tstj一定、cp−hもはば一定であるから
、 Ts+T1(t −1) =CIX+04    = 
 (4)となる。但し、C1,C11は定数である。
In other words, the above formula (2)... (3) Since Tstj is constant and cp-h is also constant, Ts+T1(t-1) = CIX+04 =
(4) becomes. However, C1 and C11 are constants.

したがってT1と−を測定として(4)式を満足するよ
うに給水量を自動制御すれば乾き度を一定に維持できる
Therefore, if T1 and - are measured and the amount of water supplied is automatically controlled to satisfy equation (4), the degree of dryness can be maintained constant.

異体的には第3図に示すように、予熱部入口温度(給水
温度) Tlを比率演算器16に送ってTx(4−1)
を演算し、その値を測定温度−と突き合せ演算し、その
値を測定温度Txと突き合せ演算すれば良い。
Alternatively, as shown in FIG. 3, the preheating section inlet temperature (feed water temperature) Tl is sent to the ratio calculator 16 and Tx (4-1)
What is necessary is to calculate, compare the value with the measured temperature -, and calculate the value with the measured temperature Tx.

発明の効果 蒸発管を並列に設けなくとも良いからコンパクトにたつ
【小屋ボイラでも利用できる。
Effects of the invention: It is compact because there is no need to install evaporation tubes in parallel. [Can also be used in a shed boiler.

絞りを設けなくとも良いから、ゴミ等の影響や経時変化
によって特性が大きく変化することがなく、安定した制
御ができる。
Since there is no need to provide a diaphragm, stable control can be achieved without significant changes in characteristics due to the influence of dust or changes over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の実施例を示し、第1図辻蒸気
温度とボイラ長さの関係を示す表図、第2図、第3gl
はそれぞれ異なる制御方法の具体例を示すブロック説明
図、第4図は従来例の説明図である。 +oh予熱部、11は蒸発部、12社気水分離器。
Figures 1 to 3 show examples of the present invention; Figure 1 is a table showing the relationship between steam temperature and boiler length; Figures 2 and 3 are diagrams showing the relationship between steam temperature and boiler length;
4 is a block explanatory diagram showing specific examples of different control methods, and FIG. 4 is an explanatory diagram of a conventional example. +oh preheating section, 11 evaporation section, 12 company steam water separator.

Claims (1)

【特許請求の範囲】[Claims] 予熱部10及び蒸発部11を経て気水分離器12に蒸気
を送る気水分離器付き貫流ボイラにおいて、前記予熱部
10の中間位置10′の温度に基づいて給水量を制御す
るようにしたことを特徴とするボイラの制御方法。
In a once-through boiler with a steam/water separator that sends steam to a steam/water separator 12 via a preheating section 10 and an evaporation section 11, the amount of water supplied is controlled based on the temperature at an intermediate position 10' of the preheating section 10. A boiler control method characterized by:
JP13297784A 1984-06-29 1984-06-29 Method of controlling boiler Pending JPS6115007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13297784A JPS6115007A (en) 1984-06-29 1984-06-29 Method of controlling boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13297784A JPS6115007A (en) 1984-06-29 1984-06-29 Method of controlling boiler

Publications (1)

Publication Number Publication Date
JPS6115007A true JPS6115007A (en) 1986-01-23

Family

ID=15093907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13297784A Pending JPS6115007A (en) 1984-06-29 1984-06-29 Method of controlling boiler

Country Status (1)

Country Link
JP (1) JPS6115007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221514A (en) * 1992-01-31 1993-08-31 Sandvik Kk Article picture-recording device in conveyor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221514A (en) * 1992-01-31 1993-08-31 Sandvik Kk Article picture-recording device in conveyor

Similar Documents

Publication Publication Date Title
CN103080648A (en) Method for operating a solar-heated continuous flow steam generator and solar-thermal continuous flow steam generator
JPS6115007A (en) Method of controlling boiler
US4080789A (en) Steam generator
RU2214556C1 (en) Steam boiler
JPS6047519B2 (en) Waste heat recovery equipment that prevents corrosion caused by sulfur oxides
JP2686341B2 (en) Steam pressure controller for circulating fluidized bed boiler
JPS5856043B2 (en) Drain collection device
JPS6371625A (en) Measuring device for heat absortion quantity of heat conduction pipe
JPS61262504A (en) Automatic controller for boiler
US3189008A (en) Method and apparatus for controlling a vapor generator operating at supercritical pressure
US3362384A (en) Steam generation with reheat temperature control
JPS5843309A (en) Controller for temperature of feedwater
JPS59173601A (en) Method of controlling temperature of steam from boiler
JPS5935701A (en) Waste heat recovery boiler
JPS6237602A (en) Method of operating boiler
RU2214557C1 (en) Steam boiler
JPH0722563Y2 (en) Boiler equipment
JPS6239661B2 (en)
JPS6066906U (en) Steam turbine supercooling prevention device
GB361028A (en) Improvements relating to steam generators
JPS613904A (en) Controller for drum level
JPS5812916A (en) Method of controlling water level of steam-water drum in evaporating cooling device for heating furnace
JPS60178203A (en) Controller for overheat temperature of waste heat once-through boiler
JPS63702B2 (en)
JPS58102003A (en) Liquid metal cooling type fast breeder reactor plant