JPS5935701A - Waste heat recovery boiler - Google Patents

Waste heat recovery boiler

Info

Publication number
JPS5935701A
JPS5935701A JP14476782A JP14476782A JPS5935701A JP S5935701 A JPS5935701 A JP S5935701A JP 14476782 A JP14476782 A JP 14476782A JP 14476782 A JP14476782 A JP 14476782A JP S5935701 A JPS5935701 A JP S5935701A
Authority
JP
Japan
Prior art keywords
economizer
temperature
heat recovery
exhaust gas
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14476782A
Other languages
Japanese (ja)
Inventor
坂田 太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP14476782A priority Critical patent/JPS5935701A/en
Publication of JPS5935701A publication Critical patent/JPS5935701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は排熱回収ボイラに係り、特に節炭器に341t
>ろ水の蒸発を防止するに好適なボイラ装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust heat recovery boiler, and particularly to a 341t
>This invention relates to a boiler device suitable for preventing evaporation of filtrate.

従来のこの種排熱回収ボイラは、第1図に示す」、うに
、ガスタービン等から排出され、ボイラケーシング1【
内を流れる高温燃焼排ガス(以下、単に排ガスと称する
)の主流2中に順次、過熱器9、蒸発器7および節炭器
3が配設された構成と!、「つている。被加熱流体であ
る水は、節炭器給水管1を経て節炭器3に供給され、所
定の温度まで予熱された後、ドラム給水管4を通りドラ
ム5忙供給される。ドラム5に供給された圧縮水は、蒸
発器下降管6を経て蒸発器7本体およびドラム5の順で
自然循環または強制循環され、その間に加熱される。該
加熱により発生した蒸気は、ドラム5で水と分離された
後ドラム蒸気出口管8を経て過熱器9に送られ、こ仁で
さらに昇温された後、主蒸気管10を経て蒸気タービン
等(図示省略)に供給され、発電等に利用される。
A conventional exhaust heat recovery boiler of this type is shown in Figure 1.
A configuration in which a superheater 9, an evaporator 7, and an economizer 3 are sequentially disposed in a main stream 2 of high-temperature combustion exhaust gas (hereinafter simply referred to as exhaust gas) flowing inside! Water, which is the fluid to be heated, is supplied to the economizer 3 via the economizer water supply pipe 1, and after being preheated to a predetermined temperature, it passes through the drum water supply pipe 4 and is supplied to the drum 5. The compressed water supplied to the drum 5 is naturally or forcedly circulated in the order of the evaporator 7 body and the drum 5 via the evaporator downcomer pipe 6, and is heated during this time. After being separated from water in step 5, the drum steam is sent to a superheater 9 through an outlet pipe 8, and after being further heated in a steam tank, it is supplied to a steam turbine, etc. (not shown) through a main steam pipe 10, and is used to generate electricity. It is used for etc.

上記排熱回収ボイラにおいては、各熱交換器は運用頻度
の高い定格負荷をベースにできるだけ高効率となるよう
に設計されている。従って、節炭器3についてもその水
温をドラム圧力の飽和温度より低いが、これにできるだ
け近づけることが望ましく、伝熱面積の設計もこの考え
に沿ってなされている。ところで、上記排熱回収ボイラ
圧おいては、ボイラ入口排ガス温度の部分負荷特性が通
常のボイラのそれとは異なることが知られている。
In the waste heat recovery boiler, each heat exchanger is designed to be as efficient as possible based on the rated load that is frequently used. Therefore, it is desirable for the water temperature of the economizer 3 to be lower than the saturation temperature of the drum pressure, but as close to this temperature as possible, and the heat transfer area is also designed based on this idea. By the way, it is known that at the above-mentioned exhaust heat recovery boiler pressure, the partial load characteristic of the boiler inlet exhaust gas temperature is different from that of a normal boiler.

すなわち、第2図に示すように通常のボイラでは、ボイ
ラ入口排ガス流量14および同人口排ガス温度16がそ
れぞれ負荷に対しほぼ同様に比例して変化するのに対し
、 lit熱回収ボイラにおいては、負荷の低下にとも
ないボイラ入口排ガス温度15は通常のボイラと同様に
低−F−、t’−るが、同人ロ排ガス流@13は排ガス
発生装置の運転制約」二あまり低下しないという特長が
ある。このため、排熱回収ボイラの運転に当り、従来の
熱交換器の設計思想なそのまま適用する場合には、低負
荷、1ト時に節炭器3の出口水温がドラム圧J、]の飽
和温度に達して蒸気を発生することとなり、このような
状態で運転すれば、節炭器3管内の蒸気泡のη生と消滅
で伝熱管の振動を生起せしめ、装置の破損事故を招くこ
とになる。これを防止rるlこめ、従来は、低負荷時や
起動時に第1図の節炭器給水管lを通じて多数の給水を
行うとともに、蒸発器7で発生する蒸気1.を越える余
分な給水は節炭器プリー管12を通じて復水器へ戻すこ
とにより、節炭器用(」水温をドラム圧力の飽和温度よ
り一定の温度差だけ低く保つよう制御しているが、上記
の給水流欧は定格負荷の給水流はをはるかに上まわる敏
であり、これにともない給水ポンプの容置を非常に大き
なものにしなげればならな(・ので設備面積およびコス
ト上不利となる上、節炭器3での給水を増加させる必要
のない高負荷時にb′is;ンブの駆動力が過大となり
、エネルギー効率が悪化すると℃・う欠点があつ1こ。
That is, as shown in Fig. 2, in a normal boiler, the boiler inlet exhaust gas flow rate 14 and the exhaust gas temperature 16 change in almost the same proportion to the load, whereas in a lit heat recovery boiler, the As the temperature decreases, the boiler inlet exhaust gas temperature 15 becomes low -F-, t'- as in a normal boiler, but the boiler exhaust gas flow @13 has the advantage that it does not drop much due to the operational constraints of the exhaust gas generator. Therefore, when operating the waste heat recovery boiler, if the design concept of the conventional heat exchanger is applied as is, the outlet water temperature of the economizer 3 at low load and 1 tot is the saturation temperature of the drum pressure J. If it is operated under such conditions, the generation and disappearance of steam bubbles in the three tubes of the economizer will cause vibrations in the heat transfer tubes, leading to damage to the equipment. . In order to prevent this, conventionally, a large amount of water is supplied through the water economizer water supply pipe l shown in FIG. Excess water supplied in excess of the above temperature is controlled to be kept lower than the saturation temperature of the drum pressure by a certain temperature difference by returning the water to the condenser through the economizer pulley pipe 12. In the water supply system, the water supply flow under the rated load is much faster than the rated load, and as a result, the capacity of the water supply pump must be made very large. During high loads when there is no need to increase the water supply in the energy saver 3, the driving force of the energy saver becomes excessive and the energy efficiency deteriorates, resulting in disadvantages such as ℃ .

本発明の目的は、上記した従来技術の欠点をなくし、給
水ポンプの大型化をともなうことなく節炭器出口水温を
ドラム圧力のト:壜和習1度よりイ氏く保つことができ
る排熱回収ボイラな提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to maintain the outlet water temperature of the economizer at a temperature lower than 1 degree Celsius of drum pressure without increasing the size of the water supply pump. Recovery boiler is to be provided.

上記目的を達成するため、本発明しま、燃焼括トガス主
流中に節炭器を設けた排熱回収ボイラにお−)て、上記
節炭器を迂回する燃焼排ガスのノ(イ/くスダクトと、
該ダクト中を流れる燃焼排ガスの流量調節手段(ダンパ
等)とを設けたことを特徴とする。
In order to achieve the above object, the present invention provides an exhaust heat recovery boiler in which a fuel economizer is installed in the main stream of the combustion exhaust gas, and a combustion exhaust gas duct which bypasses the energy economizer. ,
The duct is characterized by being provided with a flow rate regulating means (damper, etc.) for the combustion exhaust gas flowing through the duct.

上記構成とすることにより、負荷変動に応じて節炭器を
通過する排ガスの一部をノ(イノくスダクトに流すこと
ができるので、節炭器を通過する排ガス流を所望流量に
制御することが可能となる。なお、上記所望流量とは、
負荷変動に応じて定まるドラム圧力での飽和温度より低
いがこれにできるだけ近く節炭器出口水の温度を保持す
るのに必要な流量として把握されるものである。
With the above configuration, a part of the exhaust gas passing through the economizer can be sent to the inno gas duct according to load fluctuations, so the flow of exhaust gas passing through the economizer can be controlled to a desired flow rate. The above desired flow rate is
It is understood as the flow rate required to maintain the temperature of the economizer outlet water as close as possible to, but lower than, the saturation temperature at the drum pressure, which is determined according to load fluctuations.

本発明において特徴的に設けられるバイパスダクトは、
節炭器を迂回して排ガスを導くことができる限り任意の
構造のものでよい。また、流量調節手段としてのダンパ
は、一般に上記バイパスダクト中に設は得るが、バイパ
スダクトの入口または出口に設けてもよい。このダンパ
は、開度制御式のものが好ましいが、開閉式のものでも
よい。
The bypass duct characteristically provided in the present invention is:
Any structure may be used as long as it allows exhaust gas to bypass the economizer. Further, a damper as a flow rate regulating means is generally installed in the bypass duct, but it may also be installed at the inlet or outlet of the bypass duct. This damper is preferably of an opening control type, but may be of an opening/closing type.

以下、図面に示す実施例により本発明をさらに詳しく説
明する。
Hereinafter, the present invention will be explained in more detail with reference to embodiments shown in the drawings.

第3図に示す装置は、第1図に示すものの内、12を除
く各符号とそれらの説明が同様に参照される部分と、筋
炎53の下部においてこれを迂回するように設けられた
バイパスダクト17と、該バイパスダクト17中に設け
られた開度制御式のダンパ18とから主として構成され
ている。
The device shown in FIG. 3 includes the parts shown in FIG. 1 except for 12 and the parts whose explanations are similarly referred to, and a bypass duct provided at the lower part of the myositis 53 to bypass it. 17, and an opening control type damper 18 provided in the bypass duct 17.

上記構成の装置において、定格負荷時にはダンパ18が
閉められ、これにより蒸発器7を通過した排ガス2は全
量節、炭器3に送られるが、起動時や低負荷時等におい
てはダンパ18が負荷に応じて開かれ、これにより節炭
器3へ送られる排ガスの一部(排ガスバイパス流)19
がバイパスダクト17内を流れて節炭器3の加熱に関与
しなくなるので、節炭器3の出口水温の過度な上昇が抑
制されることになる。
In the device configured as described above, the damper 18 is closed at the rated load, and the exhaust gas 2 that has passed through the evaporator 7 is thereby completely saved and sent to the coalizer 3. However, at startup or at low load, the damper 18 is closed. A part of the exhaust gas (exhaust gas bypass flow) 19 is opened in response to the
Since the water flows through the bypass duct 17 and does not participate in the heating of the economizer 3, an excessive rise in the water temperature at the outlet of the economizer 3 is suppressed.

次に、第4図に示す装置は、@3図に示す装置の制御系
統を示すもので、ドラム5の圧力検出器21と、該圧力
検出器21より送られる信号を飽和温度に変換する飽和
温度演算器22と、変換された飽和温度信号およびその
修正予測情報であるボイラ負荷信号23から節炭器3の
出口水温目標値を算出するための演算器24と、節炭器
3の出口水温検出器20と、該水温検出器20で検出さ
れた水温度と上記水温目標値から両者の温度偏差を算出
する演算器25と、該温度偏差信号からダンパ18の開
度を算出するとともて、算出された結果に基づきダンパ
18の開閉操作を行うダンパ開度演嘗器26とがら主に
構成されている。
Next, the device shown in FIG. 4 shows the control system of the device shown in @FIG. A temperature calculator 22 , a calculator 24 for calculating the outlet water temperature target value of the economizer 3 from the converted saturation temperature signal and the boiler load signal 23 which is its corrected prediction information; A detector 20, a calculator 25 that calculates a temperature deviation between the water temperature detected by the water temperature detector 20 and the water temperature target value, and an arithmetic unit 25 that calculates the opening degree of the damper 18 from the temperature deviation signal. It mainly consists of a damper opening degree modifier 26 that opens and closes the damper 18 based on the calculated results.

上記構成とすることにより、負荷変動に応じて自動的に
ダンパ18の開閉操作が行われ、これにより節炭器3出
口の水温は演算器24で算出される水温目標値に維持さ
れる。その結果、起動時や低負荷時等であっても節炭器
3の出口水は蒸発す′ることかなくなるので、蒸気泡の
発生と消滅で節炭器3の伝熱管が振動したり破4−事故
を招く等の危険はなくなる。
With the above configuration, the damper 18 is automatically opened and closed in response to load fluctuations, thereby maintaining the water temperature at the outlet of the economizer 3 at the water temperature target value calculated by the calculator 24. As a result, the water at the outlet of the economizer 3 will not evaporate even during startup or under low load, so the heat transfer tubes of the economizer 3 may vibrate or break due to the generation and disappearance of steam bubbles. 4- There will be no danger of causing an accident.

また、第5図に示す装置は、第4図に示す一般′的な負
荷信号23に代え、検出器27で検出される節炭器30
入ロ排ガス温度を負荷信号例として用いる以外は第4図
の装置と同様な構成である。
In addition, the device shown in FIG. 5 uses an energy saver 30 detected by a detector 27 instead of the general load signal 23 shown in FIG.
The configuration is similar to that of the device shown in FIG. 4, except that the inlet exhaust gas temperature is used as an example of the load signal.

この構成においても、第4図の場合と同様にして節炭器
3出口の水温を演算器24で算出される水温目標値に維
持でき、同様な効果が達成される。
Also in this configuration, the water temperature at the outlet of the economizer 3 can be maintained at the water temperature target value calculated by the calculator 24 in the same way as in the case of FIG. 4, and the same effect can be achieved.

以上、本発明によれば、排熱回収ボイラの排ガス流路に
節炭器を迂回する排ガスのバイパスダクトと該ダクトを
流れる排ガスの流燵調節用ダンパを設けたことにより、
ボイラの起動時および全負荷を通じて節炭器出口水温度
をドラム圧力の飽和温度以下に保つことができ、これに
より蒸気泡の発生と消滅で伝熱管が振動をしたり破損事
故を招く等の恐れがなくなる。また、給水流量を増して
節炭器出口水幅を抑制する必要がないので給水ポンプは
小型のものでよく、これにより、設備面積および同コス
トが有利となる上エネルギー効率も優れたものとなる。
As described above, according to the present invention, by providing the exhaust gas bypass duct that bypasses the energy saver in the exhaust gas flow path of the exhaust heat recovery boiler and the damper for adjusting the flow rate of the exhaust gas flowing through the duct,
The temperature of the water at the outlet of the economizer can be kept below the saturation temperature of the drum pressure during boiler startup and under full load, which prevents the heat transfer tubes from vibrating or causing damage due to the generation and disappearance of steam bubbles. disappears. In addition, since there is no need to increase the water supply flow rate and suppress the width of the water at the outlet of the energy saver, the water supply pump can be small-sized, which is advantageous in terms of equipment area and cost, as well as providing excellent energy efficiency. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の排熱回収ボイラの系続6図、第2図(
イ)、(ロ)は、排熱回収ボイラの負荷l特性を通常の
ボイラと比較して示す図で、(イ)は排ガス流量と負荷
との関係図、(ロ)は排ガス温度と負荷との関係図、第
3図は、本発明実施例に係る排熱回収ボイラの系統図、
第4図は、第3図に示す本発明の実施例に係る装置の制
御系統図、第5図は、第3図に示す本発明の実施例に係
る装置の他の制御系統図である。 1・・・節炭器給水管、2・・・排ガス主流、3・・・
節炭器、4・・・ドラム給水管、5・・・ドラム、17
・・・バイパスダクト、18・・・ダンパ、19・・・
バイパス排カス流、20・・・節炭器出口水温検出器、
21・・・圧力検出器、22・・・飽和温度演算器、2
3・・・ボイラ負荷信号、24・・・節炭器出口水温度
目標値演算器、25・・・温度偏差演算器、26・・・
ダンパ開度演算器、27・・・節炭器入口排ガス温度検
出器。 代@人 弁理士  川 北 武 長 筒1図 第2図 1′嘴 第3図 第4図 第5図 4
Figure 1 shows the conventional exhaust heat recovery boiler system diagram (6) and Figure 2 (
A) and (B) are diagrams showing the load characteristics of an exhaust heat recovery boiler in comparison with a normal boiler. (A) is a diagram showing the relationship between exhaust gas flow rate and load, and (B) is a relationship between exhaust gas temperature and load. 3 is a system diagram of the exhaust heat recovery boiler according to the embodiment of the present invention,
4 is a control system diagram of the apparatus according to the embodiment of the present invention shown in FIG. 3, and FIG. 5 is another control system diagram of the apparatus according to the embodiment of the invention shown in FIG. 1... Economizer water supply pipe, 2... Exhaust gas main stream, 3...
Economizer, 4...Drum water supply pipe, 5...Drum, 17
...Bypass duct, 18...Damper, 19...
Bypass exhaust gas flow, 20... Economizer outlet water temperature detector,
21...Pressure detector, 22...Saturation temperature calculator, 2
3... Boiler load signal, 24... Economizer outlet water temperature target value calculator, 25... Temperature deviation calculator, 26...
Damper opening degree calculator, 27... Economizer inlet exhaust gas temperature detector. Patent Attorney Takeshi Kawakita Nagatsutsu 1 Figure 2 1'Beak Figure 3 Figure 4 Figure 5 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)燃焼排ガス・主、流中に節炭器を設けた排熱回収
ボイラにおいて、上記節炭器を迂回する燃焼排ガスのバ
イパスダクトと、核ダクト中を流れる燃焼排ガスの流量
調節手段とを設けたことを特徴とする排熱回収ボイラ。
(1) In an exhaust heat recovery boiler equipped with a fuel economizer in the flue gas main stream, a flue gas bypass duct that bypasses the fuel economizer and a flow rate adjustment means for the flue gas flowing through the core duct are provided. An exhaust heat recovery boiler characterized by the installation of an exhaust heat recovery boiler.
JP14476782A 1982-08-23 1982-08-23 Waste heat recovery boiler Pending JPS5935701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14476782A JPS5935701A (en) 1982-08-23 1982-08-23 Waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14476782A JPS5935701A (en) 1982-08-23 1982-08-23 Waste heat recovery boiler

Publications (1)

Publication Number Publication Date
JPS5935701A true JPS5935701A (en) 1984-02-27

Family

ID=15369933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14476782A Pending JPS5935701A (en) 1982-08-23 1982-08-23 Waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JPS5935701A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081401U (en) * 1983-11-10 1985-06-06 宇部興産株式会社 waste heat boiler
JPS61182838A (en) * 1985-02-07 1986-08-15 Horikiri Bane Seisakusho:Kk Aligning method and device for leaf spring
JPH03151133A (en) * 1989-11-09 1991-06-27 Nhk Spring Co Ltd Device and method for producing leaf spring
US5245853A (en) * 1989-06-19 1993-09-21 Davy Mckee (Sheffield) Limited Taper rolling - direct length measurement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081401U (en) * 1983-11-10 1985-06-06 宇部興産株式会社 waste heat boiler
JPS61182838A (en) * 1985-02-07 1986-08-15 Horikiri Bane Seisakusho:Kk Aligning method and device for leaf spring
JPH0580297B2 (en) * 1985-02-07 1993-11-08 Horikiri Spring Mfg
US5245853A (en) * 1989-06-19 1993-09-21 Davy Mckee (Sheffield) Limited Taper rolling - direct length measurement
JPH03151133A (en) * 1989-11-09 1991-06-27 Nhk Spring Co Ltd Device and method for producing leaf spring

Similar Documents

Publication Publication Date Title
US9593844B2 (en) Method for operating a waste heat steam generator
JPS5935701A (en) Waste heat recovery boiler
JPS61130705A (en) Boiler device
JPS58117902A (en) Boiler reducing heat absorption of economizer
JPS6291703A (en) Steaming preventive device for fuel economizer
JPH0722563Y2 (en) Boiler equipment
JPS63172803A (en) Waste-heat recovery boiler
JPH0861012A (en) Evaporation amount control device for exhaust gas boiler
JPS62162808A (en) Fuel-economizer steaming preventive device for thermal powerboiler system
JPH06221504A (en) Waste heat recovery heat exchanger
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPS6239661B2 (en)
JPS59197708A (en) Exhaust gas temperature control type boiler device
JPS6093205A (en) Method and device for controlling dry heater system of generating plant
JPS6029501A (en) Steam generator for recovering waste heat
JPS642841B2 (en)
JPH1137407A (en) Gas vertical flow type exhaust heat recovery boiler and control for the same
JPS5843304A (en) Mixed pressure type waste heat recovery boiler preventing economizer steaming
JPH0335562B2 (en)
JPS59110810A (en) Water level control device for steam turbine degasifier
JPH05240402A (en) Method of operating waste heat recovery boiler
JPS5888501A (en) Waste-heat recovery boiler device
JPS6077704U (en) Combined cycle main steam temperature control device
JPS6280404A (en) Controller for temperature of final feed water in steam power plant
JPH06265103A (en) Discharged gas recombustion type combined cycle power generating plant