JPS61149265A - Plasma torch for flame spraying - Google Patents
Plasma torch for flame sprayingInfo
- Publication number
- JPS61149265A JPS61149265A JP27183384A JP27183384A JPS61149265A JP S61149265 A JPS61149265 A JP S61149265A JP 27183384 A JP27183384 A JP 27183384A JP 27183384 A JP27183384 A JP 27183384A JP S61149265 A JPS61149265 A JP S61149265A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- arc
- powder
- plasma
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Nozzles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はプラズマトーチ、レーザ発娠器、放電エネルギ
ーを利用した化学反応電極に適用せんとするものである
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is intended to be applied to plasma torches, laser generators, and chemical reaction electrodes that utilize discharge energy.
従来の溶射用ノントランスファ型プラズマトーチの構成
は第1図に示す如く、01はノズル、702はノズルθ
ノと水密構造に連結された水冷外筒、03けノズル冷却
水供給ノ4イブ、04けノズル冷却水排出ノ母イブ、0
6は作動ガスチャンバ、0.6は作動ガス噴出口、θ7
は作動ガス供給・母イブ、08は電極支持筒、09は銅
。タングステン、ハフニウム、ジルコニウムナトからな
る電極、010は電極冷却水導管、011は電極冷却水
供給パイプ、012は電極冷却水排出)4イブ、θ13
はノズルθノと電極支持筒08を連結する電気絶縁体で
作られた連結環、014はプラズマ電源、015 a
、 0.15 bはプラズマ電源014とノズルθノま
たは電極支持筒08を結ぶ電力線である。The configuration of a conventional non-transfer type plasma torch for thermal spraying is shown in Fig. 1, where 01 is a nozzle and 702 is a nozzle θ.
Water-cooled outer cylinder connected in a watertight structure with 03, 4 nozzle cooling water supply tubes, 04 nozzle cooling water discharge mother tube, 0
6 is the working gas chamber, 0.6 is the working gas outlet, θ7
08 is the electrode support tube, 09 is copper. Electrode made of tungsten, hafnium, and zirconium, 010 is electrode cooling water conduit, 011 is electrode cooling water supply pipe, 012 is electrode cooling water discharge) 4 Eve, θ13
014 is a plasma power supply, 015 a is a connecting ring made of an electrical insulator that connects the nozzle θ and the electrode support cylinder 08.
, 0.15b is a power line connecting the plasma power source 014 and the nozzle θ or the electrode support tube 08.
また016m、016bはノズル冷却水、の流路を01
7m、017bは作動ガスの流路、018B、018b
、018c、は電極冷却水の流路である。Also, 016m and 016b are the nozzle cooling water flow paths 01
7m, 017b is the working gas flow path, 018B, 018b
, 018c is a flow path for electrode cooling water.
更に019m、019bはアーク、020はプラズマ炎
、02ノはガス粉末などの送給管、022はガス粉など
の送給流路である。Furthermore, 019m and 019b are arcs, 020 is a plasma flame, 02 is a feed pipe for gas powder, etc., and 022 is a feed flow path for gas powder, etc.
プラズマ電源θ14からの電圧は電力線θ15a、θ1
5bを通じて電極o9とノズル01との間に印加される
ためこの間にアーク019日が発生するがこの時同時に
作動ガス供給t4イ1oyから作動ガスチャンバo5、
作動ガス噴出口06を通じて矢印017a、017bに
示すようにアルゴン、水素窒素、酸素、空気などの作動
ガスがノズル01の内に供給されるためこれらのガスは
アーク19aにより加熱されプラズマ炎020を発生さ
せる。The voltage from the plasma power source θ14 is the power line θ15a, θ1
5b between the electrode o9 and the nozzle 01, an arc occurs during this time, but at the same time, the working gas is supplied from the working gas supply t4 to the working gas chamber o5,
Working gases such as argon, hydrogen, nitrogen, oxygen, and air are supplied into the nozzle 01 through the working gas outlet 06 as shown by arrows 017a and 017b, so these gases are heated by the arc 19a and generate a plasma flame 020. let
更に粉末供給管021から金属粉末、セラミック粉末な
どのプラズマ炎020中に送給されるとこれらの粉末は
加熱されると同時に加速され対象物に衝突して溶射層を
形成する。Furthermore, when metal powder, ceramic powder, etc. are fed into the plasma flame 020 from the powder supply pipe 021, these powders are heated and accelerated, colliding with the object to form a sprayed layer.
この場合ノズル01及び電極09はアーク019aによ
り加熱されるのでノズル冷却水供給バイブ03からノズ
ル冷却水排出ノ4イブo4に至る矢印016m、016
bに示されるノズル冷却水と、電極冷却水供給パイプ0
1ノ、電極冷却水導管010、電極支持808、電極冷
却水排出ノ母イブ012に至る矢印θ18a。In this case, the nozzle 01 and the electrode 09 are heated by the arc 019a, so the arrows 016m and 016 lead from the nozzle cooling water supply vibrator 03 to the nozzle cooling water discharge nozzle o4.
Nozzle cooling water shown in b and electrode cooling water supply pipe 0
1, an arrow θ18a leading to the electrode cooling water conduit 010, the electrode support 808, and the electrode cooling water discharge mother pipe 012;
θ18b、018cK示す電極冷却水によシ冷却される
。The electrodes are cooled by cooling water showing θ18b, 018cK.
このように従来のプラズマトーチは電極09とノズルθ
ノとの間にアーク019aが発生するが定常状態では作
動ガス017bに吹かれてアークは019bに示す如く
電極09の先端とノズル01の出口端との間に発生する
確率が高い0
このためアーク発生点が限定されるのでノズル冷却水0
16aまたは電極冷却水018Rによって夫々冷却され
るにもかかわらず電極09及びノズルθノの寿命は著し
く短いのが現状で、ある。In this way, the conventional plasma torch has electrode 09 and nozzle θ
An arc 019a is generated between the electrode 09 and the nozzle 01, but in a steady state, the arc is blown by the working gas 017b and there is a high probability that the arc will occur between the tip of the electrode 09 and the outlet end of the nozzle 01 as shown in 019b. Since the generation point is limited, nozzle cooling water is required.
Currently, the lifespan of the electrode 09 and the nozzle θ is extremely short despite being cooled by the electrode cooling water 16a or the electrode cooling water 018R, respectively.
そのため従来のプラズマトーチを使う作業においては、
度々作業を中断して電極やノズルを交換する必要があり
、極めて能率が悪いものであった。又粉末はプラズマ炎
020の外側から送給されるためかなシの比率の粉末は
プラズマ炎θ20の高温部に人シきらず即ち加熱されず
に対象物に衝突するためその付着力は弱く脱落するか、
またけ溶射層中に巻きこまれるかしていた。このため高
価な粉末が有効に使用されないばか勺か溶射層自体にも
性質が劣るものであった。Therefore, when working with a conventional plasma torch,
It was extremely inefficient as it required frequent interruptions to replace electrodes and nozzles. In addition, since the powder is fed from the outside of the plasma flame 020, the powder at the same ratio does not reach the high temperature part of the plasma flame θ20, that is, it collides with the object without being heated, so its adhesion is weak and it may fall off. ,
It seemed to have gotten caught up in the sprayed layer. For this reason, expensive powders were not used effectively, and the properties of the thermally sprayed layer itself were inferior.
本発明はノントランスファ型プラズマトーチの電極及び
ノズルの寿命を延し作業性を向上せしめると共に送給さ
れる粉末を効率よくプラズマ炎に送シ込む手段を附与す
ることによシ溶看効率の向上と溶射膜の性能向上を図ら
んとするものである。The present invention extends the life of the electrode and nozzle of a non-transfer type plasma torch, improves workability, and improves the efficiency of melting by providing a means for efficiently feeding the powder into the plasma flame. The aim is to improve the performance of thermal sprayed coatings.
外周及び内筒の二重の円筒体の何れにも水冷管を設は外
筒の内表面と内筒の外表面を電極として両者の間にアー
クを発生せしめ、電極の近傍に設けた駆動コイルによシ
円筒電極の軸方向に平行な磁力線を発生せしめる。この
ときフレミングの左手の法則によりアークは円周方向の
力をうけ円筒電極上を旋回する。Water-cooled pipes are installed in both the outer and inner cylinders, and the inner surface of the outer cylinder and the outer surface of the inner cylinder are used as electrodes to generate an arc between the two, and a drive coil is installed near the electrodes. This generates lines of magnetic force parallel to the axial direction of the cylindrical electrode. At this time, according to Fleming's left-hand rule, the arc receives a force in the circumferential direction and rotates on the cylindrical electrode.
又円筒電極の両端近傍に設けた位置制御フィルにより円
周方向に平行な磁力線を発生させればやはりフレミング
の左手の法則によシアークは円筒電極の軸方向の力をう
ける。Furthermore, if magnetic lines of force parallel to the circumferential direction are generated by position control fills provided near both ends of the cylindrical electrode, the shear arc will be subjected to a force in the axial direction of the cylindrical electrode according to Fleming's left-hand rule.
よって外筒電極から内筒電極に電流が流れると仮定した
場合プラズマトーチを作動ガスの上流側から見て時計廻
シ方向の磁力線を発生させればアークは作動ガスの上流
方向に移動し反時計廻シの磁力線を発生させれば下流方
向に移動する。Therefore, assuming that current flows from the outer cylinder electrode to the inner cylinder electrode, if the plasma torch is viewed from the upstream side of the working gas and generates magnetic lines of force in the clockwise direction, the arc will move upstream of the working gas and counterclockwise. If a rotating magnetic field line is generated, it will move downstream.
円筒電極の両端近傍に設けられた二つの位置制御コイル
のうち下流側で時計廻シの磁力線、上流側で反時間廻り
の磁力線を発生させればアークは電極からはずれること
なく旋回する。If two position control coils installed near both ends of the cylindrical electrode generate clockwise lines of magnetic force on the downstream side and counterclockwise lines of magnetic force on the upstream side, the arc will rotate without coming off the electrode.
父上流側、下流側の位置制御コイルによる磁力線強度を
それぞれ位相を180°ずらして増減さ・せればアーク
は上流方向、下流方向に移動しながら旋回する。By increasing/decreasing the strength of the magnetic lines of force by the position control coils on the upstream side and the downstream side, respectively, with a phase shift of 180 degrees, the arc will rotate while moving in the upstream and downstream directions.
このためアークは円筒電極の広範囲に亘り均一に移動す
るため電極消耗が分散されプラズマトーチ電極の長寿命
化が達成される。Therefore, since the arc moves uniformly over a wide range of the cylindrical electrode, electrode wear is dispersed and a long life of the plasma torch electrode is achieved.
又内側円筒の中心線に沿って設けられた粉末送給孔から
粉末を送給すればプラズマ炎の中心に直接粉末を送給で
きるので粉末を効率よく加熱、加速するごとができ、開
口部近傍の粉末汚染による異常消耗を防ぐことができる
。In addition, if the powder is fed through the powder feeding hole provided along the center line of the inner cylinder, the powder can be fed directly to the center of the plasma flame, making it possible to efficiently heat and accelerate the powder. Abnormal consumption due to powder contamination can be prevented.
第2図に示す如くプラズマ電源16からの電圧は、電力
線17a、llb及びノズル1、電極支持筒8を通じて
外側電極13a(ノズル1の内面に形成された電極)と
内側電極13b(電極支持筒8の外表面に形成された電
極)との間に印加されるので両電極13s、Isb間に
アーク25が発生する。プラズマ電源16は交流電源で
も直流電源でもよいが、直流電源で外側電極1.7 a
がプラス、内側電極13bがマイナスに結線されている
とし説明する。As shown in FIG. 2, the voltage from the plasma power supply 16 is applied to the outer electrode 13a (the electrode formed on the inner surface of the nozzle 1) and the inner electrode 13b (the electrode formed on the inner surface of the nozzle 1) through the power lines 17a, llb, the nozzle 1, and the electrode support tube 8. An arc 25 is generated between the electrodes 13s and Isb. The plasma power source 16 may be an AC power source or a DC power source, but the outer electrode 1.7 a is a DC power source.
The explanation will be made assuming that the inner electrode 13b is connected to the positive wire and the inner electrode 13b is connected to the negative wire.
即ちアーク25aKは外側電極13mから内側電極13
bに向って電流が流れる。この場合アーク回転駆動コイ
ル14によってアーク25m全紙面の右から左へ貫く磁
力iを発生させる。That is, the arc 25aK is from the outer electrode 13m to the inner electrode 13.
Current flows towards b. In this case, the arc rotation drive coil 14 generates a magnetic force i that penetrates the entire arc 25m from right to left.
故にアーク25aFiフレミングの左手の法則に従って
紙面の上方に向う力をうけることにより結果と1−で円
筒状の外側電極13a及び内側電極13bに沿って回転
する。Therefore, as the arc 25aFi receives a force directed upward from the plane of the paper according to Fleming's left-hand rule, it rotates along the cylindrical outer electrode 13a and inner electrode 13b with a result of 1-.
また上流側アーク制御コイル15aはアーク25aに対
し紙面を貫いて上方向の磁力線を発生させることが可能
であるためアーク25mはフレミングの左手の法則に従
い右方向の力をうける。Furthermore, since the upstream arc control coil 15a can generate upward lines of magnetic force for the arc 25a through the plane of the paper, the arc 25m receives a force in the right direction according to Fleming's left-hand rule.
このように上流側アーク制御コイル15.aと下流側ア
ーク制御コイル15bはアーク258に対し夫々反対方
向の力を与ることができるので、制御器20によって上
流側及び下流側制御コイル15a、15bを流れる電流
全位相180゜ずらして増減すればアーク25ail−
j:右方向、左方向の力を交互に受けることになる。In this way, the upstream arc control coil 15. Since the a and downstream arc control coils 15b can apply forces in opposite directions to the arc 258, the controller 20 increases or decreases the current flowing through the upstream and downstream control coils 15a and 15b with a total phase shift of 180°. Then arc 25ail-
j: Forces are applied alternately to the right and to the left.
故にアーク回転駆動コイル14、上流側アーク制御コイ
ル15a1下流側アーク制御コイル15b及び制匈器2
0によってアーク25aは円筒状の電極13a 、 1
3 bを回転しながらしかも左右に移動することになる
。Therefore, the arc rotation drive coil 14, the upstream arc control coil 15a1, the downstream arc control coil 15b, and the suppressor 2
0, the arc 25a is connected to the cylindrical electrodes 13a, 1
3 While rotating b, you will also be moving left and right.
また同時に作動ガス23aが送給され、ノズル1、電極
支持筒8は冷却水22m、23aによシ冷却されるが、
この作用は第1図と同様である。At the same time, the working gas 23a is supplied, and the nozzle 1 and the electrode support tube 8 are cooled by the cooling water 22m and 23a.
This effect is similar to that shown in FIG.
以上直流プラズマ電源を用いて外側電極13Bをプラス
にしてプラズマ炎26′tl−うる場合を説明したが、
内側電極13bfプラスにした場合にはアーク25mの
動きが逆になるので全てのコイルの流れる電流の向きを
逆にすることで対処できる。The case where the plasma flame 26'tl- is generated using the DC plasma power supply with the outer electrode 13B being positive has been described above.
If the inner electrode 13bf is made positive, the movement of the arc 25m will be reversed, so this can be dealt with by reversing the direction of the current flowing through all the coils.
交流プラズマ電源を用いる場合には、電流切換制御器2
1によってプラズマ電流の方向に応じてフィルを流れる
電流の方向を逆転すれば直流電源の場合と同様の効果か
えられる。When using an AC plasma power source, the current switching controller 2
1, if the direction of the current flowing through the fill is reversed according to the direction of the plasma current, the same effect as in the case of a DC power source can be obtained.
このようにして形成されたプラズマ炎26に対し粉末送
給管27を通じ金属、セラミックなどの粉末を送給すれ
ば粉末は加熱されると同時に加速され対象物知衝突して
溶射mを形成する。When powder of metal, ceramic, etc. is fed to the thus formed plasma flame 26 through the powder feed pipe 27, the powder is heated and accelerated, colliding with the object to form a thermal spray m.
第2図に示す如く、1はノズル、2Fi、ノズル1と水
密構造で連結された水冷外筒、3はノズル冷却水供給・
ぐイブ、4はノズル冷却水排出パイプ、5は作動がスチ
ャンパ、6は作動ガス噴出口、7Fi、作動ガス供給i
4イブ、8は電極支持筒で粉末供給管27と一体化され
ている。9は電極冷却水導管、10は電極冷却水供給ノ
母イブ、11は電極冷却水排出ノ母イブ、12はノズル
1と電極支持筒8を連結する電気絶縁体で作られた連結
環、13aは外側電極で、銅、タングステン、へフニウ
ム、ジルコニウム或は導電性セラミックスなどからなっ
ている。JJbは内側電極で外側電極13Bと同様の材
質にて構成され、外側電極13aと内側電極13bとは
同心円上に配置されている。As shown in Fig. 2, 1 is a nozzle, 2Fi is a water-cooled outer cylinder connected to the nozzle 1 in a watertight structure, and 3 is a nozzle cooling water supply/tube.
4 is a nozzle cooling water discharge pipe, 5 is a damper for operation, 6 is a working gas outlet, 7Fi is a working gas supply i
4 and 8 are electrode support cylinders that are integrated with the powder supply pipe 27. 9 is an electrode cooling water conduit, 10 is an electrode cooling water supply main tube, 11 is an electrode cooling water discharge main tube, 12 is a connecting ring made of an electrical insulator that connects the nozzle 1 and the electrode support cylinder 8, 13a is an outer electrode made of copper, tungsten, hefnium, zirconium, or conductive ceramics. JJb is an inner electrode made of the same material as the outer electrode 13B, and the outer electrode 13a and the inner electrode 13b are arranged concentrically.
14は両電極138.13b間に、その軸と平行な磁力
線を発生するアーク回転駆動コイル、15mはアーク回
転駆動コイル14に隣接して作動ガスの上流側に設けら
れ両電極13a。Reference numeral 14 indicates an arc rotation drive coil that generates lines of magnetic force parallel to the axis between the two electrodes 138 and 13b, and 15m indicates an arc rotation drive coil provided adjacent to the arc rotation drive coil 14 on the upstream side of the working gas and both electrodes 13a.
13b間に1その円周に平行な磁力線を発生する上流側
アーク制御コイル、15bは同じく下流側アーク制御コ
イル、16はプラズマ電源、11tz、17bけプラズ
マ電源16とノズル1または電極支持筒8を結ぶ電力線
、18はアーク回転駆動コイル14の電源、19a、1
9bとは夫々上流側、下流側アーク制御コイル15a。Between 13b and 1, there is an upstream arc control coil that generates lines of magnetic force parallel to its circumference; 15b is the same downstream arc control coil; 16 is a plasma power source; Connecting power lines 18, power supply for arc rotation drive coil 14, 19a, 1
9b are upstream and downstream arc control coils 15a, respectively.
15bの電源、20は上流側、下流側アーク制御コイル
電源、19a、19bは制御する制御器、21は電流切
換制御器である。15b is a power source, 20 is an upstream and downstream arc control coil power source, 19a and 19b are controlling controllers, and 21 is a current switching controller.
又22a、22bはノズル冷却水の流路、23m、23
bは作動ガスの流路、24a。Further, 22a and 22b are nozzle cooling water flow paths, 23m, 23
b is a working gas flow path 24a;
24b、24cは電極支持筒冷却水の流路、25B、2
5bはアーク流路、26はプラズマ炎、27は粉末供給
管、28は粉末の送給流路である。24b, 24c are electrode support tube cooling water flow paths, 25B, 2
5b is an arc flow path, 26 is a plasma flame, 27 is a powder supply pipe, and 28 is a powder supply flow path.
以上詳述した如く本発明によればアークは円筒状電極に
沿って回転ししかも軸方向に沿って往復するので電極が
局部的に加熱されることがないためその寿命を飛躍的に
延ばすことが出来、取替えのための作動中断回数が少い
。また粉末をプラズマ炎の中心部に送り込めるため全て
の粉末を効率よく加熱加速することができる。従って粉
末ロスが極めて少く溶射膜の性能が向上する。As detailed above, according to the present invention, the arc rotates along the cylindrical electrode and reciprocates along the axial direction, so the electrode is not locally heated and its life can be dramatically extended. The number of interruptions in operation for replacement is small. In addition, since the powder can be fed into the center of the plasma flame, all the powder can be efficiently heated and accelerated. Therefore, powder loss is extremely small and the performance of the sprayed film is improved.
第1図は従来の溶射用プラズマトーチの断面図、第2図
は本発明溶射用プラズマトーチの1例を示す断面図であ
る。
θ1.1・・・ノズル、08.8・・・電極支持筒、0
9・・・電極、13a・・・外側電極、13b・・・内
側電極、14・・・アーク回転駆動コイル、15a・・
・上流側アーク制御コイル、15b・・・下流側アーク
制御コイル、27・・・粉末供給孔、28・・・粉末送
給流管。
出願人復代理人 弁理士 鈴 江 武 彦手続補正書
昭和、6Ql!5・2讐 8
特許庁長官 志 賀 学 殿
1、事件の表示
特願昭59−271833号
2、発明の名称
溶射用プラズマトーチ
3、補正をする者
事件との関係 特許出願人
(620) 三菱重工業株式会社
4、後代 理 人
6、補正の対象
明細書
7、補正の内容
(1) 明細書第1頁第15行〜第17行において「
本発明は・・・・・・するものである。」とあるを「本
発明は金属粉末、セラミック粉末あるいはこれらの混合
粉末の溶射用プラズマトーチや化学反応プラズマトーチ
に適用せんとするものである。」と訂正する
訂正する。
(8)同第2頁第2 i1行において「022はガス粉
などの」とあるを「022は粉末などの」と訂正する。
(4)同第5頁第4行において「溶射層自体にも」とあ
るを「溶射層自体も」と訂正する。
(5) 同第8頁第7行において「貫いて上方向」と
あるを「貫いて下方向」と訂正する。
(6)同第8頁第9行において「従い右方向の」とある
を「従い、左方向のjと訂正する。FIG. 1 is a sectional view of a conventional thermal spraying plasma torch, and FIG. 2 is a sectional view showing an example of the thermal spraying plasma torch of the present invention. θ1.1... Nozzle, 08.8... Electrode support tube, 0
9... Electrode, 13a... Outer electrode, 13b... Inner electrode, 14... Arc rotation drive coil, 15a...
- Upstream arc control coil, 15b... Downstream arc control coil, 27... Powder supply hole, 28... Powder feed flow pipe. Applicant Sub-Agent Patent Attorney Suzue Takehiko Procedural Amendment Showa, 6Ql! 5.2 Enemy 8 Manabu Shiga, Commissioner of the Japan Patent Office1, Indication of the case, Patent Application No. 1971-2718332, Name of the invention: Plasma torch for thermal spraying3, Relationship with the person making the amendment Patent applicant (620) Mitsubishi Heavy Industries Co., Ltd. 4, successor manager 6, specification subject to amendment 7, content of amendment (1) Page 1 of the specification, lines 15 to 17, “
The present invention is to... '' should be corrected to read ``The present invention is intended to be applied to plasma spraying plasma torches and chemical reaction plasma torches for thermal spraying of metal powders, ceramic powders, or mixed powders thereof.'' (8) On page 2, line 2 i1, the statement "022 is for gas powder, etc." is corrected to "022 is for powder, etc." (4) In the fourth line of page 5, the phrase "also in the sprayed layer itself" is corrected to "also in the sprayed layer itself." (5) On page 8, line 7, the phrase ``throughout and upward'' is corrected to ``throughout and downward''. (6) On page 8, line 9, the phrase ``following to the right'' is corrected to ``following to the left j''.
Claims (1)
極の軸方向に平行な磁力線を発生せしめるアーク回転駆
動コイルと、該駆動コイルに隣接して上記電極の円周方
向に沿って磁力線を発生せしめるアーク制御コイルとを
設け、且つ上記二重円筒状電極の内、内側電極の中心線
に沿ってガス、粉末などの送給孔を設けたことを特徴と
する溶射用プラズマトーチ。an arc rotation drive coil adjacent to the double cylindrical electrodes for arc discharge to generate lines of magnetic force parallel to the axial direction of the electrodes; and an arc rotation drive coil adjacent to the drive coil to generate lines of magnetic force along the circumferential direction of the electrodes. 1. A thermal spraying plasma torch, characterized in that it is provided with an arc control coil that generates an arc, and that a gas, powder, etc. feeding hole is provided along the center line of the inner electrode of the double cylindrical electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27183384A JPS61149265A (en) | 1984-12-25 | 1984-12-25 | Plasma torch for flame spraying |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27183384A JPS61149265A (en) | 1984-12-25 | 1984-12-25 | Plasma torch for flame spraying |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61149265A true JPS61149265A (en) | 1986-07-07 |
JPH0526554B2 JPH0526554B2 (en) | 1993-04-16 |
Family
ID=17505493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27183384A Granted JPS61149265A (en) | 1984-12-25 | 1984-12-25 | Plasma torch for flame spraying |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61149265A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6634571B2 (en) | 2001-01-29 | 2003-10-21 | Shimazu Kogyo Yugenkaisha | Torch for thermal spraying |
JP2003323972A (en) * | 2002-05-02 | 2003-11-14 | Hitachi Zosen Corp | Plasma melting furnace and its start-up method |
CN103316792A (en) * | 2013-06-26 | 2013-09-25 | 电子科技大学 | Gas phase spraying device for preparing organic nanowire and Alq3 nanowire preparation method |
-
1984
- 1984-12-25 JP JP27183384A patent/JPS61149265A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6634571B2 (en) | 2001-01-29 | 2003-10-21 | Shimazu Kogyo Yugenkaisha | Torch for thermal spraying |
JP2003323972A (en) * | 2002-05-02 | 2003-11-14 | Hitachi Zosen Corp | Plasma melting furnace and its start-up method |
CN103316792A (en) * | 2013-06-26 | 2013-09-25 | 电子科技大学 | Gas phase spraying device for preparing organic nanowire and Alq3 nanowire preparation method |
Also Published As
Publication number | Publication date |
---|---|
JPH0526554B2 (en) | 1993-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010222559B2 (en) | Plasma torch with a lateral injector | |
CA1298146C (en) | Multiple torch type plasma spray coating method and apparatus therefor | |
EP0440634B1 (en) | Electric arc reactor | |
SE523135C2 (en) | Plasma spraying device | |
CN104955582A (en) | Apparatus for thermally coating a surface | |
JP3733461B2 (en) | Composite torch type plasma generation method and apparatus | |
JPS61149265A (en) | Plasma torch for flame spraying | |
CN108633159A (en) | Plasma generator | |
CN112647037A (en) | Four-cathode plasma spraying spray gun device | |
US4896017A (en) | Anode for a plasma arc torch | |
US3472995A (en) | Electric arc torches | |
JPS61149264A (en) | Plasma torch | |
JP2012193431A (en) | Plasma spraying device | |
JP5091801B2 (en) | Composite torch type plasma generator | |
JPS62118978A (en) | Plasma torch | |
US8261688B2 (en) | Torch for thermal spraying of surface coatings, and coatings obtained thereby | |
JP4804854B2 (en) | Composite torch type plasma spraying equipment | |
JPS62118977A (en) | Plasma torch | |
JPS6330181A (en) | Plasma torch | |
RU2254933C2 (en) | Arc spraying pistol | |
JPS62124080A (en) | Plasma torch | |
JPH04246160A (en) | Thermal-spraying torch | |
CN207720503U (en) | A kind of anode movable type plasma burner | |
JP2016536464A (en) | Alloy wire for plasma wire arc coating | |
KR100323494B1 (en) | A plasma gun device for the injection of strengthening-powder |