JPH04246160A - Thermal-spraying torch - Google Patents

Thermal-spraying torch

Info

Publication number
JPH04246160A
JPH04246160A JP3011868A JP1186891A JPH04246160A JP H04246160 A JPH04246160 A JP H04246160A JP 3011868 A JP3011868 A JP 3011868A JP 1186891 A JP1186891 A JP 1186891A JP H04246160 A JPH04246160 A JP H04246160A
Authority
JP
Japan
Prior art keywords
thermal
arc
plasma
spraying
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3011868A
Other languages
Japanese (ja)
Other versions
JPH0713290B2 (en
Inventor
Takashi Nojima
野島 貴志
Shigeo Suzuki
茂夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3011868A priority Critical patent/JPH0713290B2/en
Publication of JPH04246160A publication Critical patent/JPH04246160A/en
Publication of JPH0713290B2 publication Critical patent/JPH0713290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermal-spraying torch, which can form film by high quality plasma-spraying over the whole inner face of a pipe by traveling the thermal-spraying torch of a base material only at one time in a longitudinal direction of the pipe in the case of executing the thermal-spraying treatment for protecting the inner wall of large diameter pipe. CONSTITUTION:Arc is generated between electrodes composed of a pair of a cathode pole 15 and a anode pole 17 having faced end faces of cutting shape of cylindrical tube bodies and magnetic field is generated so that the faced electrodes become the same pole and the above arc is circularly shifted on the round cutting face of tube body to be the electrode end faces by magnetic driving. Then, by supplying the plasma gas 23 into the arc generated range, ring shaped arc plasma 28 is formed on periphery of the electrodes and thermal- spraying powder is supplied into the plasma in circular direction of the tube body from a thermal-spraying power introducing hole 25.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、溶射により特に管内壁
等に保護膜を成膜する場合に用いる溶射トーチに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal spraying torch used for forming a protective film, particularly on the inner wall of a pipe, by thermal spraying.

【0002】0002

【従来の技術】従来より、溶射技術は例えば、耐摩耗、
耐熱等の性質を有する膜の成膜手法として古くから利用
され、燃焼ガスをその溶融手段として使うガス溶射や電
気エネルギーをその溶融エネルギーとして使う電気式溶
射等に大きく分類される。さらに電気式溶射ではアーク
溶射やプラズマ溶射等が一般的であり、特に最近では溶
射皮膜の膜質等からプラズマ溶射法が注目されている。
[Prior Art] Traditionally, thermal spraying technology has been used to improve wear resistance,
It has been used for a long time as a method for forming films with properties such as heat resistance, and is broadly classified into gas spraying, which uses combustion gas as the melting means, and electric spraying, which uses electrical energy as the melting energy. Further, electric thermal spraying generally includes arc spraying, plasma spraying, etc., and plasma spraying has recently been attracting attention in particular due to the quality of the sprayed coating.

【0003】図3は、プラズマ溶射トーチの従来例を示
したものである。水冷された陰極1と水冷された陽極2
の間に電源3によって電力を供給し直流アーク4を発生
させ、後方から送給するプラズマ作動ガス5をアーク4
によって熱し、アークプラズマ6としてノズル7から噴
出させる。溶射材料は粉末で、キャリアガス8にのせて
プラズマジェットの中に吹き込み加熱溶融し、かつ加速
して被溶射基板(母材)9の表面に高速で衝突させて皮
膜を形成するものである。この時、プラズマ作動ガスと
しては、アルゴンや窒素あるいはこれらのガスにヘリウ
ム、水素を加えている場合が多い。
FIG. 3 shows a conventional example of a plasma spray torch. Water-cooled cathode 1 and water-cooled anode 2
During this period, power is supplied by a power source 3 to generate a DC arc 4, and a plasma working gas 5 fed from the rear is supplied to the arc 4.
The plasma is heated by heating and ejected from the nozzle 7 as arc plasma 6. The thermal spraying material is a powder that is placed on a carrier gas 8, blown into a plasma jet, heated and melted, and then accelerated to collide with the surface of a substrate (base material) 9 to be thermally sprayed at high speed to form a film. At this time, the plasma working gas is often argon or nitrogen, or helium or hydrogen added to these gases.

【0004】0004

【発明が解決しようとする課題】しかし、上記のような
プラズマ溶射トーチにおいては、図3に示すように陰極
1と陽極2は、その中心が同軸上であり、またノズル7
の噴出口の面積は出力によっても異なるが最大で2〜3
mm2程度であり、大口径の管内壁の保護を目的として
溶射処理を行う場合、トーチと母材9の距離を大きくし
て溶射面積を拡大するか、図4に示すように母材10を
回転させるかあるいはトーチ11を管内円周方向に走査
させながら成膜領域12を形成していく必要があった。
However, in the plasma spray torch as described above, as shown in FIG. 3, the centers of the cathode 1 and the anode 2 are coaxial, and the nozzle 7
The area of the nozzle varies depending on the output, but the maximum is 2 to 3.
mm2, and when carrying out thermal spraying for the purpose of protecting the inner wall of a large-diameter pipe, the distance between the torch and the base material 9 may be increased to expand the spraying area, or the base material 10 may be rotated as shown in Fig. 4. It was necessary to form the film forming region 12 while moving the torch 11 or scanning the torch 11 in the circumferential direction inside the tube.

【0005】しかし、トーチと母材9の距離を大きくす
ると、母材9に到達する溶融粒子の衝突速度が遅くなり
かつ溶融粒子の温度が下がり、そのため溶射皮膜として
は気孔が多く凹凸が激しく母材と皮膜の密着力の低いも
のとなる。また図4のように母材10あるいはトーチ1
1を走査する方法では走査装置が高価になるなどの欠点
を有している。また、成膜に要する時間が長くなり、量
産には不向きである等の欠点を有していた。
However, when the distance between the torch and the base material 9 is increased, the collision speed of the molten particles reaching the base material 9 slows down and the temperature of the molten particles decreases. This results in poor adhesion between the material and the film. Also, as shown in Fig. 4, the base material 10 or the torch 1
The method of scanning 1 has the disadvantage that the scanning device becomes expensive. Further, it has the disadvantage that it takes a long time to form a film, making it unsuitable for mass production.

【0006】本発明はこのような点に鑑み、プラズマ溶
射皮膜を母材、またはトーチを母材の長手方向に1回走
行させることで管内の面全体の高品質の成膜ができる溶
射トーチを提供することを目的とするものである。
[0006] In view of these points, the present invention provides a plasma spray coating that can be applied to a base material, or a thermal spraying torch that can form a high-quality coating on the entire surface of a pipe by running the torch once in the longitudinal direction of the base material. The purpose is to provide

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、対向する円筒状管体の切口形状の端面を有する一対
の電極間でアーク放電を発生させ、対向する電極間で同
極となる磁界を発生させて前記アークを磁気駆動により
電極端面である管体の円形状の切口上を周回移動させア
ーク発生領域にプラズマ作動ガスを供給することにより
、電極周囲にリング状のアークプラズマを形成し、その
プラズマ内に管体円周方向に溶射粉末を供給するもので
ある。
[Means for solving the problem] In order to achieve the above object, an arc discharge is generated between a pair of electrodes having cut-shaped end surfaces of opposing cylindrical tubes, and the polarity becomes the same between the opposing electrodes. A ring-shaped arc plasma is formed around the electrode by generating a magnetic field and moving the arc around the circular cut end of the tube that is the end face of the electrode by magnetic drive and supplying plasma working gas to the arc generation area. Thermal spray powder is then supplied into the plasma in the circumferential direction of the tube.

【0008】[0008]

【作用】上記の手段によれば、対向する端面が円筒状管
体の切口形状を有する対となった電極の、対向する電極
面が同極となるように電極に磁界を与え、電極間に直流
電流によるアークを発生させているので、アークは磁界
によってフレミングの左手の法則に従った力を受けアー
クは電極の端面間を移動しようとする。上記手段におい
ては、対向する電極に与えられた磁界は同極であるから
、両電極間を貫通する磁束は存在せず、全ての磁束は対
向する電極端面の中から外へ向かう方向に急激に曲がり
、直流電流が作るアークと交差しアークに駆動力を与え
る。円形管体形状の電極端面において、アークは同一周
回方向の駆動力を受けるので、アークは電極端面の円形
管体の切口形状に沿って周回移動する。このアークの周
回移動速度は非常に速いのでアークにプラズマ作動ガス
をトーチ内部より供給すると高温アークプラズマは管周
囲方向に放射するように発生する。この高温アークプラ
ズマに成膜材料として粉末を供給すると、管状部材の内
面を高速に溶射することができる。
[Operation] According to the above means, a magnetic field is applied to the pair of electrodes whose opposing end surfaces have the cut shape of a cylindrical tube so that the opposing electrode surfaces have the same polarity, and the magnetic field is applied between the electrodes. Since the arc is generated by direct current, the arc receives a force according to Fleming's left-hand rule due to the magnetic field, and the arc tends to move between the end faces of the electrodes. In the above means, since the magnetic fields applied to the opposing electrodes are of the same polarity, there is no magnetic flux penetrating between the two electrodes, and all the magnetic flux is suddenly directed outward from the inside of the opposing electrode end faces. It bends, intersects with the arc created by the DC current, and provides driving force to the arc. On the end face of the electrode having a circular tube shape, the arc receives a driving force in the same circumferential direction, so that the arc moves around along the cut shape of the circular tube on the end face of the electrode. Since the orbiting speed of this arc is very fast, when plasma working gas is supplied to the arc from inside the torch, high temperature arc plasma is generated so as to radiate toward the circumference of the tube. When powder is supplied as a film forming material to this high temperature arc plasma, the inner surface of the tubular member can be thermally sprayed at high speed.

【0009】[0009]

【実施例】図1は、本発明の第1の実施例を示す円筒面
内用溶射トーチの縦断面図である。13a,13bは冷
却水導入口、14a,14bは冷却水排出口、15は陰
極、16は陰極先端部を構成する高融点導電材料、17
は陽極、18a,18bは電極内に磁界を発生させる励
磁コイル、19a,19bは励磁コイル18a,18b
に励磁電流を供給するための電源、20a,20bはサ
ーマルインシュレータ、21は耐熱性の物質で作られた
ノズル、22は断熱および電気的絶縁性を有する物質で
作られた管状部材、23はプラズマ作動ガス、24はこ
のガス23の導入経路、25は溶射粉末導入口、26は
アーク、27は直流電源、28はプラズマジェットであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a longitudinal cross-sectional view of a thermal spray torch for use on a cylindrical surface, showing a first embodiment of the present invention. 13a and 13b are cooling water inlets, 14a and 14b are cooling water outlets, 15 is a cathode, 16 is a high melting point conductive material forming the cathode tip, 17
is an anode, 18a and 18b are excitation coils that generate a magnetic field within the electrodes, and 19a and 19b are excitation coils 18a and 18b.
20a and 20b are thermal insulators, 21 is a nozzle made of a heat-resistant material, 22 is a tubular member made of a heat-insulating and electrically insulating material, and 23 is a plasma A working gas, 24 is an introduction path for this gas 23, 25 is a thermal spray powder inlet, 26 is an arc, 27 is a DC power supply, and 28 is a plasma jet.

【0010】以上のように構成されたこの実施例の溶射
トーチについて、以下にその動作を説明する。
The operation of the thermal spraying torch of this embodiment constructed as described above will be explained below.

【0011】まず、別置または直流電源27に内蔵され
たパルス電流発生機等によって電極間の空隙にアーク2
6を発生させ、引き続いて電源27から低電圧で高電流
の電力を供給しアーク26を安定に維持する。その後、
電極15と17に設けた励磁コイル18aと18bに通
電し各々の電極に磁界を発生させる。このとき磁界は対
向する両電極端面で各々同種となるようにすると、磁束
が管体形状の電極の中から外方に向き、アーク電流の向
きと直交する磁束の成分が発生するためフレミングの左
手の法則によってアークに駆動力が加わり、アークはエ
ンドレスな円筒状管体の切口形状の両電極端面を高速で
周回移動する。
First, an arc 2 is generated in the gap between the electrodes using a pulse current generator or the like installed separately or built into the DC power supply 27.
6 is generated, and then low voltage and high current power is supplied from the power source 27 to maintain the arc 26 stably. after that,
Excitation coils 18a and 18b provided on electrodes 15 and 17 are energized to generate a magnetic field in each electrode. At this time, if the magnetic field is of the same type on the end faces of both opposing electrodes, the magnetic flux will be directed outward from the inside of the tube-shaped electrode, and a magnetic flux component perpendicular to the direction of the arc current will be generated. According to the law, a driving force is applied to the arc, and the arc moves at high speed around the end faces of both electrodes in the cut shape of an endless cylindrical tube.

【0012】この時アークの周回駆動力Fは次式によっ
て表され、磁束密度B、アーク電流I、アーク長Lの積
に比例する。
At this time, the circular driving force F of the arc is expressed by the following equation, and is proportional to the product of magnetic flux density B, arc current I, and arc length L.

【0013】F=B×I×L 上式よりアーク周回駆動力を高めるためにアーク電流、
アーク長を大きくすることもできるが、本発明ではでき
るだけ低電流で成膜を実施するため磁束密度を高める方
がよい。このようにして対向する電極で形成される領域
に発生したアーク領域にプラズマ作動ガス23を導入経
路24より供給する。このときプラズマ作動ガスとして
はアルゴン、窒素、水素、ヘリウム等が用いられる。ア
ーク中に供給されたプラズマ作動ガスが高温に加熱され
てプラズマ状態になるとともに熱ピンチ効果によってエ
ネルギー密度が上昇し超高温のアークプラズマ28とな
り噴出口より高速で噴出する。
F=B×I×L From the above equation, in order to increase the arc rotation driving force, the arc current,
Although the arc length can be increased, in the present invention, it is better to increase the magnetic flux density in order to perform film formation with as low a current as possible. The plasma working gas 23 is supplied from the introduction path 24 to the arc region generated in the region formed by the opposing electrodes in this manner. At this time, argon, nitrogen, hydrogen, helium, etc. are used as the plasma working gas. The plasma working gas supplied into the arc is heated to a high temperature and becomes a plasma state, and the energy density increases due to the thermal pinch effect, resulting in an ultra-high temperature arc plasma 28 that is ejected from the ejection port at high speed.

【0014】このとき、ノズルに設けられた溶射粉末導
入口25より、溶射材料をアークプラズマ内に供給する
とそれらが加熱されて溶融し、高速度のプラズマジェッ
トに乗って管内壁に衝突し偏平化され所望の皮膜を形成
する。
[0014] At this time, when the spraying material is supplied into the arc plasma through the spray powder inlet 25 provided in the nozzle, it is heated and melted, and is carried by a high-velocity plasma jet and collides with the inner wall of the tube, flattening it. to form the desired film.

【0015】また、図2は本発明の第2の実施例の溶射
トーチを用いた円筒内部への溶射の実施例を示す詳細図
である。30は陰極、31は陽極、32、33は電極内
に磁界を発生させる励磁コイル、34、35は励磁コイ
ル32、33に励磁電流を供給するための電源、36、
37は溶射トーチ駆動機構、38、39は作動ガス導入
管、40は直流電源、41は駆動機構のドライバ、42
は直流電源、溶射粉末供給装置およびプラズマ作動ガス
等の制御装置、43はプラズマジェット、44は被溶射
管、45はノズルである。
FIG. 2 is a detailed view showing an example of thermal spraying inside a cylinder using a thermal spraying torch according to a second embodiment of the present invention. 30 is a cathode, 31 is an anode, 32, 33 are excitation coils that generate a magnetic field within the electrodes, 34, 35 are power sources for supplying excitation current to the excitation coils 32, 33, 36,
37 is a thermal spraying torch drive mechanism, 38 and 39 are working gas introduction pipes, 40 is a DC power supply, 41 is a driver for the drive mechanism, 42
Reference numeral denotes a DC power supply, a control device for a thermal spray powder supply device, a plasma working gas, etc., 43 a plasma jet, 44 a tube to be thermally sprayed, and 45 a nozzle.

【0016】以上のように構成された実施例の溶射トー
チにおいて以下にその動作を説明する。
The operation of the thermal spraying torch according to the embodiment constructed as described above will be explained below.

【0017】まず、第1の実施例と同様の方法で陰極3
0、陽極31間にアークを発生させるとともに、励磁コ
イル32、33によって発生させられた磁界によってア
ークを電極端面形状にしたがって周回移動させ、プラズ
マ作動ガスをアーク発生領域に導入し高温に加熱しプラ
ズマ状態にしノズルより高速で半径方向に噴出させる。 同時に成膜用の材料をノズル45内部に設けた溶射粉末
導入口よりプラズマ内部に供給するとそれらが加熱され
溶融し、高速度のプラズマジェット43に乗って管内壁
に衝突し偏平化され所望の皮膜を形成する。また、溶射
トーチは駆動手段36、37により管内長手方向に移動
するように構成されており、これにより円筒内部を高速
で円周および長手方向に溶射処理することができる。
First, the cathode 3 is prepared in the same manner as in the first embodiment.
0. An arc is generated between the anodes 31, and the arc is moved around according to the shape of the electrode end face by the magnetic field generated by the excitation coils 32 and 33, and plasma working gas is introduced into the arc generation area and heated to a high temperature to generate plasma. The liquid is then ejected in the radial direction at high speed from the nozzle. At the same time, when materials for film formation are supplied into the plasma from the thermal spray powder introduction port provided inside the nozzle 45, they are heated and melted, and are carried by the high-velocity plasma jet 43 and collide with the inner wall of the tube, flattening and forming the desired film. form. Further, the thermal spraying torch is configured to be moved in the longitudinal direction within the tube by drive means 36 and 37, thereby making it possible to thermally spray the inside of the cylinder at high speed in the circumferential and longitudinal directions.

【0018】なお、本発明は上記実施例に限定されたも
のではなく、本発明の主旨に基づいて種々の変形が可能
である。
It should be noted that the present invention is not limited to the above embodiments, and various modifications can be made based on the gist of the present invention.

【0019】[0019]

【発明の効果】以上の説明から明らかなように本発明に
よれば、管状部材の内部形状、寸法に合わせたアークプ
ラズマが得られるので、これまで点状に行われていた溶
射を線状にでき、成膜装置または母材の1回の走行で管
内を面状に溶射処理をすることができ、きわめて生産性
に優れた溶射トーチを提供することができる。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, it is possible to obtain arc plasma that matches the internal shape and dimensions of the tubular member, so that thermal spraying, which has been done pointwise up to now, can now be done linearly. It is possible to spray the inside of the pipe in a planar manner with one run of the film forming device or the base material, and it is possible to provide a thermal spraying torch with extremely high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の溶射トーチの横断面図[Fig. 1] Cross-sectional view of a thermal spraying torch of the present invention

【図2】本発明
の溶射トーチによる円筒内面に対する溶射処理の詳細図
[Figure 2] Detailed view of thermal spraying treatment on the inner surface of a cylinder using the thermal spraying torch of the present invention

【図3】従来の溶射トーチの縦断面図[Figure 3] Longitudinal cross-sectional view of a conventional thermal spray torch

【図4】溶射トーチを回転させて円筒内面を溶射処理す
る従来例の説明図
[Fig. 4] An explanatory diagram of a conventional example in which the inner surface of a cylinder is thermally sprayed by rotating a thermal spraying torch.

【符号の説明】[Explanation of symbols]

15  陰極 17  陽極 18a、18b  励磁コイル 21  ノズル 23  プラズマ作動ガス 24  作動ガス導入経路 25  溶射粉末導入口 15 Cathode 17 Anode 18a, 18b Excitation coil 21 Nozzle 23 Plasma working gas 24 Working gas introduction route 25 Thermal spray powder inlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】間隙を有して対向する円形管体の切口形状
の端面を有する一対の陰極および陽極よりなる電極と、
前記電極の対向する端面が同極となる磁界を発生させる
電極周囲に設けた励磁コイルと、前記間隙にプラズマ作
動ガスを供給する陰極と陽極を構成する円筒内部に各々
設けられた作動ガス導入経路と、前記間隙周辺部に適切
なピッチで設けられた複数の溶射粉末導入口を具備した
ことを特徴とする溶射トーチ。
1. An electrode consisting of a pair of cathode and anode having cut-shaped end surfaces of circular tube bodies facing each other with a gap therebetween;
An excitation coil provided around the electrode to generate a magnetic field in which the opposing end surfaces of the electrodes have the same polarity, and working gas introduction paths provided inside the cylinders constituting a cathode and an anode for supplying plasma working gas to the gap, respectively. and a thermal spraying torch comprising a plurality of thermal spraying powder inlets provided at appropriate pitches around the gap.
【請求項2】間隙を有して対向する円形管体の切口形状
の端面を有する一対の陰極および陽極よりなる電極と、
前記電極の対向する端面が同極となる磁界を発生させる
電極周囲に設けた励磁コイルと、前記一対の電極間を覆
うように設けられたノズルと、前記間隙にプラズマ作動
ガスを供給する陰極と陽極を構成する円筒内部に各々設
けられた作動ガス導入経路と、前記ノズルに適切なピッ
チで設けられた複数の溶射粉末導入口を具備したことを
特徴とする溶射トーチ。
2. An electrode consisting of a pair of cathode and anode having cut-shaped end surfaces of circular tubes facing each other with a gap therebetween;
an excitation coil provided around the electrode that generates a magnetic field in which opposing end surfaces of the electrodes have the same polarity; a nozzle provided to cover between the pair of electrodes; and a cathode that supplies plasma working gas to the gap. 1. A thermal spraying torch comprising: working gas introduction paths provided inside a cylinder constituting an anode; and a plurality of thermal spray powder introduction ports provided at appropriate pitches in the nozzle.
JP3011868A 1991-02-01 1991-02-01 Thermal spray torch Expired - Fee Related JPH0713290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3011868A JPH0713290B2 (en) 1991-02-01 1991-02-01 Thermal spray torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3011868A JPH0713290B2 (en) 1991-02-01 1991-02-01 Thermal spray torch

Publications (2)

Publication Number Publication Date
JPH04246160A true JPH04246160A (en) 1992-09-02
JPH0713290B2 JPH0713290B2 (en) 1995-02-15

Family

ID=11789704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3011868A Expired - Fee Related JPH0713290B2 (en) 1991-02-01 1991-02-01 Thermal spray torch

Country Status (1)

Country Link
JP (1) JPH0713290B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434116B1 (en) * 2001-07-04 2004-06-04 주식회사 윈텍산업 A hollow plasma torch equipped with super ceramic magnets
JP2005330550A (en) * 2004-05-20 2005-12-02 Snecma Moteurs Method for providing thermal barrier having bending flexibility
CN110302909A (en) * 2019-05-31 2019-10-08 中国航天空气动力技术研究院 A kind of high-power hot cathode supersonic plasma spray rifle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837959A (en) * 1995-09-28 1998-11-17 Sulzer Metco (Us) Inc. Single cathode plasma gun with powder feed along central axis of exit barrel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434116B1 (en) * 2001-07-04 2004-06-04 주식회사 윈텍산업 A hollow plasma torch equipped with super ceramic magnets
JP2005330550A (en) * 2004-05-20 2005-12-02 Snecma Moteurs Method for providing thermal barrier having bending flexibility
CN110302909A (en) * 2019-05-31 2019-10-08 中国航天空气动力技术研究院 A kind of high-power hot cathode supersonic plasma spray rifle
CN110302909B (en) * 2019-05-31 2024-03-15 中国航天空气动力技术研究院 High-power hot cathode supersonic plasma spraying gun

Also Published As

Publication number Publication date
JPH0713290B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JP2959842B2 (en) High speed arc spraying apparatus and spraying method
US5733662A (en) Method for depositing a coating onto a substrate by means of thermal spraying and an apparatus for carrying out said method
US10730063B2 (en) Plasma transfer wire arc thermal spray system
EP0002623B1 (en) Electric arc apparatus and method for treating a flow of material by an electric arc
JP3203754B2 (en) Diamond production method and production equipment
JPH07107876B2 (en) Plasma generator and plasma generating method
JP2005530040A (en) Radial pulsed arc discharge gun for synthesizing nanopowder
JP6854628B2 (en) Plasma spraying device and thermal spraying control method
JPH03150341A (en) Conjugate torch type plasma generator and plasma generating method using the same
JPH08319552A (en) Plasma torch and plasma thermal spraying device
GB2407050A (en) Rotary ring cathode for plasma spraying
JPH04246160A (en) Thermal-spraying torch
EP0448098B1 (en) Method of generating a heat-plasma and coating apparatus employing said method
JP2595365B2 (en) Thermal plasma jet generator
JPH09148094A (en) Plasma spraying torch
JPH05266991A (en) Magnetic drive plasma reaction device
JP7102045B1 (en) Plasma torch, plasma sprayer, and plasma torch control method
JPH05106012A (en) Method and apparatus for producing heat plasma
JP2809359B2 (en) Thermal spray composite film forming method
JPH04124276A (en) Thermal plasma generating method and film forming device
RU2792246C1 (en) Method and system of consumable electrode plasma welding
JPH10102228A (en) Thermal spraying method by magnetic field controlled plasma
JPH06150830A (en) Heat plasma generating method, film forming device, and display
JPH04168260A (en) Arc plasma generating method and film forming device
JPH0533114A (en) Heat plasma generating method and film forming device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees