JPS6114909B2 - - Google Patents

Info

Publication number
JPS6114909B2
JPS6114909B2 JP52049808A JP4980877A JPS6114909B2 JP S6114909 B2 JPS6114909 B2 JP S6114909B2 JP 52049808 A JP52049808 A JP 52049808A JP 4980877 A JP4980877 A JP 4980877A JP S6114909 B2 JPS6114909 B2 JP S6114909B2
Authority
JP
Japan
Prior art keywords
slag
mold
lid
electrode
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52049808A
Other languages
Japanese (ja)
Other versions
JPS52133031A (en
Inventor
Ieegeru Heimo
Kuuneruto Geruto
Kurainhagaa Otomaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUERUAINIHITE EEDERUSHUTAARUERUKE AG FUAU EE UEE
Original Assignee
FUERUAINIHITE EEDERUSHUTAARUERUKE AG FUAU EE UEE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUERUAINIHITE EEDERUSHUTAARUERUKE AG FUAU EE UEE filed Critical FUERUAINIHITE EEDERUSHUTAARUERUKE AG FUAU EE UEE
Publication of JPS52133031A publication Critical patent/JPS52133031A/en
Publication of JPS6114909B2 publication Critical patent/JPS6114909B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、鋼塊の製造方法および装置、更に詳
しくは、エレクトロスラグ溶解法において、溶解
される電極を、鋳型を閉じる蓋に設けられた孔か
ら鋳型内に案内すると共に、フラツシユガス
(flush gas)を該鋳型の内部および電極と該蓋の
孔との間隙部に送給しつつ電極の溶解を行うこと
により水素および硫黄含有量の少ない清浄な鋼塊
を製造する方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for manufacturing a steel ingot, and more particularly, in an electroslag melting method, an electrode to be melted is guided into a mold through a hole provided in a lid that closes the mold. In addition, a method for producing a clean steel ingot with low hydrogen and sulfur content by melting the electrode while supplying flush gas to the inside of the mold and the gap between the electrode and the hole in the lid. and regarding its equipment.

従来、エレクトロスラグ溶解法により鋼塊を製
造するに際し、望ましくない不純物を除去する手
段として、CaF2などの試剤を不活性ガス(アル
ゴンガス、ヘリウムガス、窒素ガスなど)と共に
スラグおよび溶融浴内に吹込む方法が知られてい
る(オーストリア特許第314107号)。
Traditionally, when producing steel ingots by electroslag melting, reagents such as CaF2 are added to the slag and melt bath together with an inert gas (argon gas, helium gas, nitrogen gas, etc.) as a means of removing undesirable impurities. A blowing method is known (Austrian Patent No. 314107).

更に、溶解操作中、電極の周囲を囲繞する環状
の箱を通して鋳型内に不活性ガスを導入するとと
もに、電極に導入する噴射空気流により鋳型内部
をカーテン状に遮蔽せしめることも知られている
(ドイツ公開特許第2308321号参照)。
Furthermore, it is also known to introduce an inert gas into the mold through an annular box surrounding the electrode during the melting operation, and to curtain the inside of the mold with a jet of air introduced to the electrode ( (see German Published Patent No. 2308321).

しかしながら、これらの手段を用いる従来の溶
解法では水素含有量や硫黄含有量の低い鋼塊を製
造することはできず、鋼塊の底部が、中間部や上
部に比し、望ましくない不純物、特に水素の濃偏
析を呈するという欠点を回避することも不可能で
ある。このような欠点は次のごとく説明される。
すなわち、従来の操業法では、あらかじめ溶融し
たスラグを鋳型内に導入すると直ちに溶解が開始
されるが、該スラグは鋳型内注入の際に周囲より
水分を取り込んでおり、それが分解して水素が生
成し、鋼中に拡散すると、その後は除去されずに
鋼中にとどまることによる。鋼塊の底部の水素含
有量は、鋼塊の他の部分の組成の良否にかかわら
ず、実質的に鋼塊のその後の処理に要する時間、
操作および費用、就中焼なまし処理時間を決定づ
ける。
However, conventional melting methods using these means cannot produce steel ingots with low hydrogen or sulfur content, and the bottom part of the steel ingot is more susceptible to undesirable impurities, especially It is also impossible to avoid the drawback of high hydrogen segregation. These drawbacks are explained as follows.
In other words, in the conventional operation method, melting starts immediately when pre-molten slag is introduced into the mold, but the slag takes in moisture from the surroundings when it is poured into the mold, which decomposes and hydrogen is released. Once generated and diffused into the steel, it remains in the steel without being removed. The hydrogen content at the bottom of the steel ingot substantially affects the time required for the subsequent processing of the steel ingot, regardless of the good or bad composition of the other parts of the steel ingot.
It determines the operation and cost, especially the annealing process time.

本発明の目的は、従来法における上述のごとき
欠点と困難性を解消し、エレクトロスラグ溶解法
の新規な改良法を提供せんとするものであり、大
気からの水分の接触を防ぎ、かつ脱硫に最適な条
件を設定することにより、水素および硫黄含有量
が少なく、上部から底部まで全体にわたり極めて
均一な組成を有する鋼塊の製造を可能としたもの
である。
The purpose of the present invention is to eliminate the above-mentioned drawbacks and difficulties of conventional methods and to provide a new and improved electroslag melting method, which prevents contact with moisture from the atmosphere and facilitates desulfurization. By setting optimal conditions, it was possible to produce a steel ingot with low hydrogen and sulfur content and an extremely uniform composition from top to bottom.

次に本発明について詳しく説明する。 Next, the present invention will be explained in detail.

本発明方法によれば、(a)溶解の開始に先立つて
スラグ中の水素量を減じておき、(b)溶解中は、鋳
型内のスラグ上部に乾燥した空気を導入し、(c)そ
れと同時に、鋳型閉じ蓋の電極送通孔とその電極
との間の環状間隙内に乾燥空気のガスカーテンを
形成させ、そのカーテンで水蒸気(水分)を含む
空気の鋳型内への侵入を防止することにより、全
体にわたり均一な組成を有する健全な鋼塊を製造
することができる。
According to the method of the present invention, (a) the amount of hydrogen in the slag is reduced prior to the start of melting, (b) dry air is introduced above the slag in the mold during melting, and (c) dry air is introduced above the slag in the mold. At the same time, a gas curtain of dry air is formed in the annular gap between the electrode passage hole of the mold closing lid and the electrode, and the curtain prevents air containing water vapor (moisture) from entering the mold. This makes it possible to produce a sound steel ingot with a uniform composition throughout.

本発明においては、溶解を開始する前に、鋳型
内に装入されたスラグ中に乾燥空気を導入するの
が有利であり、それによる水素分圧の降下により
水素は逸出する。
According to the invention, it is advantageous to introduce dry air into the slag charged in the mold before starting the melting, so that the resulting drop in hydrogen partial pressure causes hydrogen to escape.

その際、黒鉛電極でスラグを加熱し、スラグを
その液相線よりわずかに高い温度に維持するのが
好適である。
In this case, it is preferred to heat the slag with a graphite electrode and maintain the slag at a temperature slightly above its liquidus.

また、CaO―SiO2複合体の形成に適したCaO
含有量を有する溶融スラグ、すなわちCaO約3〜
40%(重量%、以下同じ)およびSiO2約3〜25
%のものを用いるのが好ましい。本発明者等の研
究によれば、これは水素含有量を低減させるため
にも好ましく機能することが判明した。
In addition, CaO is suitable for forming CaO-SiO 2 complex.
Molten slag with content i.e. CaO approx.
40% (wt%, same below) and SiO2 about 3-25
It is preferable to use %. According to the research conducted by the present inventors, it has been found that this also works preferably for reducing the hydrogen content.

本発明による各手段の組合せによつて、溶融ス
ラグ中の水素含有量は非常に低い値となり、乾燥
空気のガスカーテンを形成することにより、水素
の生成をもたらす水蒸気の侵入を防ぐことがで
き、かつ乾燥空気を鋳型内に送給することによ
り、スラグのすぐれた脱硫効果を保持する等の効
果が得られる。空気からの酸素の作用下に、SO2
が形成され、気体として除去されるのである。
By the combination of the measures according to the invention, the hydrogen content in the molten slag is very low, and the formation of a gas curtain of dry air prevents the intrusion of water vapor that would lead to the formation of hydrogen. Moreover, by feeding dry air into the mold, effects such as maintaining the excellent desulfurization effect of the slag can be obtained. Under the action of oxygen from the air, SO 2
is formed and removed as a gas.

本発明は、また上述の如きエレクトロスラグ溶
解法を行うための装置を提供する。本発明装置
は、溶解を行う鋳型と、溶解時に該鋳型を閉じる
蓋を有し、該蓋に設けられた孔を通して電極を鋳
型内に案内すると共に、該鋳型内および、該蓋の
孔と電極との間の環状間隙にフラツシユガス
(flush gas)を供給するための手段が設けられ
る。
The invention also provides an apparatus for carrying out the electroslag melting process as described above. The device of the present invention has a mold for performing melting, and a lid that closes the mold during melting, and guides an electrode into the mold through a hole provided in the lid. Means are provided for supplying flush gas to the annular gap between the two.

鋳型を閉じる蓋は、複数個に分割された蓋部分
から成り、各蓋部分は開閉自在なように枢着され
た構成を有する。それによつて、複数本の消耗電
極を連続的に溶融降下させ、一本の鋳塊を形成
し、かつ所望の低水素・低硫黄含有の鋼を得るた
めの高度な操業安全性と正確さが確保される。
The lid that closes the mold is composed of a plurality of divided lid parts, each of which is pivoted so that it can be opened and closed. As a result, multiple consumable electrodes are continuously melted down to form a single ingot, and a high degree of operational safety and accuracy is achieved to obtain the desired low hydrogen and low sulfur content steel. Secured.

上記開閉自在に枢着された各蓋部分には、乾燥
空気を送給するための別個の手段を有する弧状導
管部分を設け、かつ蓋を閉じたときに、該部分が
互いに補い合つて環状のガス導管を形成するよう
にすると有利である。
Each hinged lid section is provided with an arcuate conduit section having a separate means for supplying dry air, and when the lid is closed, the sections complement each other to form an annular conduit section. Advantageously, a gas conduit is formed.

またそれぞれの開閉自在の蓋部分には、流出口
を有する2本以上の弧状導管を上下方向に多段に
配設することが好ましい。
Further, it is preferable that two or more arcuate conduits each having an outlet are vertically arranged in multiple stages in each openable/closable lid portion.

さらに、スラグのフラツシング(flushing)の
際には、水冷式または黒鉛性の吹込ランスをスラ
グ中に浸漬すると共に、黒鉛電極をスラグ上に位
置させ得るようにする。
Furthermore, during flushing of the slag, a water-cooled or graphitic blowing lance is immersed in the slag and a graphite electrode can be positioned above the slag.

次に、本発明の実施例を図面に従つて更に詳し
く説明する。
Next, embodiments of the present invention will be described in more detail with reference to the drawings.

第1図は、スラグのフラツシング段階における
装置の縦断面図、第2図および第3図はそれぞれ
溶解段階における縦断面図および平面図である。
FIG. 1 is a longitudinal sectional view of the apparatus in the slag flushing stage, and FIGS. 2 and 3 are a longitudinal sectional view and a plan view, respectively, in the melting stage.

図において、1は冷却された底板、2は昇降可
能な鋳型である。本装置の外部であらかじめ溶融
されたスラグ3を鋳型内に装入し、黒鉛電極4と
スラグ表面との間にアーク5を発生させスラグを
加熱する。ガス導入管7を介して乾燥空気源と連
結された水冷吹込みランス6をスラグ中に浸漬
し、所望の清浄化効果が得られるまで空気を導入
する。
In the figure, 1 is a cooled bottom plate, and 2 is a mold that can be raised and lowered. Slag 3, which has been melted in advance outside the apparatus, is charged into a mold, and an arc 5 is generated between graphite electrode 4 and the slag surface to heat the slag. A water-cooled blowing lance 6 connected to a source of dry air via a gas inlet pipe 7 is immersed in the slag and air is introduced until the desired cleaning effect is achieved.

第2図は、溶解段階を示す図であり、鋳型2は
蓋8で覆われ、該蓋の中央部には電極9を案内す
る孔が設けられ、電極のまわりに間隙10をもう
けることにより溶解される電極が鋳型内に区滑に
送り込まれるようになつている。該蓋8は分割さ
れた構成を有し、各蓋部分8′および8″はそれぞ
れ枢軸11および11′に支承されそのまわりで
閉位置に枢動しうるようになつている。蓋と鋳型
の開口部間には高度な耐火性を有する絶縁材1
2、好ましくはフアイバーマツトから成る絶縁材
が取付けられる。各蓋部分には冷媒送通管13が
設けられる。各蓋部分の環状間隙10には乾燥空
気を送給するための少くとも1つの弧状導管部分
16が設けられ、各部分はガスを送給するもと管
15を有する。各蓋部分が閉じた位置に枢動する
と、各弧状導管16は互いに補い合つて環状の導
管14を形成する。各弧状導管すなわち環状導管
にはそれぞれ電極9のジヤケツトに指向するガス
流出口17が設けられる。これらの流出口はスリ
ツト状に形成し、上下に2またはそれ以上の層に
配設すれば、これらのスリツト状開口部から流出
する乾燥空気流により、該環状間隙への水蒸気含
有空気の侵入を確実に防止しうる一種の迷路シー
リング(labyrinth sealing)を形成させることが
できる。もと管15には、蓋を貫通し、鋳型内部
に通ずる支管18が設けられる。
FIG. 2 is a diagram showing the melting stage, in which the mold 2 is covered with a lid 8, a hole is provided in the center of the lid to guide an electrode 9, and a gap 10 is created around the electrode to melt the mold. The electrodes are fed smoothly into the mold. The lid 8 has a segmented configuration, with each lid portion 8' and 8'' being mounted on a pivot 11 and 11', respectively, about which it is pivotable into a closed position. Highly fire-resistant insulation material 1 between the openings
2. Insulation, preferably consisting of fiber mat, is installed. A refrigerant passage pipe 13 is provided in each lid portion. The annular gap 10 of each lid part is provided with at least one arcuate conduit section 16 for conveying dry air, each section having a source tube 15 for conveying gas. When each lid portion pivots to the closed position, each arcuate conduit 16 complements each other to form an annular conduit 14. Each arcuate or annular conduit is provided with a respective gas outlet 17 pointing towards the jacket of the electrode 9. If these outlets are formed in the form of slits and arranged in two or more layers above and below, the dry air flow flowing out from these slit-shaped openings prevents the intrusion of water vapor-containing air into the annular gap. A kind of labyrinth sealing can be formed that can be reliably prevented. The main pipe 15 is provided with a branch pipe 18 that passes through the lid and communicates with the inside of the mold.

乾燥空気を加圧下に鋳型内部に導入することに
より、脱硫に好ましい条件が付与され、更に環状
間隙内に形成される乾燥空気カーテンの密閉効果
を向上させる。本発明方法によれば、若干円錐形
状の電極を用いる場合や、電極の取替えの際にも
水蒸気を含まない雰囲気を確実に保持することが
できる。
By introducing dry air under pressure into the mold interior, favorable conditions are provided for desulfurization and furthermore the sealing effect of the dry air curtain formed in the annular gap is improved. According to the method of the present invention, an atmosphere free from water vapor can be reliably maintained even when using a slightly conical electrode or when replacing the electrode.

次に本発明について実施例を挙げて具体的に説
明する。
Next, the present invention will be specifically described with reference to Examples.

実施例 焼入れ、焼もどしを施した28NiCrMoV85鋼
(DIN規格)の電極(直径500mmφ)を用い、エレ
クトロスラグ溶解鋼塊(直径1000mmΦ、長さ
4m)を製造した。
Example Using an electrode (diameter 500 mmφ) of 28NiCrMoV85 steel (DIN standard) that has been quenched and tempered, an electroslag melted steel ingot (diameter 1000 mmφ, length
4m) was manufactured.

脱ガスを行つた消耗電極の水素量は2.1ppm、
硫黄量は200ppmであつた。溶解装置の空気湿度
は12g(水蒸気)/Nm3であつた。また、スラグ
溶解炉内であらかじめ溶融したスラグはSiO220
%、CaO20%、CaF230%およびA2O330%を含
有し、水素量は32ppmであつた。このスラグを
鋳型の蓋を開けて注ぎ込み、第1図に示すように
黒鉛電極をスラグの上部に位置せしめた。アーク
を点弧した後、スラグをその液相線よりも約50〜
100℃高い温度、すなわち約1500℃に維持し、水
冷ランスによりスラグ表面下に乾燥空気を1/
分の吹き込み量にて15分間吹き込み、それにより
スラグ中の水素量は13ppmに低減した。その
後、黒鉛電極と吹込み用ランスを取り除き、蓋部
分を絶縁材および乾燥空気を供給するための弧状
導管と共に枢動させて鋳型を閉じ、溶解すべき電
極を鋳型の内部に導入し、もと管15を通し約
1.5気圧の加圧乾燥空気を1/分の吹き込み量
にて鋳型内に吹込み、電極と蓋との間の環状間隙
内にエアーカーテンを形成させて溶解を開始させ
た。
The amount of hydrogen in the consumable electrode used for degassing was 2.1ppm.
The amount of sulfur was 200 ppm. The air humidity in the dissolution apparatus was 12 g (water vapor)/Nm 3 . In addition, the slag melted in advance in the slag melting furnace is SiO 2 20
%, CaO 20%, CaF 2 30% and A 2 O 3 30%, and the amount of hydrogen was 32 ppm. This slag was poured into the mold by opening the lid, and a graphite electrode was placed on top of the slag as shown in FIG. After igniting the arc, the slag should be heated to about 50 ~ below its liquidus line.
The temperature is maintained at 100°C higher, approximately 1500°C, and dry air is pumped 1/2 way below the slag surface using a water cooling lance.
The hydrogen content in the slag was reduced to 13 ppm. The graphite electrode and the blowing lance are then removed, the mold is closed by pivoting the lid part together with the arcuate conduit for supplying insulation and drying air, the electrode to be melted is introduced inside the mold and the original Through tube 15, approx.
Pressurized dry air at 1.5 atmospheres was blown into the mold at a rate of 1/min to form an air curtain in the annular gap between the electrode and the lid to initiate melting.

溶解開始1時間後、鋼浴中鋼塊の底部領域に相
当する部位から採取した試料によれば水素量は
2.2ppmであつた。このように、水素量は溶解電
極の最初の水素量に比し、目立つた増加は認めら
れなかつた。更に2時間後および溶解完結後に2
個の試料を採取したところ、それぞれの水素量は
2.1ppmおよび2.2ppmであつた。後者の水素量
は、得られた鋼塊のクロツプ領域の水素量に対応
する。また鋼塊の硫黄量は60ppmであり、鋼塊
の全長にわたつて均一であつた。製造された鋼塊
に対する水素量低減のための焼なまし処理は不必
要であつた。
According to a sample taken from the bottom area of the steel ingot in the steel bath one hour after the start of melting, the amount of hydrogen was
It was 2.2ppm. Thus, no noticeable increase in the amount of hydrogen was observed compared to the initial amount of hydrogen in the dissolving electrode. After another 2 hours and after completion of dissolution,
When several samples were taken, the amount of hydrogen in each was
They were 2.1ppm and 2.2ppm. The latter amount of hydrogen corresponds to the amount of hydrogen in the cropped region of the obtained steel ingot. The sulfur content of the steel ingot was 60 ppm, which was uniform over the entire length of the steel ingot. Annealing treatment for reducing the hydrogen content of the produced steel ingot was unnecessary.

次に比較例を挙げて説明する。 Next, a comparative example will be given and explained.

比較例 上記実施例と同じ消耗電極を用い、スラグのフ
ラツシングおよび鋳型内・環状間隙への乾燥空気
の送給を行なわずに、溶解を行つたところ、溶解
開始1時間後、鋼塊の底部における水素量は
5.8ppm、鋼塊の中間部および上部の水素量は
3.5ppmであつた。このような水素含有量が高
く、かつ鋼塊の底部および上部の間で不均一な場
合、製造された鋼塊は、水素量を許容し得る値に
まで下げるために100時間以上の焼なまし処理が
必要である。
Comparative Example Melting was carried out using the same consumable electrode as in the above example without flashing the slag or supplying dry air into the mold or annular gap. One hour after the start of melting, the bottom of the steel ingot The amount of hydrogen is
5.8ppm, the amount of hydrogen in the middle and upper part of the steel ingot is
It was 3.5ppm. If the hydrogen content is high and uneven between the bottom and top of the ingot, the produced ingot must be annealed for more than 100 hours to reduce the hydrogen content to an acceptable value. Processing is required.

スラグをフラツシユせず、その溶融炉で製した
ままで用いる場合には、溶解開始1時間後の鋼浴
中の水素量は、環状間隙に乾燥空気(空気吹き込
み量:1.8/分)によるガスカーテンを施すに
もかかわらず、4.7ppmに達し、ついで徐々に
2.8ppmまで減少する。かかる場合には鋼塊に
120ppmの硫黄が含有される。
When the slag is used as it is made in the melting furnace without being flashed, the amount of hydrogen in the steel bath 1 hour after the start of melting is reduced by the gas curtain created by dry air (air blowing rate: 1.8/min) in the annular gap. reached 4.7ppm, and then gradually
Reduced to 2.8ppm. In such cases, steel ingots
Contains 120ppm sulfur.

もし、アルミナ、ライムおよびホタル石を等し
い割合で有するスラグを用い、その他は前記実施
例と同じ条件下に行うと、鋼塊の底部領域の水素
量は2.6ppm、上部領域の水素量は2.4ppmとな
る。
If a slag with equal proportions of alumina, lime and fluorspar is used and the other conditions are the same as in the previous example, the amount of hydrogen in the bottom region of the steel ingot will be 2.6 ppm and the amount of hydrogen in the top region will be 2.4 ppm. becomes.

また、フラツシングをしない塩基性スラグを用
い、蓋の孔と電極との間の環状間隙に窒素または
アルゴンガスのような不活性ガスのカーテンを形
成せしめた場合には、溶解開始1時間後、鋼塊底
部領域に相当する鋼溶中の水素量は4.5ppmに達
し、その後3.0ppmに低減する。得られる鋼塊の
底部領域の硫黄含量は120ppm、上部領域のそれ
は200ppmである。このことは、溶解の初期には
スラグは若干の硫黄溶解能を有し、その溶解能は
溶解が進行する間飽和に達するため消失すること
を意味している。
In addition, if a basic slag without flushing is used and a curtain of inert gas such as nitrogen or argon gas is formed in the annular gap between the hole in the lid and the electrode, one hour after the start of melting, the steel The amount of hydrogen in the steel melt corresponding to the lump bottom region reaches 4.5 ppm, and then decreases to 3.0 ppm. The sulfur content in the bottom region of the obtained steel ingot is 120 ppm, and that in the upper region is 200 ppm. This means that the slag has some sulfur dissolving ability at the beginning of dissolution, and this dissolving ability disappears as the dissolution progresses as saturation is reached.

更に、もし中性スラグを用い、その他は前記実
施例と同じ条件下に行うと、水素および硫黄含有
量は不満足なものとなり、水素含量は約4.0〜
3.0ppmとわずかに低いが、硫黄含量はいつそう
高く鋼塊の底部で150ppm、上部で200ppmであ
る。
Furthermore, if a neutral slag is used and otherwise the conditions are the same as in the previous example, the hydrogen and sulfur contents will be unsatisfactory, with hydrogen contents of about 4.0 to
Although slightly lower at 3.0ppm, the sulfur content is as high as 150ppm at the bottom of the steel ingot and 200ppm at the top.

上述した比較から認められるように、本発明に
よれば、スラグのフラツシング、環状間隙のガス
カーテン、鋳型内部への乾燥空気導入およびスラ
グ組成の各手段は好適な条件下でそれらの相互作
用下に、水素および硫黄含有量が低く、また全長
にわたつて均一な組成を有する鋼塊が得られる。
従つて、本発明により得られる鋼塊は焼なまし処
理を必要とせず、また必要な場合であつてもごく
短時間の処理で十分である。
As can be seen from the above comparison, according to the invention, the means of flushing the slag, the gas curtain of the annular gap, the introduction of dry air into the interior of the mold and the composition of the slag are controlled under suitable conditions and under their interaction. , a steel ingot with a low hydrogen and sulfur content and a uniform composition over its entire length is obtained.
Therefore, the steel ingot obtained by the present invention does not require annealing treatment, and even if necessary, a very short treatment is sufficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスラグのフラツシング状況を示す装置
断面図、第2図は溶解時の状況を示す装置断面
図、第3図は溶解時の装置俯瞰図である。 2…鋳型、3…スラグ、4…黒鉛電極、6…フ
ラツシングガス吹込み用水冷ランス、7…ガス導
入管、8(8′,8″)…蓋、9…溶解電極、10
…環状間隙、11,11′…蓋の枢軸、12…絶
縁材、13…冷却媒体送通管、14…環状ガス導
管、15…ガス送給もと管、16,17…弧状導
管部分、18…支管。
FIG. 1 is a sectional view of the device showing the slag flushing situation, FIG. 2 is a sectional view of the device showing the situation during melting, and FIG. 3 is an overhead view of the device during melting. 2... Mold, 3... Slag, 4... Graphite electrode, 6... Water-cooled lance for flushing gas injection, 7... Gas introduction pipe, 8 (8', 8'')... Lid, 9... Melting electrode, 10
...Annular gap, 11, 11'... Pivot of lid, 12... Insulating material, 13... Cooling medium delivery tube, 14... Annular gas conduit, 15... Gas supply source pipe, 16, 17... Arc-shaped conduit portion, 18 ...Branch tube.

Claims (1)

【特許請求の範囲】 1 鋳型を閉じる蓋の孔を通じて該鋳型内に溶解
電極を案内し、かつ該鋳型の内部および該蓋の孔
と電極との間に環状間隙にフラツシユガスを導入
して行うエレクトロスラグ溶解法により、水素お
よび硫黄含有量の少ない鋼塊を製造する方法であ
つて、(a)該電極の溶解を開始するに先立つて、鋳
型内に装入されたスラグを乾燥空気の導入により
フラツシユして、スラグ中の水素含有量を低減さ
せておき、(b)該電極の溶解中に乾燥空気を鋳型内
のスラグ上部に導入し、かつ(c)それと同時に、鋳
型の蓋の孔と電極との間の環状間隙に乾燥空気の
ガスカーテンを形成させ、該ガスカーテンで水分
ないし蒸気を含む空気の該鋳型内への侵入を防止
するようにしたことを特徴とする鋼塊の製造法。 2 スラグの乾燥空気によるフラツシングを行う
間、該スラグを黒鉛電極で加熱し、スラグ温度を
その液相線よりわずかに高く維持させる上記第1
項の方法。 3 該スラグの乾燥空気によるフラツシングを、
フラツシユガス吹込用の水冷式または黒鉛製ラン
スをスラグ中に浸漬して行ない、それと同時にス
ラグ加熱用黒鉛電極をスラグ上に位置させてスラ
グを加熱させる上記第2項の方法。 4 CaO3〜40%、SiO23〜25%を含み、CaO―
SiO2複合体の形成に適したスラグを用いること
を特徴とする上記第1項の方法。 5 エレクトロスラグ溶解法より水素および硫黄
含有量の少ない鋼塊を製造する装置であつて、鋳
型と、該鋳型内に閉じる蓋を有し、該蓋に設けら
れた孔を通じて該鋳型内に溶解電極を案内しうる
ようにし、かつ該鋳型の内部および該蓋の孔とそ
れを通る前記電極との間の環状間隙内にフラツシ
ユガスを供給する手段を設けており、前記蓋は複
数部分に分割され、その各部分は開閉自在なよう
に枢着されていることを特徴とする鋼塊製造装
置。 6 フラツシユガスを供給する手段が、蓋部分に
設けられた個別の乾燥空気送給管を有するガス導
管部分から成り、該ガス導管部分は、該蓋を閉じ
たとき環状をなすように構成される上記第5項の
装置。 7 ガス導管部分を、蓋部分上に上下方向に2段
以上配設してなる上記第6項の装置。
[Claims] 1 Electrolysis carried out by guiding a melting electrode into the mold through a hole in a lid that closes the mold, and introducing flash gas into the annular gap inside the mold and between the hole in the lid and the electrode. A method for producing a steel ingot with low hydrogen and sulfur content by a slag melting method, the method comprising: (a) prior to starting melting of the electrode, slag charged in a mold is introduced into the mold by introducing dry air; (b) introducing dry air above the slag in the mold during melting of the electrode, and (c) simultaneously flushing the slag with the holes in the mold lid. A method for producing a steel ingot, characterized in that a gas curtain of dry air is formed in an annular gap between the electrode and the gas curtain prevents air containing moisture or steam from entering the mold. . 2. During flushing of the slag with dry air, the slag is heated with a graphite electrode to maintain the slag temperature slightly above its liquidus line.
Section method. 3 Flushing the slag with dry air,
The method according to item 2 above, wherein a water-cooled lance or a graphite lance for blowing flash gas is immersed in the slag, and at the same time, a graphite electrode for heating the slag is placed on top of the slag to heat the slag. 4 Contains CaO3~40%, SiO2 3~25%, CaO-
The method according to item 1 above, characterized in that a slag suitable for forming a SiO 2 complex is used. 5 An apparatus for producing steel ingots with lower hydrogen and sulfur content than by electroslag melting method, which comprises a mold and a lid that closes inside the mold, and a melting electrode is inserted into the mold through a hole provided in the lid. and means for supplying flash gas into the interior of the mold and into the annular gap between the hole in the lid and the electrode therethrough, the lid being divided into sections; A steel ingot manufacturing device characterized in that each part is pivotally connected so that it can be opened and closed. 6. The means for supplying flush gas consists of a gas conduit section having a separate dry air feed tube provided in the lid section, the gas conduit section being configured to form an annular shape when the lid is closed. Apparatus according to paragraph 5. 7. The device according to item 6 above, wherein the gas conduit portion is arranged in two or more stages in the vertical direction on the lid portion.
JP4980877A 1976-04-29 1977-04-28 Production method and device for steel ingot Granted JPS52133031A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT312776A AT360062B (en) 1976-04-29 1976-04-29 METHOD FOR PRODUCING LOW-HYDROGEN AND LOW-SULFUR STEEL BLOCKS BY THE ELECTRO-SLAG REFLOWING METHOD AND DEVICE FOR IMPLEMENTING THE METHOD

Publications (2)

Publication Number Publication Date
JPS52133031A JPS52133031A (en) 1977-11-08
JPS6114909B2 true JPS6114909B2 (en) 1986-04-21

Family

ID=3545717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4980877A Granted JPS52133031A (en) 1976-04-29 1977-04-28 Production method and device for steel ingot

Country Status (13)

Country Link
JP (1) JPS52133031A (en)
AT (1) AT360062B (en)
BE (1) BE854067A (en)
BR (1) BR7702725A (en)
CA (1) CA1091934A (en)
DE (1) DE2717665A1 (en)
FR (1) FR2349656A1 (en)
GB (1) GB1577416A (en)
IN (1) IN147529B (en)
IT (1) IT1075319B (en)
PL (1) PL106574B1 (en)
SE (1) SE421013B (en)
ZA (1) ZA772333B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2489842A1 (en) * 1980-09-10 1982-03-12 Inst Elektroswarki Patona Electroslag remelting of metals - using inert gas jets directed at immersed electrodes to promote slag flow and improve melting
DE3901297C2 (en) * 1989-01-18 1997-03-20 Leybold Ag Electroslag remelting plant with a mold and a hood
US4953177A (en) * 1989-07-03 1990-08-28 Allegheny Ludlum Corporation Method and means of reducing the oxidization of reactive elements in an electroslag remelting operation
CN103484685B (en) * 2012-06-11 2016-06-29 宝钢特钢有限公司 A kind of electric slag refusion and smelting molten steel hydrogen content control method
CN102794438B (en) * 2012-07-20 2014-01-22 浙江电渣核材有限公司 Low hydrogen control method for electroslag remelting
FI127188B (en) 2015-04-10 2018-01-15 Outotec Finland Oy PROCEDURES AND ARRANGEMENTS FOR USING A METALLURGICAL OVEN AND COMPUTER PROGRAM PRODUCT
CN110640120B (en) * 2019-10-30 2022-09-30 上海电气上重铸锻有限公司 Manufacturing device and manufacturing method of stainless steel electroslag remelting steel ingot
CN113155531B (en) * 2021-03-24 2022-12-09 万德浮(上海)新材料股份有限公司 Multifunctional alloy material sampling device and use method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU345826A1 (en) * 1971-06-07 1977-11-25 Ордена Ленина И Ордена Трудового Красного Знамени Институт Электросварки Им. Е.О.Патона Method of electroslag remelting of titanium and its alloys
DE2164710A1 (en) * 1971-12-27 1973-07-05 Rheinstahl Huettenwerke Ag Electro-slag melting of steel - reduction of hydrogen contents
GB1374149A (en) * 1972-03-24 1974-11-13 British Iron Steel Research Electroslag refining apparatus
US3867976A (en) * 1972-11-29 1975-02-25 Int Nickel Co Electroflux melting method and apparatus
GB1525462A (en) * 1974-11-04 1978-09-20 British Steel Corp Electroslag refining

Also Published As

Publication number Publication date
SE421013B (en) 1981-11-16
PL106574B1 (en) 1979-12-31
FR2349656A1 (en) 1977-11-25
SE7704019L (en) 1977-10-30
JPS52133031A (en) 1977-11-08
GB1577416A (en) 1980-10-22
ZA772333B (en) 1978-03-29
IT1075319B (en) 1985-04-22
CA1091934A (en) 1980-12-23
DE2717665A1 (en) 1977-11-10
ATA312776A (en) 1980-05-15
FR2349656B1 (en) 1983-07-01
BE854067A (en) 1977-08-16
IN147529B (en) 1980-03-29
BR7702725A (en) 1978-01-17
AT360062B (en) 1980-12-29

Similar Documents

Publication Publication Date Title
US3886992A (en) Method of treating metal melts with a purging gas during the process of continuous casting
US3989091A (en) Method for electroslag remelting of titanium or its alloys and a device for effecting same
JPS6114909B2 (en)
JP2000128549A (en) Production of glass, using vacuum defoaming
US2060133A (en) Process for treating metals
JP2999671B2 (en) Melting method of Ca-added steel
US4469513A (en) Molten copper oxygenation
US4661152A (en) Method of lancing for a copper-producing converter
US2060137A (en) Process of refining metals
US5330555A (en) Process and apparatus for manufacturing low-gas and pore-free aluminum casting alloys
CA2127674A1 (en) Process for removing tin, arsenic and antimony from molten lead
US4170467A (en) Method for producing high chromium steels having extremely low carbon and nitrogen contents
US3189956A (en) Production of effervescing steel
US4661153A (en) Refractory porous plug
US3468657A (en) Method for refining a metal
US2060073A (en) Copper refining method
US3351447A (en) Method and apparatus for the manufacture of flat glass on a molten metal bath
US1053738A (en) Process of treating cast ingots.
GB2057509A (en) Steel making in top-blown converter
EP0170900B1 (en) Process for the removal of contaminating elements from pig- iron, steel, other metals and metal alloys
ES8600409A1 (en) Process for the production of steels of low carbon content wherein the carbon end point and blow temperature are controlled
JPH08120315A (en) Preliminary refining method
KR100270108B1 (en) The removing method of alien substance and same remover
US2166354A (en) Copper refining process
US2060074A (en) Copper refining apparatus