JPS61148808A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPS61148808A
JPS61148808A JP59271524A JP27152484A JPS61148808A JP S61148808 A JPS61148808 A JP S61148808A JP 59271524 A JP59271524 A JP 59271524A JP 27152484 A JP27152484 A JP 27152484A JP S61148808 A JPS61148808 A JP S61148808A
Authority
JP
Japan
Prior art keywords
base
powder
rare earth
sintering
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59271524A
Other languages
Japanese (ja)
Inventor
Atsushi Sakai
淳 阪井
Sunao Ozawa
小沢 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP59271524A priority Critical patent/JPS61148808A/en
Publication of JPS61148808A publication Critical patent/JPS61148808A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a sintered body with dimensional accuracy through preventing the sintered body and a base from sintering by sintering moldings after interposing powder of oxide samarium between the moldings and the base. CONSTITUTION:In a process in which powdered moldings including a rare earth element is sintered on a base, moldings are sintered through interposing powder of oxide samarium between the moldings and the base. Molding in a magnetic field is done by using alloy powder composed of, for instance, Sm 27wt%, Co 47.1wt%, Cu 4.6wt%, Fe 18.5wt% and Zr 2.8wt%. On the other hand, an Sm2O3 powder is sprayed by using a 300 mesh screen on a pressure plate and a platelike base made of stainless SUS304. After moldings are placed on a surface adhered by the powder of this base, on this the pressure plate is put with the surface down adhered by the powder, and are sintered in 1,200 deg.C for 1hr, a rate earth magnet is obtained.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、希土類磁石の製法に関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for manufacturing rare earth magnets.

〔背景技術〕[Background technology]

S m Coをはじめとする希土類磁石は、高い飽和磁
化、高保磁力を有する高性能磁石として、最近、需要の
増加が著しい磁石である。特に、小型化、軽量化が進め
られているスピーカやモータなどに積極的に採用される
ようになった。希土類磁石の一般的な製法は、つぎのよ
うなものである。
Rare earth magnets such as S m Co are magnets whose demand has recently increased significantly as high-performance magnets having high saturation magnetization and high coercive force. In particular, they have been actively adopted in speakers and motors, which are becoming smaller and lighter. The general manufacturing method for rare earth magnets is as follows.

希土類元素を含有する磁石用合金を粉砕して微粉化し、
これを磁場中において加圧成形する。ついで、この成形
体を1180℃〜1220℃で焼結したのち急冷する。
A magnet alloy containing rare earth elements is pulverized into a fine powder.
This is press-molded in a magnetic field. Next, this molded body is sintered at 1180°C to 1220°C and then rapidly cooled.

そして、800℃前後で2〜IO時間時効処理を行い、
徐冷することによって高性能希土類磁石を得る。
Then, aging treatment is performed at around 800℃ for 2 to IO hours,
A high-performance rare earth magnet is obtained by slow cooling.

ところで、モータのロータなどには、薄板状のリング磁
石が用いられる。通審、このような薄板状磁石を製造す
るには、同じ断面形状を持つ厚物を焼結し、これをスラ
イスすることによって薄板状物を作る方法を用いている
。この方法では、スライスするのに切り代を必要とする
ため、材料のロスが生じる。そこで、最初から薄板状物
を成形し、これを焼結する手法が試みられている。とこ
ろが、薄板状物(成形体)を焼結すると、反りが発生し
やすいため、薄板状の成形体を基台上に置き、さらにそ
の成形体の上に金属あるいはセラミックの押え板を置い
て焼結しなければならない。
By the way, thin ring magnets are used in motor rotors and the like. In order to manufacture such thin plate magnets, a method is used in which thin plates are created by sintering thick materials with the same cross-sectional shape and slicing them. This method requires a cutting allowance for slicing, resulting in material loss. Therefore, attempts have been made to form a thin plate from the beginning and sinter it. However, when a thin plate-shaped object (molded body) is sintered, warping tends to occur, so the thin plate-shaped formed body is placed on a base, and a metal or ceramic presser plate is placed on top of the formed body and then sintered. must be tied.

このように、一台と押え板で薄板状の成形体を挟み、最
適焼結温度で焼結すると、焼結体と基台および/または
押え板との間で焼付きが発生する場合がある。焼付きが
発生すると、均一な収縮を妨げるため、焼結体が異常に
変形する。また、基台や押え板から焼結体を離脱できな
いという問題点も生じる。
In this way, if a thin plate-shaped compact is sandwiched between one machine and a holding plate and sintered at the optimum sintering temperature, seizure may occur between the sintered body and the base and/or the holding plate. . When seizure occurs, it prevents uniform shrinkage and causes abnormal deformation of the sintered body. Further, there arises the problem that the sintered body cannot be removed from the base or the presser plate.

〔発明の目的〕[Purpose of the invention]

この発明は、以上のことに鑑みて、焼結体と基台との焼
付を防止し、さらに焼結体と押え板との焼付をも防止し
て、寸法精度良く焼結体を得る工程を含む希土類磁石の
製法を提供することを目的とする。
In view of the above, this invention prevents seizure between the sintered body and the base, and also prevents seizure between the sintered body and the presser plate, and provides a process for obtaining a sintered body with high dimensional accuracy. The purpose is to provide a method for manufacturing rare earth magnets containing.

〔発明の開示〕 この発明は、上記の目的を達成するために、希土類元素
を含む粉末の成形体を基台の上に置いて焼結する工程を
含む希土類磁石の製法において、前記成形体と基台との
間に酸化サマリウムの粉末を介在させて前記成形体の焼
結を行うことを特徴とする希土類磁石の製法を要旨とし
ている。以下に、この発明について、特にその特徴部分
について詳しく説明する。
[Disclosure of the Invention] In order to achieve the above object, the present invention provides a method for manufacturing a rare earth magnet that includes a step of placing a compact of powder containing a rare earth element on a base and sintering the compact. The gist of the present invention is a method for producing a rare earth magnet, characterized in that the molded body is sintered with samarium oxide powder interposed between it and the base. Below, this invention will be explained in detail, especially its characteristic parts.

この発明で用いる磁石用の粉末としては、希土類元素を
含む粉末が用いられ、一般に、Si、 Ceをはじめと
する希土類金属およびコバルトを含む合金粉末が用いら
れるが、この限りではない。磁石用の粉末は、通常の製
法に従って作られたものが用いられる。この粉末は、通
常微粉化されている。この磁石用の粉末は、一般に加圧
方向と平行な方向に磁場をかけながら成形されるが、こ
の限りではない。薄板状に成形されることもある。そし
て、この成形体は、金属またはセラミック製などの基台
上に置かれて焼結される。この基台としては、台状のも
のに限定されず、板状体、シート状体など種々用いられ
、その材質も、金属、セラミックなどをはじめ焼結に用
いられうるちのであれば特に限定されない。なお、°薄
板状成形体を焼結する場合、上記したように、反りの発
生を防いだりするために、その成形体を基台の上に置き
、さらに、この成形体の上に押え板を置いたりして、成
形体を基台と押え板とで挟むようにすやことが好ましい
。押え板も、その材質など特に一定(よなく、金属、セ
ラミックなどをはじめ焼結に用いられうるものであれば
よく、たとえば、基台と同じ材質であってもよい。
As the powder for the magnet used in this invention, a powder containing a rare earth element is used, and in general, an alloy powder containing a rare earth metal such as Si and Ce and cobalt is used, but the invention is not limited to this. The powder used for the magnet is one made according to a normal manufacturing method. This powder is usually finely divided. This powder for magnets is generally molded while applying a magnetic field in a direction parallel to the pressing direction, but this is not the case. It may also be formed into a thin plate. This molded body is then placed on a base made of metal or ceramic and sintered. This base is not limited to a table-shaped one, and various types such as a plate-shaped body and a sheet-shaped body can be used, and the material is not particularly limited as long as it can be used for sintering, including metals and ceramics. . In addition, when sintering a thin plate-shaped compact, as mentioned above, in order to prevent the occurrence of warping, the compact is placed on a base, and a presser plate is placed on top of the compact. It is preferable to place the molded body between the base and the holding plate. The holding plate may be made of a certain material as long as it can be used for sintering, such as metal or ceramic; for example, it may be made of the same material as the base.

希土類金属は、非常に活性度の高い金属であり、l・0
00℃を越える温度では、基台や押え板と反応して、固
着しやすい。厚物の埠結体ならば、焼付きが発生しても
、その部分を削除して最終製品、にまで仕上げることも
可能であるが、歩留りが悪くなる。特に、薄板状物の場
合には、必、要最少限の研磨で最終製品に仕上がるよう
に焼結を行うことが好ましい。これらのため、焼付によ
って、焼結体が変形したり、破損したりすることは、極
力避けなければならない。
Rare earth metals are very highly active metals, l・0
At temperatures above 00°C, it tends to react with the base and presser plate and become stuck. If it is a thick bulge, even if seizure occurs, it is possible to remove that part and finish it as a final product, but the yield will be poor. In particular, in the case of a thin plate-like product, it is preferable to perform sintering so that the final product can be completed with the minimum amount of polishing necessary. For these reasons, deformation or damage to the sintered body due to seizure must be avoided as much as possible.

そこで、この発明では、基台の上に粉末を散布するなど
して、成形体と基台との間に酸化サマリウムの粉末を介
在させて、成形体と基台との直接接触面積を少なくして
、上記の焼付を防彬するようにしている。発明者らは、
どのような粉末がこの効果をあげるに適しているかを調
べるため、何種類かのセラ、ミック系の粉末を用い6て
試してみた。この結果、粉末が、A1203 、CeO
2などでは、焼結体と反応するため最終製品である磁石
の特性に悪影響を及ぼし、BNでは、基台と焼結体との
焼付が発生した。ところが、酸化サマリウム(Sm20
3 )を用いた時は、焼付を起こさず、焼結体と反応す
ることもなかった。このため、この発明では、粉末とし
て、Sm203(酸化サマリウム)の粉末を用いるよう
にしている。
Therefore, in this invention, samarium oxide powder is interposed between the molded body and the base by scattering the powder on the base to reduce the direct contact area between the molded body and the base. This is to prevent the above-mentioned seizure. The inventors
In order to find out what kind of powder is suitable for achieving this effect, we tried using several types of ceramic and mic powders6. As a result, the powder was A1203, CeO
2 etc. reacted with the sintered body, which adversely affected the properties of the final product, the magnet, and in the case of BN, seizure occurred between the base and the sintered body. However, samarium oxide (Sm20
3), no seizure occurred and no reaction occurred with the sintered body. Therefore, in the present invention, Sm203 (samarium oxide) powder is used as the powder.

このように1て焼紳された焼結体、は、基台との焼付や
押え板との焼付が全く生じていないか、焼付の生じる度
合いが通常の製法による場合よりも小さくなっているの
である。このため、この発明の製法によれば、焼付の生
じた部分の削除が小さくて済み、歩留りの向上にも寄与
できる。特に、薄板状成形体の場合には、成形体の厚み
が最終製品である磁石の厚みとほとんど同じくらいであ
る場合が多いので、この発明の製法によれば、薄板状成
形体を精度よく、かつ、歩留りよく焼結して薄板状磁石
を得ることができる。薄板状成形体を焼結して薄板状磁
石を得ることができれば、上記したように、スライスに
必要な切り代がなくてもよくなり、歩留りもさらによく
なる。もちろん、この発明の製法では、成形体の厚物で
あっても焼結を歩留りよく行うことができる。
The sintered body that has been sintered in this way does not seize at all with the base or the presser plate, or the degree of seizing that occurs is smaller than in the case of normal manufacturing methods. be. Therefore, according to the manufacturing method of the present invention, only a small amount of the portion where the seizure has occurred can be removed, which can also contribute to improving the yield. In particular, in the case of thin plate shaped bodies, the thickness of the formed body is often almost the same as the thickness of the final product, the magnet, so according to the manufacturing method of the present invention, the thin plate shaped bodies can be precisely Moreover, a thin plate magnet can be obtained by sintering with a high yield. If a thin plate magnet can be obtained by sintering a thin plate shaped body, as described above, there will be no need for cutting margins required for slicing, and the yield will further improve. Of course, with the manufacturing method of the present invention, even thick molded bodies can be sintered with good yield.

介在させる粉末の量が焼結体の収縮状態に大きな影響を
及ぼす。粉末粒径は5〜10μmのものが好ましく、こ
れをたとえば、300メツシユのふるいにかけて基台上
に散布するのが好ましい。
The amount of intervening powder has a large effect on the shrinkage state of the sintered body. The powder particle size is preferably 5 to 10 μm, and it is preferable to sieve the powder through a 300-mesh sieve and spread it on the base.

この時、粉末の散布量が多すぎると、通常よりも焼結体
の長手方向(加圧方向に垂直な方向)の、収縮率が低く
なり、厚み方向く加圧方向に平行な方向)の収縮率が高
くなる。また、焼結後の焼結体表面の凹凸が激しくなる
という問題も生じる。他方、介在させる粉末の量が少な
すぎると、焼結体と基台との直接接触面積が増加して焼
付が発生しやすくなる。具体的には、粉末による被覆面
積割合が、成形体と基台または押え板との対向面積の3
0〜50%位になるようにするのが好ましい。
At this time, if the amount of powder sprinkled is too large, the shrinkage rate in the longitudinal direction (perpendicular to the pressing direction) of the sintered body will be lower than usual, and the shrinkage rate in the thickness direction (direction parallel to the pressing direction) will be lower than usual. Shrinkage rate increases. Further, a problem arises in that the surface of the sintered body becomes extremely uneven after sintering. On the other hand, if the amount of intervening powder is too small, the area of direct contact between the sintered body and the base will increase, making it more likely that seizure will occur. Specifically, the ratio of the area covered by the powder is 3 of the opposing area between the compact and the base or presser plate.
It is preferable to set it to about 0 to 50%.

基台と成形体との間、成形体と押え板との間にそれぞれ
粉末を介在させる方法は、特に限定されず、適宜に行え
ばよい。たとえば、前記のような方法、成形体に粉末を
まぶすようにする方法などがある。また、介在させた粉
末は、それぞれの間で一様に分布しているのが好ましく
、一部に塊状になったりするようなことは、むしろ避け
るほうがよい。
The method of interposing the powder between the base and the molded body and between the molded body and the presser plate is not particularly limited, and may be performed as appropriate. Examples include the method described above and a method of sprinkling powder onto the molded body. Further, it is preferable that the intervening powder is uniformly distributed among the powders, and it is better to avoid clumping in some parts.

焼結を終えた焼結体は、通常の方法に従って加工されて
高性能の希土類磁石になる。
After sintering, the sintered body is processed into a high-performance rare earth magnet using conventional methods.

この発明の製法では、焼結を行う際に、焼結体と基台と
の焼付が全く生じなくなるか、通常方法に比べその頻度
が少なくなるので、歩留りよく希土類磁石を製造するこ
とができる。また、焼結体と押え板との焼付についても
、これと同様の効果がある。このため、この発明の製法
では、特に、薄板状希土類磁石を、薄板状成形体を焼結
して製造する場合に、好ましく用いられる。すなわち、
この発明の製法によれば、焼結体が基台とも押え板とも
全く焼付かずに得られ、または、焼付いたとしてもその
頻度が格段に少なく、薄板状希土類磁石が精度よく、ま
た、歩留りよく得ることができるようになるのである。
In the manufacturing method of the present invention, during sintering, seizure between the sintered body and the base does not occur at all, or occurs less frequently than in the normal method, so rare earth magnets can be manufactured with a high yield. Furthermore, the same effect can be achieved with regard to seizure between the sintered body and the presser plate. Therefore, the manufacturing method of the present invention is preferably used particularly when manufacturing a thin plate rare earth magnet by sintering a thin plate shaped body. That is,
According to the manufacturing method of the present invention, a sintered body can be obtained without seizing at all on either the base or the holding plate, or even if seizing occurs, the frequency of seizing is much lower, and thin plate-shaped rare earth magnets can be produced with high precision and high yield. You will be able to obtain it.

以下に、この発明の実施例および比較例を示す(実施例
1) Sm27wt%、  CO47,1wt%、Cu4.6
wt%、Fe18.5wt%+  Z r2.8 wt
%の組成をもつ合金粉末を用いて、つぎに示すような成
形条件で、磁場中成形した。
Examples and comparative examples of the present invention are shown below (Example 1) Sm27wt%, CO47,1wt%, Cu4.6
wt%, Fe18.5wt% + Z r2.8 wt
% of the alloy powder was molded in a magnetic field under the following molding conditions.

成形圧力・・・1ton/ad 加圧方向に平行な磁場・・・20kOe成形体寸法・・
・φ20m+m X t2mmの円板他方、板状の基台
(ステンレス5US30430w x30m X l 
w )と押え板(ステンレス5US304301ImX
30mX1顛)の上に、・Sm2O3粉末(平均粒径5
μm、純度99゜99%)を300メツシユのふるいを
用いて散布した。このとき、粉末が塊状にならないよう
に、また、全面にわたって均一に散布できるように、ふ
るいに微振動を与えて散布した。つぎに、この基台の粉
末が付着している面の上に前記成形体を置き、この上に
、前記押え板をその粉末の付着している面を下にして載
せた。
Molding pressure: 1 ton/ad Magnetic field parallel to the pressing direction: 20 kOe Molded object size:
・φ20m+m
w ) and presser plate (stainless steel 5US304301ImX
・Sm2O3 powder (average particle size 5)
μm, purity 99°99%) was dispersed using a 300 mesh sieve. At this time, the sieve was slightly vibrated to prevent the powder from clumping and to spread it uniformly over the entire surface. Next, the molded body was placed on the surface of the base to which the powder had adhered, and the pressing plate was placed thereon with the surface to which the powder had adhered facing down.

これらを1200℃で1時間焼結した。こうして得られ
た薄板状焼結体を、通常の製法に従って加工し、薄板状
の希土類磁石を得た。この製法を10回行ったところ、
焼結時に焼付が発生した個数は、2個であった。
These were sintered at 1200°C for 1 hour. The thin plate-shaped sintered body thus obtained was processed according to a conventional manufacturing method to obtain a thin plate-shaped rare earth magnet. After repeating this method 10 times,
The number of pieces in which seizure occurred during sintering was two.

(比較例1) 実施例1の製法において、焼結工程で、板状の基台(ス
テンレス5US30430n X 30wmx l a
m )に3m2 o3粉末を散布せずに直接成形体をお
いて、その上にSm2O3粉末を散布しなかった押え板
(ステンレス5US30430+n X30m+m’X
 1 m)を直接載せたほかは、実施例1と同じに行っ
て、薄板状の希土類磁石を得た。この製法は、従来法で
あるが、これを10回行ったところ、焼結時に焼付が発
生した個数は、9個であった。
(Comparative Example 1) In the manufacturing method of Example 1, a plate-shaped base (stainless steel 5US30430n x 30wmx l a
3m2 O3 powder was not sprinkled directly on the molded body, and the presser plate (stainless steel 5US30430+n X30m+m'X
A thin plate-shaped rare earth magnet was obtained in the same manner as in Example 1, except that 1 m) was directly placed on the magnet. Although this manufacturing method is a conventional method, when this was repeated 10 times, the number of pieces that suffered from seizure during sintering was 9.

実施例1と比較例1との結果を比べると、実施例1 (
すなわち、この発明の製法によったはう)が、比較例1
 (すなわち、従来法によったはう)よりも格段に焼付
発生個数が、減っているのがわかる。
Comparing the results of Example 1 and Comparative Example 1, Example 1 (
That is, the crawling produced by the production method of the present invention was found in Comparative Example 1.
It can be seen that the number of burn-in occurrences is significantly reduced compared to the conventional method.

つぎに、この発明の別の実施例を2つ示す。Next, two other embodiments of this invention will be shown.

(実施例2) 実施例1の製法において、焼結工程で、板状の基台およ
び押え板に、ステンレス5IIS304のかわりに、S
m2 o3焼結体を用いたほかは、実施例1と同様に行
って、薄板状の希土類磁石を得た。この製法を10回行
ったところ、焼結時に焼付が全く発生しなかった。よっ
て、この方法によった場合が最も焼付防止の効果が大き
いと言える。なお、この例で基台および押え板に用いた
Sm2O3焼結体は、Sm2O3粉末を成形して、15
00℃、1時間焼結することによって作製したものであ
る。
(Example 2) In the manufacturing method of Example 1, in the sintering process, S was used instead of stainless steel 5IIS304 for the plate-shaped base and presser plate.
A thin plate-shaped rare earth magnet was obtained in the same manner as in Example 1, except that the m2 o3 sintered body was used. When this manufacturing method was repeated 10 times, no seizure occurred during sintering. Therefore, it can be said that this method has the greatest anti-seizure effect. The Sm2O3 sintered body used for the base and presser plate in this example was made by molding Sm2O3 powder and
It was produced by sintering at 00°C for 1 hour.

この実施例かられかるように、希土類元素を含む粉末の
成形体を基台の上に置いて焼結したり、基台と押え板と
で挟んで焼結したりして、希土類磁石を得る場合、基台
および押え板の材質は、Sm2O3焼結体が最も好まし
い。
As can be seen from this example, a rare earth magnet is obtained by placing a powder compact containing a rare earth element on a base and sintering it, or by sandwiching it between a base and a holding plate and sintering it. In this case, the most preferable material for the base and the presser plate is Sm2O3 sintered body.

(実施例3) 実施例1の製法において、焼結工程で、Sm2O3粉末
を板状の基台および押え板に散布するかわりに、成形体
に散布したほかは、実施例1と同様に行って、薄板状の
希土類磁石を得た。この製法を10回行ったところ、焼
結時に焼付が発生した個数は、2個であり、実施例1と
同じであった。この例と実施例1かられかるように、こ
の発明の製法では、基台と成形体との間、押え板と成形
体との間にそれぞれSm2 o3粉末を介在させる方法
は、特に限定されないのである。
(Example 3) The manufacturing method of Example 1 was carried out in the same manner as in Example 1, except that in the sintering step, Sm2O3 powder was sprinkled on the molded body instead of on the plate-shaped base and presser plate. , a thin plate-like rare earth magnet was obtained. When this manufacturing method was repeated 10 times, the number of pieces in which seizure occurred during sintering was two, which was the same as in Example 1. As can be seen from this example and Example 1, in the manufacturing method of the present invention, the method of interposing the Sm2O3 powder between the base and the molded body and between the presser plate and the molded body is not particularly limited. be.

なお、この発明は、以上の実施例に限定されるものでは
ない。
Note that this invention is not limited to the above embodiments.

〔発明の効果〕〔Effect of the invention〕

Claims (3)

【特許請求の範囲】[Claims] (1)希土類元素を含む粉末の成形体を基台の上に置い
て焼結する工程を含む希土類磁石の製法において、前記
成形体と基台との間に酸化サマリウムの粉末を介在させ
て前記成形体の焼結を行うことを特徴とする希土類磁石
の製法。
(1) In a method for producing a rare earth magnet, which includes a step of placing a molded body of powder containing a rare earth element on a base and sintering it, samarium oxide powder is interposed between the molded body and the base. A method for producing rare earth magnets, which is characterized by sintering a compact.
(2)成形体が薄板状物である特許請求の範囲第1項記
載の希土類磁石の製法。
(2) The method for producing a rare earth magnet according to claim 1, wherein the molded body is a thin plate-like product.
(3)焼結が、基台と押え板とで成形体を挟んで行われ
、前記成形体と押え板との間にも酸化サマリウムの粉末
を介在させる特許請求の範囲第1項または第2項記載の
希土類磁石の製法。
(3) Sintering is performed with the molded body sandwiched between a base and a holding plate, and samarium oxide powder is also interposed between the molded body and the holding plate. The manufacturing method for rare earth magnets described in Section 1.
JP59271524A 1984-12-22 1984-12-22 Manufacture of rare earth magnet Pending JPS61148808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59271524A JPS61148808A (en) 1984-12-22 1984-12-22 Manufacture of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59271524A JPS61148808A (en) 1984-12-22 1984-12-22 Manufacture of rare earth magnet

Publications (1)

Publication Number Publication Date
JPS61148808A true JPS61148808A (en) 1986-07-07

Family

ID=17501262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59271524A Pending JPS61148808A (en) 1984-12-22 1984-12-22 Manufacture of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS61148808A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192206A (en) * 1987-02-04 1988-08-09 Mitsubishi Metal Corp Method for sintering sm-co magnet
EP1178497A2 (en) * 2000-07-31 2002-02-06 Shin-Etsu Chemical Co., Ltd. Sintered rare earth magnets and methods of preparation therefor
JP2007258377A (en) * 2006-03-22 2007-10-04 Tdk Corp Method of manufacturing rare earth sintered magnet
CN106531384A (en) * 2016-11-28 2017-03-22 宁波科星材料科技有限公司 Rare-earth-cobalt-based composite material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192206A (en) * 1987-02-04 1988-08-09 Mitsubishi Metal Corp Method for sintering sm-co magnet
EP1178497A2 (en) * 2000-07-31 2002-02-06 Shin-Etsu Chemical Co., Ltd. Sintered rare earth magnets and methods of preparation therefor
EP1178497A3 (en) * 2000-07-31 2003-02-05 Shin-Etsu Chemical Co., Ltd. Sintered rare earth magnets and methods of preparation therefor
US6623541B2 (en) 2000-07-31 2003-09-23 Shin-Etsu Chemical Co., Ltd. Sintered rare earth magnet and making method
JP2007258377A (en) * 2006-03-22 2007-10-04 Tdk Corp Method of manufacturing rare earth sintered magnet
CN106531384A (en) * 2016-11-28 2017-03-22 宁波科星材料科技有限公司 Rare-earth-cobalt-based composite material
CN106531384B (en) * 2016-11-28 2018-05-18 宁波科星材料科技有限公司 A kind of Rare-Earth Cobalt based composites

Similar Documents

Publication Publication Date Title
JP2693601B2 (en) Permanent magnet and permanent magnet raw material
JPH09174441A (en) Diamond grinding wheel peripheral cutting edge for cutting rare earth magnet
JPH1064746A (en) Method of manufacturing r-fe-b sintered magnet having thin thickness
JPS61148808A (en) Manufacture of rare earth magnet
JPS61190005A (en) Production of rare earth magnet
JP3201428B2 (en) Manufacturing method of powder for permanent magnet
JP3997527B2 (en) Method for producing Ru-Al intermetallic compound target, Ru-Al intermetallic compound target, and magnetic recording medium
JPS63236757A (en) Polycrystal ceramic product and manufacture
US4532737A (en) Method for lapping diamond
JPH0436563B2 (en)
JPH08260112A (en) Alloy thin strip for permanent magnet, alloy powder obtained from the same, magnet and production of alloy thin strip for permanent magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JPH03290906A (en) Warm-worked magnet and its manufacture
JPS61117804A (en) Mn-zn system soft ferrite and manufacture thereof
JP3125226B2 (en) Manufacturing method of rare earth metal-transition metal-boron based anisotropic sintered magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPS61130436A (en) Manufacture of rare earth metal magnet
JP2938260B2 (en) Microcrystalline ferrite
JPS61291449A (en) Manufacture of alumina sintered body
KR0122333B1 (en) Al-ni-co permanent magnet alloy producing method
JPH0350803A (en) Magnetic core
JPH0812815B2 (en) Rare earth magnet manufacturing method
JPS6396245A (en) Production of magnetic material
JPS6150309A (en) Sintered type rare-earth magnet
JPS6150310A (en) Sintered type rare-earth magnet