JPS6114798B2 - - Google Patents

Info

Publication number
JPS6114798B2
JPS6114798B2 JP9108583A JP9108583A JPS6114798B2 JP S6114798 B2 JPS6114798 B2 JP S6114798B2 JP 9108583 A JP9108583 A JP 9108583A JP 9108583 A JP9108583 A JP 9108583A JP S6114798 B2 JPS6114798 B2 JP S6114798B2
Authority
JP
Japan
Prior art keywords
epoxide
reaction
raw material
halogenated
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9108583A
Other languages
Japanese (ja)
Other versions
JPS59216594A (en
Inventor
Makoto Shintani
Keizo Furuhashi
Kifuku Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO RESEARCH CENTER CO
Original Assignee
BIO RESEARCH CENTER CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO RESEARCH CENTER CO filed Critical BIO RESEARCH CENTER CO
Priority to JP9108583A priority Critical patent/JPS59216594A/en
Publication of JPS59216594A publication Critical patent/JPS59216594A/en
Publication of JPS6114798B2 publication Critical patent/JPS6114798B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は微生物を利用してハロゲン化オレフイ
ンから相当するハロゲン化エポキシドを製造する
方法に関するものである。 従来技術 エポキシド化合物は合成樹脂、界面活性剤、医
薬、農薬をはじめとする種々の有機化学製品の製
造原料或は中間体として広範囲に利用されてい
る。 微生物を利用してエポキシドを製造する方法と
しては、Nocardia属、Mycobacterium属、
Methylococcus属、Methylosinus属、
Pseudomonas属、Corynebacterium属、
Methylobacterium属、Candida属、に属する微生
物による直鎖状オレフインからのエポキシドの生
成が知られているが、ハロゲン化エポキシドの生
産については報告がみられない。 発明の目的 本発明は上掲の微生物のうちノカルデイア属に
属するエポキシド生産菌がハロゲン化オレフイン
からも相当するハロゲン化エポキシドを生産し得
ることの知見に基いてなされたものであつて、ノ
カルデイア属に属するエポキシド生産能を有する
微生物を利用して、ハロゲン化オレフインから相
当するハロゲン化エポキシドを製造する方法を提
供することを目的とする。以下本発明を詳しく説
明する。 発明の構成と効果 本発明の構成上の特徴は、ノカルデイア属に属
するエポキシド生産能を有する微生物を、ハロゲ
ン化オレフインに好気的条件下で作用させて、生
成するハロゲン化エポキシドを分離、採取するこ
とにある。 本発明で用いられる微生物はノカルデイア属に
属するものであつて、Nocardia corallinaを例示
し得る。此の菌は工業技術院微生物工業技術研究
所にFERA−P−4094号の受理番号で、昭和52年
6月15日付けで保管されており、其の菌学的性質
については特公昭56−40号公報に詳記されてい
る。 本発明において上記微生物を利用してエポキシ
ドを生産するための反応基質に用いられるハロゲ
ン化オレフイン(以下原料オレフインと称する)
としてはハロゲン化された直鎖状又は分枝状オレ
フイン(但し二重結合の位置がいづれかの未端炭
素原子からα、β、またはγ位のオレフイン)を
含み、例えばアリルクロライド、アリルブロマイ
ド、アリルイオダイド、3−クロロ−1−ブテ
ン、3−クロロ−2メチル−プロペン、1−クロ
ロ−2−ブテン、2−フルオロプロペン、3・
3・3−トリフルオロ−プロペン等を例示し得
る。 本発明ではこれらの原料オレフインは、単独ま
たは二種以上の混合物として、或いは飽和炭化水
素や芳香族炭化水素のようなオレフイン以外の炭
化水素との混合物として反応基質に用いられる。 本発明において上記原料オレフインに前記微生
物を作用させるには、例えば、(a)該微生物を予め
培養増殖して得られる菌体に原料オレフインを好
気的条件下で接触させて反応させる方法、(b)上記
微生物を原料オレフインもしくは原料オレフイン
と他の炭素源に窒素源、無機塩類、更には必要に
応じて生長促進物質を添加してなる栄養培地中で
好気的条件下で培養させる方法を適用し得る。 上記(a)の増殖菌体に原料オレフインを接触させ
て反応させる方法では、まず炭素源として糖質例
えばグルコース、シユクロース、糖蜜、澱粉加水
分解物、セルロース加水分解物、炭化水素例えば
プロパン、ブタン、ドデカン、テトラデカン及び
そのほか酢酸の如き菌体増殖作用の高いものを用
い、これに塩化アンモニウム、硫酸アンモニウ
ム、燐酸アンモニウム、硝酸アンモニウム、尿
素、アンモニア水、アミノ酸及びその他の資化性
有機窒素化合物のような窒素源、燐酸カリウム、
燐酸ナトリウム、硫酸マグネシウム、硫酸マンガ
ン、硫酸第1鉄、塩化第2鉄、塩化カルシウム、
塩化マンガンのごとき無機塩類、更には必要に応
じてビタミン類、酵母エキス、コーンステイープ
リカーのごとき生長促進物質を添加した培地に、
ノカルデイア属に属するエポキシド生産菌の種菌
を接種し、好気的条件下で培養して菌体を増殖さ
せる。このようにして得られた菌体培養物に直接
か、又は該培養物から分離した菌体の懸濁液もし
くは菌体を固定化したものに、原料オレフイン及
び空気、酸素、酸素富化ガスのような酸素含有ガ
スを供給して反応させる。 反応はPH5〜9、好ましくは6〜8のPH領域で
20〜50℃、好ましくは25〜45℃の温度下で1〜6
日間行う。反応は通常常圧下で行われるが、加圧
化で行うことによりエポキシドの生産性を向上さ
せることも出来る。なお反応中に菌体増殖に用い
た炭素源、窒素源、更にはその他の成分を適宜添
加することにより、菌体と原料オレフインとの反
応の活性を維持し或いは高めることが出来る。反
応は回分方式又は連続方式のいずれでも実施し得
る。原料オレフインの供給は回分反応方式の場
合、全量を反応開始時に添加するほか反応中に連
続的に又は間掲的に供給することも可能である。 上記反応により反応液中に生成したエポキシド
は相分離、抽出、蒸溜等の公知の手法を適用して
分離、採取する。 次ぎに前記(b)の培養による方法は、上記(a)の方
法における菌体増殖時に原料オレフインを添加し
一段階でエポキシドの生産を図るものである。培
養条件(PH、温度、圧力等)培養方式及び生成し
たエポキシドの分離、採取は前記(a)の反応条件、
反応方式及び分離、採取方法が同様に用い得る。 本発明により得られるエポキシドはさきに言及
した従来知られている種々の用途に供することが
出来る。 以下実施例により本発明を更に具体的に説明す
る。 実施例 1 Nocardia corallina B−276(工業技術院微生
物工業技術研究所寄託番号FERM−P−4094)
の3白金耳をNBG培地(オキソイド社製、“ラブ
レンコ”パウダー、コードL29を10g、バクテリ
オロジカルペプトン、コードL37を10g、グルコ
ース10g、塩化ナトリウム5gに脱イオン水を加
えて1000mlとし、1N苛性ソーダ水溶液でPH7.5と
した後、オートクレーブ中で120℃、15分加熱殺
菌した液体培地)100mlを収容した500ml容積の坂
口フラスコに接種し、30℃で48時間振盪培養
(150回/分)した。この培養により生成した菌体
を0.01モル濃度の燐酸緩衝液(PH7.5)で1回洗
浄し、次いで下記に示す反応培地で1回洗浄後、
乾燥菌体濃度として3.8mg/mlとなる様に、下記の
反応培地に再懸濁して菌懸濁液を調製した。 反応培地 K2HPO4 1.74g MgSO4・7H2O 1.50g FeSO4・7H2O 50 mg 脱イオン水 1 PH 8.0 (PHは2N硫酸水溶液で調整した) 該菌懸濁液20ml、グルコース1ml(100mg/ml水
溶液)を内容500mlの坂口フラスコに入れて密栓
した後、ゴムパッキンをつけた注入口より第1表
に示される各原料オレフインを添加した。なお、
室温で液体の原料オレフインの場合は100μ1宛
を、室温で気体の場合は40ml(常温、常圧下)宛
を上記フラスコ内にそれぞれ圧入した。次いで30
℃、150回/分で往復振盪培養して24時間後、フ
ラスコ内の反応液上の気相1ml、反応液から1μ
及び残りの反応液を50mlジエチルエーテルで抽
出したエーテル層から1μをサンプリングして
分析した。分析にはPorapakQ(ウオーターズ・
アソシエーツ社製)80〜100メツシユを充填した
内径3mm、長さ2mのガラスカラムを備えた、日
立163型イオン化炎ガスクロマトグラフを使用し
た。反応により生成した生成物はガスクロマトグ
ラフで測定し、保持時間及びガスクロマトグラフ
に連結した質量分析計で測定した質量スペクトル
を、標準試料の保持時間及び質量スペクトルと比
較し、更に生成物を塩酸酸性下で加水分解される
ことを調べて相当するエポキシドであることを確
認した。 第1表に原料オレフインの種類と相当するエポ
キシドの生成量を示す。エポキシドの生成量はガ
スクロマトグラフイーにより定量し反応液中の濃
度として表示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a corresponding halogenated epoxide from a halogenated olefin using microorganisms. Prior Art Epoxide compounds are widely used as raw materials or intermediates for the production of various organic chemical products including synthetic resins, surfactants, medicines, and agricultural chemicals. Methods for producing epoxide using microorganisms include Nocardia spp., Mycobacterium spp.
Genus Methylococcus, Genus Methylosinus,
Pseudomonas spp., Corynebacterium spp.
It is known that microorganisms belonging to the genus Methylobacterium and Candida produce epoxides from linear olefins, but there have been no reports on the production of halogenated epoxides. Purpose of the Invention The present invention was made based on the knowledge that among the above-mentioned microorganisms, epoxide-producing bacteria belonging to the genus Nocardia can also produce corresponding halogenated epoxides from halogenated olefins. An object of the present invention is to provide a method for producing a corresponding halogenated epoxide from a halogenated olefin by using microorganisms having the ability to produce epoxides. The present invention will be explained in detail below. Structure and Effects of the Invention The structural feature of the present invention is that a microorganism belonging to the genus Nocardia that has an ability to produce epoxide is allowed to act on a halogenated olefin under aerobic conditions, and the produced halogenated epoxide is separated and collected. There is a particular thing. The microorganism used in the present invention belongs to the genus Nocardia, and can be exemplified by Nocardia corallina. This bacterium is stored at the Institute of Microbial Technology, Agency of Industrial Science and Technology with the accession number FERA-P-4094, dated June 15, 1978, and its mycological properties are published in Details are given in Publication No. 40. In the present invention, halogenated olefin (hereinafter referred to as raw material olefin) used as a reaction substrate for producing epoxide using the above-mentioned microorganisms
Examples include halogenated straight-chain or branched olefins (olefins in which the double bond is in the α, β, or γ position from any terminal carbon atom), such as allyl chloride, allyl bromide, allyl iodide, 3-chloro-1-butene, 3-chloro-2methyl-propene, 1-chloro-2-butene, 2-fluoropropene, 3.
Examples include 3,3-trifluoro-propene. In the present invention, these raw material olefins are used alone or as a mixture of two or more, or as a mixture with a hydrocarbon other than olefin, such as a saturated hydrocarbon or an aromatic hydrocarbon, as a reaction substrate. In the present invention, in order to cause the microorganism to act on the raw material olefin, for example, (a) a method in which the raw material olefin is brought into contact with bacterial cells obtained by culturing and propagating the microorganism in advance under aerobic conditions to cause a reaction; b) A method of culturing the above-mentioned microorganisms under aerobic conditions in a nutrient medium consisting of raw material olefin or raw material olefin and other carbon sources, a nitrogen source, inorganic salts, and, if necessary, a growth promoting substance. applicable. In the method of (a) above, in which the raw material olefin is brought into contact with the growing bacterial cells and reacted, first, as a carbon source, carbohydrates such as glucose, sucrose, molasses, starch hydrolyzate, cellulose hydrolyzate, hydrocarbons such as propane, butane, etc. Dodecane, tetradecane, and other substances with high bacterial growth effects such as acetic acid are used, and nitrogen sources such as ammonium chloride, ammonium sulfate, ammonium phosphate, ammonium nitrate, urea, aqueous ammonia, amino acids, and other assimilable organic nitrogen compounds are used. , potassium phosphate,
Sodium phosphate, magnesium sulfate, manganese sulfate, ferrous sulfate, ferric chloride, calcium chloride,
The medium is supplemented with inorganic salts such as manganese chloride and, if necessary, growth-promoting substances such as vitamins, yeast extract, and corn staple liquor.
An inoculum of epoxide-producing bacteria belonging to the genus Nocardia is inoculated and cultured under aerobic conditions to multiply bacterial cells. The raw material olefin and air, oxygen, or oxygen-enriched gas are added directly to the bacterial cell culture obtained in this way, or to a suspension of bacterial cells isolated from the culture, or to a suspension of bacterial cells isolated from the culture. A reaction is caused by supplying an oxygen-containing gas such as The reaction takes place in the pH range of 5 to 9, preferably 6 to 8.
1-6 at a temperature of 20-50℃, preferably 25-45℃
Do it for days. The reaction is usually carried out under normal pressure, but the productivity of epoxide can also be improved by carrying out the reaction under increased pressure. The activity of the reaction between the bacterial cells and the raw material olefin can be maintained or increased by appropriately adding the carbon source, nitrogen source, and other components used for bacterial growth during the reaction. The reaction can be carried out either batchwise or continuously. In the case of a batch reaction method, the raw material olefin can be supplied in its entirety at the start of the reaction, or can be supplied continuously or intermittently during the reaction. The epoxide produced in the reaction solution by the above reaction is separated and collected by applying known techniques such as phase separation, extraction, and distillation. Next, the culture method (b) is a method in which raw material olefin is added during bacterial growth in the method (a) to produce epoxide in one step. The culture conditions (PH, temperature, pressure, etc.), the culture method, and the separation and collection of the generated epoxide are based on the reaction conditions described in (a) above.
Reaction schemes and separation and collection methods can be similarly used. The epoxide obtained by the present invention can be used in the various conventionally known uses mentioned above. The present invention will be explained in more detail with reference to Examples below. Example 1 Nocardia corallina B-276 (Agency of Industrial Science and Technology, Institute of Microbial Technology, deposit number FERM-P-4094)
Three platinum loops were mixed with NBG medium (manufactured by Oxoid, "Lavrenko" powder, 10 g of code L29, 10 g of bacteriological peptone, code L37, 10 g of glucose, 5 g of sodium chloride, and deionized water was added to make 1000 ml, and 1N caustic soda aqueous solution was added. The mixture was inoculated into a 500 ml Sakaguchi flask containing 100 ml of a liquid medium (liquid medium) which had been heated to 7.5 in an autoclave at 120°C for 15 minutes, and cultured with shaking (150 times/min) at 30°C for 48 hours. The bacterial cells produced by this culture were washed once with a 0.01 molar phosphate buffer (PH7.5), and then once with the reaction medium shown below.
A bacterial suspension was prepared by resuspending the cells in the following reaction medium to a dry bacterial cell concentration of 3.8 mg/ml. Reaction medium K 2 HPO 4 1.74 g MgSO 4・7H 2 O 1.50 g FeSO 4・7H 2 O 50 mg Deionized water 1 PH 8.0 (PH was adjusted with 2N sulfuric acid aqueous solution) 20 ml of the bacterial suspension, 1 ml of glucose ( A 100 mg/ml aqueous solution) was placed in a 500 ml Sakaguchi flask and the flask was tightly stoppered, and each raw material olefin shown in Table 1 was added through an injection port equipped with a rubber gasket. In addition,
In the case of raw material olefin that is liquid at room temperature, 100 μl of the material was pressurized into the above-mentioned flask, and in the case of gaseous material at room temperature, 40 ml (at room temperature and under normal pressure) of the raw material was injected into the flask. then 30
After 24 hours of culturing with reciprocating shaking at 150 times/min at ℃, 1 ml of the gas phase above the reaction solution in the flask and 1μ
The remaining reaction solution was extracted with 50 ml of diethyl ether, and 1 μm of the ether layer was sampled and analyzed. PorapakQ (Waters) was used for analysis.
A Hitachi model 163 ionizing flame gas chromatograph equipped with a glass column of 3 mm in inner diameter and 2 m in length packed with 80 to 100 mesh (manufactured by Associates, Inc.) was used. The product produced by the reaction was measured with a gas chromatograph, and the retention time and mass spectrum measured with a mass spectrometer connected to the gas chromatograph were compared with the retention time and mass spectrum of a standard sample. It was confirmed that it was a corresponding epoxide. Table 1 shows the types of raw material olefins and the corresponding amounts of epoxide produced. The amount of epoxide produced was determined by gas chromatography and expressed as the concentration in the reaction solution. 【table】

Claims (1)

【特許請求の範囲】 1 ノカルデイア属に属するエポキシド生産能を
有する微生物をハロゲン化オレフインに好気的条
件下で作用させ、生成するハロゲン化エポキシド
を分離、採取することを特徴とするエポキシドの
製造方法。 2 ノカルデイア属に属するエポキシド生産能を
有する微生物がNocardia corallinaである特許請
求の範囲第1項記載の製造方法。
[Scope of Claims] 1. A method for producing epoxide, which comprises allowing a microorganism belonging to the genus Nocardia to produce epoxide to act on a halogenated olefin under aerobic conditions, and separating and collecting the produced halogenated epoxide. . 2. The manufacturing method according to claim 1, wherein the microorganism having epoxide-producing ability belonging to the genus Nocardia is Nocardia corallina.
JP9108583A 1983-05-24 1983-05-24 Production of epoxide using microorganism Granted JPS59216594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9108583A JPS59216594A (en) 1983-05-24 1983-05-24 Production of epoxide using microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9108583A JPS59216594A (en) 1983-05-24 1983-05-24 Production of epoxide using microorganism

Publications (2)

Publication Number Publication Date
JPS59216594A JPS59216594A (en) 1984-12-06
JPS6114798B2 true JPS6114798B2 (en) 1986-04-21

Family

ID=14016677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9108583A Granted JPS59216594A (en) 1983-05-24 1983-05-24 Production of epoxide using microorganism

Country Status (1)

Country Link
JP (1) JPS59216594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194198A (en) * 1989-12-21 1991-08-23 Mitsui Miike Mach Co Ltd Axial flow fan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194198A (en) * 1989-12-21 1991-08-23 Mitsui Miike Mach Co Ltd Axial flow fan

Also Published As

Publication number Publication date
JPS59216594A (en) 1984-12-06

Similar Documents

Publication Publication Date Title
Weijers et al. Enantiomeric composition of lower epoxyalkanes produced by methane-, alkane-, and alkene-utilizing bacteria
USRE30872E (en) Process for producing 2-keto-L-gulonic acid
JPH0440994B2 (en)
JPS6114799B2 (en)
JPS6114798B2 (en)
DE3785537T2 (en) MICROORGANISM AND METHOD FOR PRODUCING OXYDATION COMPOUNDS WITH THIS MICROORGANISM.
US2776926A (en) Preparation of alpha-ketoglutaric acid by serratia marcescens
JPS6121078B2 (en)
EP1550730B1 (en) Method for producing optically active 3-chloro-2-methyl-1,2-propanediol taking advantage of microorganism
JPS6350996B2 (en)
JP4475407B2 (en) Process for producing optically active 3-chloro-2-methyl-1,2-propanediol using microorganisms
JPH06303967A (en) New microorganism and preparation of nootkatone using the microorganism
JPS6269993A (en) Production of optically active alpha-monochlorohydrin by bacterium treatment
JPS6023839B2 (en) Epoxide production method using microorganisms
JPS6342518B2 (en)
JP2563074B2 (en) Process for producing natural β-phenethyl alcohol
JPH0151999B2 (en)
JPS6314951B2 (en)
JPS6262158B2 (en)
JPS6350995B2 (en)
JPH067798B2 (en) Microbial production of ethylene
JPS6122958B2 (en)
JPS6337632B2 (en)
JPS6350997B2 (en)
JPH0561915B2 (en)