JPS6114740A - Bonding pad - Google Patents

Bonding pad

Info

Publication number
JPS6114740A
JPS6114740A JP59134868A JP13486884A JPS6114740A JP S6114740 A JPS6114740 A JP S6114740A JP 59134868 A JP59134868 A JP 59134868A JP 13486884 A JP13486884 A JP 13486884A JP S6114740 A JPS6114740 A JP S6114740A
Authority
JP
Japan
Prior art keywords
bonding
axis
pad
width
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59134868A
Other languages
Japanese (ja)
Other versions
JPH0530062B2 (en
Inventor
Zensaku Watanabe
渡辺 善作
Hitoshi Chiyoma
仁 千代間
Kuniaki Kida
木田 国明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59134868A priority Critical patent/JPS6114740A/en
Publication of JPS6114740A publication Critical patent/JPS6114740A/en
Publication of JPH0530062B2 publication Critical patent/JPH0530062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49431Connecting portions the connecting portions being staggered on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49433Connecting portions the connecting portions being staggered outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85206Direction of oscillation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/858Bonding techniques
    • H01L2224/8585Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/85855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To bond onto a thick film conductor in high reliability and to improve the productivity by forming the deforming width and length of the second bond respectively wired in a perpendicular direction to a supersonic horn axis and in the axial direction of the horn axis as the optimum thick conductor bonding pad shape ratio. CONSTITUTION:In a bonding pad for a fine Au wire thermonic bonding to a t hick film condcutor, the pad shape ratio Fr1 (the size of the pad in the axial direction of the horn/the size of the pad in a perpendicular direction of the horn axis) of the perpendicular direction X-X to the supersonic born axis is 1.4 or higher, and Y-Y pad shape rate Fr2 of the supersonic horn axis is 1.2 or higher. This is because the bonding strength ratio of the X-X direction depends upon the deforming width, and when the width is small, it is not bonded, or bond lift is presented. On the contrary, if the width is excess, the bonding strength extremely decrease. The bonding strength ratio of Y-Y axis depends upon the deforming length Lr, there is a trend similar to that in the X-X direction.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、金融機器等に用いられる密着型イメージセ
ンサやファクシミリ等に用いられるサーマルプリンティ
ングヘッド等の厚膜導体のゴンディングノe、ドに関ス
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to the bonding of thick film conductors such as contact image sensors used in financial instruments, thermal printing heads used in facsimiles, etc. .

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般にAu細線を用いたサーモソニック方式ワイヤデン
ディングは、デンディング時の低温化や、第1接続点と
なるAu&−ル作製の容易さから高密度実装を必要とす
る密着型イメージセンサやサーマルプリンテ(ングヘッ
ドに多用されている。
In general, thermosonic wire ending using thin Au wire is used for contact image sensors and thermal printers that require high-density mounting due to the lower temperature during the bending and the ease of fabricating the Au wire that serves as the first connection point. It is often used for writing heads.

ここでは5金融機器としての紙幣鑑査機に用いられてい
る密着型イメージセンサについて説明するが、この密着
型イメージセンサは第1図に示すように構成されている
Here, a close-contact type image sensor used in a banknote inspection machine as a financial instrument will be explained, and this close-contact type image sensor is configured as shown in FIG.

即ち、第1図中、1はガラス基板等の高抵抗基板上に膜
技術によって一列に高密度に並べた複数の光電変換素子
であり、2は上記光電変換素子1からの光電変換信号に
応答し、信号処理回路等から力る光電変換素子駆動用集
積回路である。3は光電変換素子1の一端10を共通接
続した共通電極、4は光電変換素子1を集積回路2を通
じて選択的に通電し読取りをするための入力信号群であ
る。尚、光電変換素子1の矢印は、光信号を意味する。
That is, in FIG. 1, 1 is a plurality of photoelectric conversion elements that are arranged in a line with high density using film technology on a high-resistance substrate such as a glass substrate, and 2 is a photoelectric conversion element that responds to a photoelectric conversion signal from the photoelectric conversion element 1. This is an integrated circuit for driving a photoelectric conversion element that receives power from a signal processing circuit or the like. 3 is a common electrode to which one end 10 of the photoelectric conversion element 1 is commonly connected; 4 is a group of input signals for selectively energizing and reading the photoelectric conversion element 1 through the integrated circuit 2; Note that the arrow on the photoelectric conversion element 1 means an optical signal.

又、上記光電変換素子1の他端11は、選択的に出力さ
れる集積回路2の出力端子21に対応するように接続さ
れている。5は集積回路2の出力信号用端子、6は集積
回路2への電源である。このようにして紙幣鑑査機の読
取りは、所望の光電変換素子1を選択的に通電させて行
なわれる。
Further, the other end 11 of the photoelectric conversion element 1 is connected to correspond to the output terminal 21 of the integrated circuit 2 from which output is selectively output. 5 is an output signal terminal of the integrated circuit 2, and 6 is a power supply to the integrated circuit 2. In this manner, reading by the bill validator is performed by selectively energizing desired photoelectric conversion elements 1.

このような密着型イメージセンサでは、光電変換素子の
数が数百から数十個と多数であるため、駆動回路の集積
化を図り、外部周辺回路の低減を図っている。この場合
に問題となるのは、使用される集積回路の出力が多いた
め、その周辺全ての辺(4辺)に入出力取出し用メンデ
ィングツ平、ドを配置しなければならないことである。
In such a contact type image sensor, the number of photoelectric conversion elements is large, ranging from several hundreds to several tens, and therefore, the drive circuit is integrated to reduce the number of external peripheral circuits. The problem in this case is that since the integrated circuit used has a large number of outputs, mending boards for input/output extraction must be placed on all sides (four sides) around the integrated circuit.

これに伴ない光電変換素子1と接続される配線22は、
集積回路2の出力端子21に対応した位置に、ワイヤボ
ンディングの第2接続点が配置されることになる。尚、
ワイヤボンディングはその修繕が容易さ等による自由度
の高い実装技術であることから、一般的に用いられてい
る。又、集積回路2のメンディングパット側をワイヤボ
ンディング時の第1接続点にするのは、集積回路2への
機械的ダメージを与えないために、通常一般的に採用さ
れている。又、出力端子21の数は、経済性を考慮して
8〜128の出力数のものを使用している。従って、上
記光電変換素子1は8〜128個単位にて集積回路2の
出力端子21と接続されることになる。
Accordingly, the wiring 22 connected to the photoelectric conversion element 1 is
A second connection point for wire bonding is placed at a position corresponding to the output terminal 21 of the integrated circuit 2. still,
Wire bonding is commonly used because it is a mounting technique with a high degree of freedom due to its ease of repair. Further, it is generally adopted to use the mending pad side of the integrated circuit 2 as the first connection point during wire bonding in order to prevent mechanical damage to the integrated circuit 2. Further, the number of output terminals 21 is 8 to 128 in consideration of economical efficiency. Therefore, the photoelectric conversion elements 1 are connected to the output terminal 21 of the integrated circuit 2 in units of 8 to 128 pieces.

さて、第2図(、)は、第1図の密着型イメージセンサ
の回路構成の集積回路2周辺の一部を拡大した平面図で
ある。図中、31は集積回路2上に設けられた入力信号
用ゾンデイングツ9.ドであり、32も同様に設けられ
た出力信号用デンディング・fラドである。又、33は
入力信号用厚膜導体・母ターン3!lに設けられた厚膜
導体のポンプイングツ’? ラドであり、34も同様で
出力信号用厚膜導体パターン34′に設けられたポンプ
イングツ量、ドである。更に35は集積回路2のポンプ
イングツ?、ド31.32と入出力信号用がンディング
ノ4 yド33,34との結MK用いるAu細線である
。尚、厚膜導体はその生産性が高いことから入出力信号
用配線材料として多用されている。
Now, FIG. 2(,) is a plan view showing a part of the periphery of the integrated circuit 2 of the circuit configuration of the contact type image sensor shown in FIG. 1 in an enlarged manner. In the figure, reference numeral 31 indicates input signal probes 9.31 provided on the integrated circuit 2. 32 is a similarly provided output signal ending frad. Also, 33 is the input signal thick film conductor/mother turn 3! Thick film conductor pumpings installed in l? Similarly, 34 is the amount of pumping provided on the output signal thick film conductor pattern 34'. Furthermore, 35 is the pumping part of integrated circuit 2? , 31, 32 and the input/output signals are connected to the terminal 4, y, 33, 34 using MK thin Au wires. Note that thick film conductors are frequently used as wiring materials for input/output signals because of their high productivity.

次に第2図(b)は(&)の断面図であり、36は厚膜
導体34’、37が印刷されたアルミナ基板、37は集
積回路2載置用ダイパツド、38は集積回路2を上記グ
イ・膏ッド37上に接着取付けるための接着材である。
Next, FIG. 2(b) is a cross-sectional view of (&), where 36 is a thick film conductor 34', 37 is a printed alumina substrate, 37 is a die pad for mounting the integrated circuit 2, and 38 is a die pad for mounting the integrated circuit 2. This is an adhesive for adhesively attaching it to the above-mentioned goo pad 37.

尚、図示していないが、上記入出力信号以外に電源用パ
ッド、配線も同時に設けられている。更に、このように
結線された後、やはり図示していないが、高分子系材料
によるAu細線、集積回路及び厚膜導体の機械的保護を
兼ねたパッジページ、ン及び財源構造がとられて密着型
イメージセンサは構成されている。   。
Although not shown, in addition to the above-mentioned input/output signals, power supply pads and wiring are also provided at the same time. Furthermore, after the wires are connected in this way, although not shown in the drawings, a padding structure made of a polymeric material that also serves as mechanical protection for the Au thin wire, integrated circuit, and thick film conductor, and a financial structure are taken to ensure close contact. The type image sensor is configured. .

ところで従来、ワイヤボンディングとしては、接着材及
び集積回路等への熱的ストレスを与えないため、低温化
が可能なサーモソニ、り方式ワイヤデンディングが採用
されている。しかし、この方式は超音波振動の発生源と
して厚み縦振動を利用した圧電素子を用いていることか
ら、機械的振動そのものに指向性がある。
Conventionally, as wire bonding, thermosonic wire bonding, which can be lowered in temperature, has been adopted because it does not apply thermal stress to adhesives, integrated circuits, and the like. However, since this method uses a piezoelectric element that utilizes thickness longitudinal vibration as a source of ultrasonic vibration, the mechanical vibration itself has directionality.

このようなことから4辺にHζンディングノ母ツドを有
する集積回路のデンディング/’P yドと、これに相
対応して配設されセカンドボンド側となる厚膜導体のゲ
ンディングtJ?ツドとを結線するとき、超音波ホーン
軸方向の一軸のデンディング条件が採用されると、その
直角方向においてはデンディングがされなかったシ、逆
に超音波ホーン軸に直角方向の一軸のがンデイング条件
が採用されると、超音波ホーン軸方向のセカンド?ンド
部のワイヤ変形量が異常に大きくなるため、そのデンド
ネ、り部か弱くなりゼンディング強度が低いものであっ
た。又、超音波出力の指向性を考慮したセカンド側がン
ディング/4 yド形状となってい々いため、特に第2
図(a)のように全てのセカンp /4 yド形状が同
一だったりして、高密度に配線されるものに至っては、
そのスペースファクタが悪いばか)でなく、第3図(、
)に示すように矢印方向で示す超音波ホーン軸方向が短
辺となったセカンド側ポンプイングツ臂、ドとなってい
た。又、極端な場合は、第3図(b)に示すように隣接
ワイヤ間において、超音波出力の指向性を考慮した・9
ツド形状及び配置になっていないため、接触不良を起こ
すなどのボンディング不良が発生していた。尚、第3図
中、第2図と同一箇所は同一符号を設けている。
For this reason, the ending /'P y of an integrated circuit having Hζ bonding nodes on four sides, and the ending tJ? of a thick film conductor arranged correspondingly to the second bond side. If a uniaxial dending condition in the direction of the ultrasonic horn axis is adopted when connecting to the When the bending condition is adopted, the second axial direction of the ultrasonic horn? Since the amount of wire deformation at the end portion was abnormally large, the deformation and bending portions were weakened and the strength of the wire was low. In addition, since the second side takes into consideration the directivity of the ultrasonic output, it has an ending/four-way shape.
As shown in figure (a), all the secondary p/4 y shapes are the same, and when it comes to high-density wiring,
That space factor is bad (Idiot), but not in Figure 3 (,
), the short side of the ultrasonic horn was in the direction of the axis of the ultrasonic horn, as indicated by the arrow. In extreme cases, as shown in Figure 3(b), between adjacent wires, the directivity of the ultrasonic output should be considered.
Due to the improper shape and placement of the tubes, bonding failures such as poor contact occurred. In addition, in FIG. 3, the same parts as in FIG. 2 are provided with the same symbols.

以上のことを含め、数百から数千本にわたってワイヤポ
ンディングされた密着型イメージセンサはボンディング
不8に起因する不良が多発し、セカンドがンドとなる厚
膜導体側のポンドはぐり、♂ンディング強度弱、等の初
期不良を含め信頼性の低いものであった。又、このよう
な状態でパターン認識技術をとう載したフルオートボン
ダを利用しても、その不良が発生するたびにボンダが停
止するので、機械稼動率が低いという問題があった。更
に、デンディング強度が低いため、後工程等での作業に
慎重さが要求され、生産性が悪いことは説明する迄も々
い。
Including the above, contact type image sensors that are wire bonded over hundreds to thousands of wires often have defects due to poor bonding, and the second bond is the pound peeling off on the thick film conductor side, and the bonding strength is high. The reliability was low, including initial failures such as weak and weak. Further, even if a fully automatic bonder equipped with pattern recognition technology is used in such a state, the bonder stops every time a defect occurs, resulting in a low machine operating rate. Furthermore, since the bending strength is low, careful work is required in post-processing, etc., and it is difficult to explain that productivity is poor.

(発明の目的〕 この発明の目的は、上記問題点を解消し、厚[導体上で
のプント剥離が発生せず、がンディング強度が向上し、
信頼性高くフルオートボンダに適した極めて生産性の高
いワイヤデンディングをする場合に、サーモンニック方
式ワイヤ?ンダの超音波振動の指向性を考慮した♂ンデ
ィングノ平、ドを提供することである。
(Objective of the Invention) The object of the present invention is to solve the above-mentioned problems, to improve the thickness [Punt peeling on the conductor does not occur, and to improve the bonding strength].
Salmonic method wire for highly reliable and highly productive wire endings suitable for fully automatic bonders? The object of the present invention is to provide a female conductor that takes into consideration the directivity of ultrasonic vibrations of the conductor.

〔発明の概要〕[Summary of the invention]

この発明は、発明者らは、サーモソニック方式ボンダの
超音波出力及び印加時間を種々変えて、超音波ホーン軸
方向及びこれに直角方向にワイヤリングしてがンディン
グ強度に最も大きく影響を与えるセカンドボンド部のワ
イヤ変形量、デンディング強度、セカンドボンド部離の
プントリフトの発生具合等について検討し、上記この発
明の目的を達成すべく鋭意研究した結果、超音波ホーン
軸の直角方向については、ワイヤ変形幅Wr (ワイヤ
変形幅/ワイヤ直径)が3.5 (Wr≦4.5、ホー
ン軸方向についてはワイヤ変形長Lr (ワイヤ変形長
/ワイヤ直径)が3.0 (Lr≦3.5の範囲内が望
ましいことを見出している。更にこの発明は、この変形
幅、変形長に適した・母、ド形状比Frは超音波ホーン
軸に直角方向の・やラド形状比Frx (ホーン軸方向
の〕4ラド寸法/ホーン軸に直角方向の・母、ド寸法)
が1.4以上、超音波ホーン軸方向のパッド形状比Fr
sが1.2以上であることを見出しこの発明を完成した
。尚、この発明のポンディングi4 yドは、超音波ホ
ーン軸と、これに直角の両軸方向へワイヤリングするも
のであるばかりでなく、どちらか一方向軸へワイヤリン
グするもののボンディングノ母ツドであってもよい。
In this invention, the inventors changed the ultrasonic output and application time of a thermosonic type bonder and wired the second bond in the axial direction of the ultrasonic horn and in the direction perpendicular to this to have the greatest effect on the bonding strength. As a result of intensive research to achieve the above-mentioned object of the present invention, we investigated the amount of wire deformation at the end, the bending strength, the degree of occurrence of punch lift when the second bond part separates, etc., and found that the wire deformation in the direction perpendicular to the ultrasonic horn axis was The width Wr (wire deformation width/wire diameter) is 3.5 (Wr≦4.5, and in the horn axial direction, the wire deformation length Lr (wire deformation length/wire diameter) is 3.0 (Lr≦3.5 range). Furthermore, the present invention has found that the radius shape ratio Fr suitable for the deformation width and deformation length is the radius shape ratio Frx in the direction perpendicular to the ultrasonic horn axis. 〕4 Rad dimension/Dimension in the direction perpendicular to the horn axis)
is 1.4 or more, the pad shape ratio Fr in the axial direction of the ultrasonic horn
They found that s is 1.2 or more and completed this invention. The bonding i4y board of the present invention is not only a bonding node for wiring in both directions perpendicular to the ultrasonic horn shaft, but also a bonding node for wiring in one direction. It's okay.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明のボンディングノ母、ドヲ実施例によっ
て詳説するが、超音波出力、印加時間を種々変えてワイ
ヤデンディングを行ないセカンドボンド部のワイヤ変形
幅と長さの関係及び超音波ホーン軸に直角方向及びホー
ン軸方向のそれぞれの軸についてデンディングされない
割合、ポンディング強度比率と変形幅、変形長について
調べたものを以下に説明する。
The bonding method of the present invention will be explained in detail below with reference to examples, but wire endings were carried out by varying the ultrasonic output and application time, and the relationship between the wire deformation width and length of the second bond part and the ultrasonic horn axis were investigated. The results obtained by examining the non-dending ratio, pounding strength ratio, deformation width, and deformation length for each axis in the direction perpendicular to the direction and in the horn axial direction will be explained below.

即ち、第4図は発明者がこの実験に用いたサ一モソニッ
ク方式デンダ(型名SWB −FA−UTC−7((社
)折用製)の概略平面図である。図中、51は超音波ホ
ーン52を移動ならしめるx−y移動台である。この超
音波ホーン52のX−Y移動台51端側には、図示して
いないが、厚み縦振動を利用した圧電素子が取付けられ
ており、これより発生した超音波振動は超音波ホーン5
2を伝導し、その先端に設けられているワイヤ圧接工具
(以下キャピラリと呼ぶ)53に伝えられる。又、54
はワイヤデンディングされる試料を載置搬送可能なフィ
ーダである。尚、この試料は、図示していないが、ボン
ディング時に超音波振動等により動かないように、ホー
ルダによシ機械的にフィーダ上面に固定されている。
That is, FIG. 4 is a schematic plan view of a thermosonic type dender (model name: SWB-FA-UTC-7 (manufactured by Oryo Co., Ltd.) used by the inventor in this experiment. In the figure, 51 is a This is an x-y moving table that moves the sonic horn 52. Although not shown, a piezoelectric element that utilizes thickness longitudinal vibration is attached to the end side of the X-y moving table 51 of this ultrasonic horn 52. The ultrasonic vibrations generated from this are transmitted through the ultrasonic horn 5.
2 and is transmitted to a wire pressure welding tool (hereinafter referred to as a capillary) 53 provided at its tip. Also, 54
is a feeder on which a sample to be wire-ended can be placed and transported. Although not shown, this sample is mechanically fixed to the top surface of the feeder by a holder so that it does not move due to ultrasonic vibration or the like during bonding.

ここで圧電素子で発生した超音波振動が伝導される方向
、即ち超音波ホーン軸方向をY−Y軸とし、これに垂直
方向をX−X方向とする。
Here, the direction in which ultrasonic vibrations generated by the piezoelectric element are transmitted, that is, the axial direction of the ultrasonic horn, is defined as the Y-Y axis, and the direction perpendicular to this is defined as the XX direction.

次に第5図はセカンドがンド部の概略説明図である0図
中、61はAu線の外観を保っている部分、62はキャ
ピラリ53によって抑圧がンドされた所で、ポンディン
グ強度にはさほど影響を与えない部分、63はこの変形
度合によりポンディング強度に大きく与えるセカンドが
ンドネ、り部である。又5Wは上記変形度合を表わすた
めに用いた変形幅領域を示し、Lはその変形長さを表わ
すために用いた領域を示している。以下、このW、Lを
ワイヤ径にて除し、基準化したものをそれぞれワイヤ変
形幅、ワイヤ変形長と呼ぶ。
Next, FIG. 5 is a schematic explanatory diagram of the second bonded portion. In FIG. The part 63 that does not have much influence is the second part that greatly affects the pounding strength depending on the degree of deformation. Further, 5W indicates the deformation width area used to express the degree of deformation, and L indicates the area used to express the deformation length. Hereinafter, these W and L are divided by the wire diameter and the standardized values are referred to as wire deformation width and wire deformation length, respectively.

さて、実験結果を数多くの実施例及び参考例について示
すと、上記第1表乃至第4表のようになるが、先ず実施
例1〜9及び参考例1〜25について説明する。
Now, the experimental results for a number of Examples and Reference Examples are shown in Tables 1 to 4 above. First, Examples 1 to 9 and Reference Examples 1 to 25 will be explained.

即ち、Ag/Pd/Pt系導体ペースト(す4093、
デュポン製)を96%アルミナ基板にスクリーン印刷し
、乾燥後、最高温度850℃、保持時間10分の連続炉
にて焼成し、導体幅0.5■、導体間スペース0.5■
の厚膜導体基板を得て、ワイヤボンディング用試料とし
た。この試料に直径30μmAu線(FAタイプ、日中
電子工業(株)製)を先端角度30°のキャピラリ(型
名1572−20−437P、がイブ製)を用い、サー
モンニ、り方式デンダでx−X方向、Y−Y方向に&ン
ト9間距離1−のワイヤデンディングを行なった。この
とき、ファスト側がンディング条件はセカンド側の超音
波出力、印加時間のボンディング条件が種々変化しても
?ンド剥離等の初期不良が発生しないように充分大きな
超音波出力11v、印加時間20m5@−に設定した。
That is, Ag/Pd/Pt based conductor paste (S4093,
DuPont) was screen printed on a 96% alumina substrate, and after drying, it was fired in a continuous furnace at a maximum temperature of 850°C and a holding time of 10 minutes, resulting in a conductor width of 0.5cm and a space between conductors of 0.5cm.
A thick film conductive substrate was obtained and used as a wire bonding sample. Using a capillary with a tip angle of 30° (model name 1572-20-437P, manufactured by Eve), a 30 μm diameter Au wire (FA type, manufactured by Nichiden Denshi Kogyo Co., Ltd.) was attached to this sample, and x- Wire endings were carried out in the X direction and the Y-Y direction with a distance of 1- between the two ends. At this time, what are the bonding conditions on the fast side even if the bonding conditions such as the ultrasonic output and application time on the second side vary? The ultrasonic output was set to be sufficiently large at 11 V and the application time was set to 20 m5@- so that initial defects such as bond peeling did not occur.

又、Mンド荷重はテンシ、ンダーゾにて測定し、30〜
401試料ノステ一ジ温度は160℃一定にて行なった
In addition, the M-do load is measured with tensile strength and durometer, and is 30~
401 Sample storage temperature was kept constant at 160°C.

第1表及び第2表、中はどまでにX−X方向に超音波出
力10〜20v5印加時間15〜35maeaまで種々
変化させて得られた試料群34種類を示す。セカンド部
デンディングカサれない割合は、ボンディング終了直後
に顕微鏡観察にて数え、総ワイヤリング数で除して算出
した。同時にワイヤ変形量は幅Wと長さ■、を測長器(
型名SRC−1610M、三層工業(株)製)を用い、
顕微鏡下100倍にて測定し、ワイヤ直径にて除して基
準化した。更にデンディング強度は、デンディング後、
24時間自然放置したものを引張試験機(型名MP−■
、ユニテ、り製)を用いて、プント間の中央位置を引張
り測定した。同時にセカンドプント部のAu線と厚膜導
体界面から剥離するゼンドリフトを数え、引張シワイヤ
総数で除してその割合を算出した。尚、がンディング強
度比率は、Au線の平均破断荷重16Iで除した比率で
ある。これらの測定結果を第1表及び第2表の中はどに
示す。
Tables 1 and 2 show 34 types of sample groups obtained by varying the ultrasonic output in the XX direction from 10 to 20 V5 and the application time from 15 to 35 maea. The percentage of the second part that was not covered was calculated by observing it under a microscope immediately after bonding and dividing it by the total number of wiring rings. At the same time, the amount of wire deformation is determined by measuring the width W and length ■ with a length measuring device (
Using the model name SRC-1610M (manufactured by Sanrai Kogyo Co., Ltd.),
It was measured under a microscope at 100 times magnification and standardized by dividing by the wire diameter. Furthermore, the dending strength is
Tensile tester (model name MP-■
The central position between the Puntos was measured by tension using a 3D model (manufactured by , Unite, and Co., Ltd.). At the same time, the Zen drifts peeled off from the interface between the Au wire and the thick film conductor in the second punt part were counted, and the ratio was calculated by dividing by the total number of tensile shears. Note that the bonding strength ratio is the ratio divided by the average breaking load of the Au wire, 16I. These measurement results are shown in Tables 1 and 2.

次に実施例10〜37及び参考例26〜52について説
明する。
Next, Examples 10 to 37 and Reference Examples 26 to 52 will be described.

上記と同様に、Y−Y方向についても超音波出力6〜1
5v、印加時間5〜35 ms@eまで種々変化させ、
同一方法にて評価した。との結果を第2表の中はどから
第4表に示す。ここでX−X方向、Y−Y方向で超音波
出力及び印加時間の相違は、上記に説明してきたように
超音波出力に指向性があり、X−X方向はデンディング
され難く、Y−Y方向はぎンディングされ易いことを示
す。
Similarly to the above, the ultrasonic output is 6 to 1 in the Y-Y direction.
5V, application time varied from 5 to 35 ms@e,
It was evaluated using the same method. The results are shown in Table 4 from Table 2. Here, the difference in ultrasonic output and application time in the X-X direction and the Y-Y direction is that, as explained above, the ultrasonic output has directivity, and the X-X direction is less likely to be bent, and the Y- The Y direction indicates that ginning is likely to occur.

又、第6図及び第7図には、それぞれX−X方向、Y−
Y方向のワイヤ変形量について横軸を変形幅、縦軸を変
形量として示す。図中、会印は第1表から第4表におい
てデンディングされ麦い割合、?ンドリフトの割合がそ
れぞれ零のものであることを示し、○印は両者かどちら
か一方に上記不良現象が現われたことを示す。
Moreover, in FIGS. 6 and 7, the X-X direction and the Y-
Regarding the amount of wire deformation in the Y direction, the horizontal axis represents the deformation width and the vertical axis represents the deformation amount. In the figure, the percentage of Kaiin that is dented in Tables 1 to 4 is ? This indicates that the drift rate is zero, and the circle mark indicates that the above-mentioned defective phenomenon has appeared in one or both of them.

〜18− これらの図から判るようにX−X方向のワイヤリングに
おいては、そのセカンドプント部のワイヤ変形量は幅方
向、即ち超音波出力の指向性の強い側に大きく変形し、
Y−Y方向については逆にその長さ方向に大きく変形し
ている。又X−X方向については変形量、Y−Y方向に
ついては変形幅がそれぞれ2.5前後に集中し、超音波
出力の指向性が弱い方向はキャピラリ先端のワイヤ抑圧
部寸法(約65μm)にだけ依存していることである。
~18- As can be seen from these figures, in wiring in the X-X direction, the amount of wire deformation at the second punt part is largely deformed in the width direction, that is, on the side where the directivity of the ultrasonic output is strong,
On the contrary, in the Y-Y direction, there is a large deformation in the length direction. In addition, the amount of deformation in the X-X direction and the width of deformation in the Y-Y direction are concentrated around 2.5, respectively, and in the direction where the directivity of the ultrasonic output is weak, the size of the wire suppression part at the tip of the capillary (approximately 65 μm) It's just that it depends.

又、第8図はX−X方向の変形幅と・ぐラド形状比Fr
!を横軸、ビンディング強度比率を縦軸に、第9図には
Y−Y方向の変形量と・豐ツド形状比Frsを横軸、ビ
ンディング強度比率を縦軸としてそれぞれ示す。尚、図
中・印、○印の内容は上記第6図、第7図と同じである
In addition, Figure 8 shows the deformation width in the X-X direction and the gradient shape ratio Fr.
! In FIG. 9, the amount of deformation in the Y-Y direction and the widthwise shape ratio Frs are shown on the horizontal axis, and the binding strength ratio is shown on the vertical axis. The contents of the marks and circles in the figure are the same as in Figs. 6 and 7 above.

第8図よりX−X方向のポンディング強度比率は変形幅
に依存し、変形幅が小さいとデンディングされなかった
り、?ンドリフトが現われ、逆に変形幅が大き過ぎると
極度にがンディング強度が低下する。このことよシ、X
−X方向については、ノンディング強度が大きく、ノン
ディングされないなどの初期不良及びがンドリフトが発
生しない変形幅Wr領領域3.5 (Wr≦4.5とな
る。そして上記したX−X方向の超音波出力の指向性が
弱い方向である変形量は2.5前後であることから、ノ
ンディングの最適変形幅との比Fr1をとると、1.4
〜1.8となる。即ち、X−X方向における超音波出力
の指向性を考慮したセカンド側のポンプイングツ母、ド
形状比Frxは1.4以上あれば問題ないととになる。
From Figure 8, the pounding strength ratio in the X-X direction depends on the deformation width, and if the deformation width is small, dending may not occur. Drift appears, and conversely, if the deformation width is too large, the bonding strength is extremely reduced. This is it, X
In the −X direction, the nonding strength is large, and the deformation width Wr region 3.5 (Wr≦4.5) where initial failures such as nonding and drift do not occur. Since the amount of deformation in the direction where the directivity of the ultrasonic output is weak is around 2.5, the ratio Fr1 to the optimal deformation width of nonding is 1.4.
~1.8. That is, if the shape ratio Frx of the pumping point on the second side, taking into consideration the directivity of the ultrasonic output in the XX direction, is 1.4 or more, there is no problem.

次に第9図よりY−Y軸のノンディング強度比率は変形
量Lrに依存し、X−X方向と同様の傾向があり、その
最適範囲は3.0(Lr≦3.5であり、変形幅(約2
.5)との比をとると、1.2〜1.4となる。即ち、
Y−Y方向についてのノンディング・母、ド形状比Fr
sは、1.2以上あればよいことになる。
Next, from FIG. 9, the nonding strength ratio in the Y-Y axis depends on the amount of deformation Lr, and has the same tendency as in the X-X direction, and its optimal range is 3.0 (Lr≦3.5, Deformation width (about 2
.. 5), the ratio is 1.2 to 1.4. That is,
Nonding shape ratio Fr in Y-Y direction
It is sufficient that s is 1.2 or more.

以上、超音波出力、印加時間を種々変え、そのときのボ
ンディング初期不良、デンドリアトが発生しないセカン
ドポンド部の変形量を算出し、その結果より超音波出力
の指向性を考慮したセカンド側♂ンディングノ9ッド形
状比をX−X方向、Y−Y方向のそれぞれについて規定
した。
As described above, by varying the ultrasonic output and application time, we calculated the amount of deformation of the second pound part where initial bonding defects and dendriat do not occur, and from the results, we calculated the amount of deformation of the second bonding part that takes into account the directivity of the ultrasonic output. The 9D shape ratio was defined for each of the X-X direction and the Y-Y direction.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、超音波ホーン軸に直角方向(x−X
方向)、ホーン軸方向(Y−Y方向)別々にワイヤリン
グされたワイヤの最も弱い部分であるセカンドポンド部
の変形幅及び長さを考慮し、これに最適な厚膜導体のポ
ンプイングツ量、ド形状比としているので、厚膜導体上
への極めて高信頼にてノンディングができるばかυでな
く、ポンプを停止させることも危く、生産性の向上を計
れる効果を有している。
According to this invention, the direction perpendicular to the ultrasonic horn axis (x-X
direction), the horn axis direction (Y-Y direction), and the deformation width and length of the second pound part, which is the weakest part of the wires wired separately, and the pumping amount and shape of the thick film conductor that is optimal for this. Since it is a ratio, it is possible to perform non-ding on thick film conductors with extremely high reliability, and it is also dangerous to stop the pump, so it has the effect of improving productivity.

又、この発明で限定したボンディングノ4.ド形状比に
することにより、セカンドプント部形部がノ平、ドより
はみ出すことが危くなり、隣接パッドとの短絡事故を防
止できるばかりでなく、特にX−X方向における隣接間
のワイヤ接触もIンディングノ9ツド間が適正に保たれ
るので、減少する。
Furthermore, the bonding method 4 limited in this invention. By setting the shape ratio to 1, it is possible to prevent the second punch part from protruding beyond the 2nd pad, which not only prevents short-circuit accidents with adjacent pads, but also prevents wire contact between adjacent pads, especially in the X-X direction. Also, the distance between the input nodes is maintained at an appropriate level, so the amount decreases.

尚、上記実施例では厚膜導体としてAg/Pd/pt系
のものを用いたが、他の厚膜導体に適応しても、同様効
果が望めることは言う迄もない。
In the above embodiment, an Ag/Pd/pt based thick film conductor was used, but it goes without saying that similar effects can be expected even if other thick film conductors are used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は密着型イメージセンサを説明する回路図、第2
図及び第3図は密着型イメージセンサに使用させる集積
回路近傍の一部拡大図、第4図はサーモソニック方式が
ンダの概略説明図、第5図はセカンドポンド部を説明す
る概略図、第6図はポンプの超音波ホーン軸に直角方向
のセカンドプント部のワイヤ変形幅と変形量の関係を示
す特性図、第7図はポンプの超音波ホーン軸方向のセカ
ンドポンド部のワイヤ変形幅と変形量の関係を示す特性
図、第8図はポンプの超音波ホーン軸に直角方向のセカ
ンドポンド部の変形幅とがンディング強度比率の関係を
示す特性図、第9図はポンプの超音波ホーン軸方向のセ
カンドポンド部の変形量とゼンデイング強22一 度比率の関係を示す特性図である。 第1図 第 2 図 (a) (b) 第40図 X    X 第5図 第6図 変叫 食Y′/幅 第7図 党焉長
Figure 1 is a circuit diagram explaining the contact type image sensor, Figure 2 is a circuit diagram explaining the contact type image sensor.
3 and 3 are partially enlarged views of the vicinity of the integrated circuit used in the contact image sensor, FIG. Figure 6 is a characteristic diagram showing the relationship between the wire deformation width and the amount of deformation in the second pound part in the direction perpendicular to the ultrasonic horn axis of the pump, and Figure 7 shows the relationship between the wire deformation width and the deformation amount in the second pound part in the axial direction of the pump's ultrasonic horn. A characteristic diagram showing the relationship between the amount of deformation, Figure 8 is a characteristic diagram showing the relationship between the deformation width of the second pound section in the direction perpendicular to the axis of the ultrasonic horn of the pump, and the bending strength ratio, and Figure 9 is a characteristic diagram showing the relationship between the deformation width of the second pound section in the direction perpendicular to the axis of the ultrasonic horn of the pump, and Figure 9 is the characteristic diagram of the ultrasonic horn of the pump. FIG. 3 is a characteristic diagram showing the relationship between the amount of deformation of the second pound portion in the axial direction and the 22-degree ratio of the bending strength. Figure 1 Figure 2 (a) (b) Figure 40

Claims (1)

【特許請求の範囲】[Claims] 厚膜導体へのAu細線サーモニック方式ボンディング用
のボンディングパッドにおいて、超音波ホーン軸に直角
方向のパッド形状比Fr_1(ホーン軸方向のパッド寸
法/ホーン軸に直角方向のパッド寸法)が1.4以上、
超音波ホーン軸方向のパッド形状比Fr_2が1.2以
上であることを特徴とするボンディングパッド。
In a bonding pad for Au thin wire thermonic bonding to a thick film conductor, the pad shape ratio Fr_1 in the direction perpendicular to the ultrasonic horn axis (pad dimension in the horn axis direction/pad dimension in the direction perpendicular to the horn axis) is 1.4. that's all,
A bonding pad characterized in that a pad shape ratio Fr_2 in the axial direction of an ultrasonic horn is 1.2 or more.
JP59134868A 1984-06-29 1984-06-29 Bonding pad Granted JPS6114740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59134868A JPS6114740A (en) 1984-06-29 1984-06-29 Bonding pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134868A JPS6114740A (en) 1984-06-29 1984-06-29 Bonding pad

Publications (2)

Publication Number Publication Date
JPS6114740A true JPS6114740A (en) 1986-01-22
JPH0530062B2 JPH0530062B2 (en) 1993-05-07

Family

ID=15138349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134868A Granted JPS6114740A (en) 1984-06-29 1984-06-29 Bonding pad

Country Status (1)

Country Link
JP (1) JPS6114740A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199228A (en) * 1981-06-02 1982-12-07 Toshiba Corp Wire bonding pad device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199228A (en) * 1981-06-02 1982-12-07 Toshiba Corp Wire bonding pad device

Also Published As

Publication number Publication date
JPH0530062B2 (en) 1993-05-07

Similar Documents

Publication Publication Date Title
US5574311A (en) Device having pins formed of hardened mixture of conductive metal particle and resin
CN101467051B (en) Probe card
US6713881B2 (en) Semiconductor device and method of manufacturing same
JPH0563020B2 (en)
US6523733B2 (en) Controlled attenuation capillary
US20090308911A1 (en) Wire bonding capillary tool having multiple outer steps
US6497356B2 (en) Controlled attenuation capillary with planar surface
JP3893624B2 (en) Semiconductor device substrate, lead frame, semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
US6321969B1 (en) Efficient energy transfer capillary
US8746849B2 (en) Liquid discharge head and method for manufacturing the same
EP2167269B1 (en) Wire bonding capillary tool having multiple outer steps
JPS6114740A (en) Bonding pad
JP2727970B2 (en) Bonding tool
US20060091535A1 (en) Fine pitch bonding pad layout and method of manufacturing same
JPS6114732A (en) Wire bonding method
JP2012039032A (en) Capillary for wire bonding device and ultrasonic transducer
JP2010129922A (en) Method of manufacturing semiconductor laser
JPS60176245A (en) Wire bonding method
US7279706B2 (en) Semiconductor device with electrode pad having probe mark
TWI231367B (en) Method for checking the quality of a wedge bond
JP2889800B2 (en) Imaging device
US11901327B2 (en) Wire bonding for semiconductor devices
JP2645235B2 (en) Wire bonding method
JPH05102384A (en) Method of manufacturing resin sealing type semiconductor device
US8535986B2 (en) Method of packaging an integrated circuit using a laser to remove material from a portion of a lead frame

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees