JPS61146799A - Single crystal wafer of lithium tantalate - Google Patents

Single crystal wafer of lithium tantalate

Info

Publication number
JPS61146799A
JPS61146799A JP26804584A JP26804584A JPS61146799A JP S61146799 A JPS61146799 A JP S61146799A JP 26804584 A JP26804584 A JP 26804584A JP 26804584 A JP26804584 A JP 26804584A JP S61146799 A JPS61146799 A JP S61146799A
Authority
JP
Japan
Prior art keywords
wafer
point
single crystal
lithium tantalate
tantalate single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26804584A
Other languages
Japanese (ja)
Other versions
JPH053438B2 (en
Inventor
Akifumi Yoshida
吉田 紀史
Masaaki Iguchi
雅章 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP26804584A priority Critical patent/JPS61146799A/en
Publication of JPS61146799A publication Critical patent/JPS61146799A/en
Publication of JPH053438B2 publication Critical patent/JPH053438B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce cracks and chips formed in a polishing process and in the formation of a device and to improve the yield by chamfering the specified region of the peripheral edge part of a lithium tantalate single crystal wafer. CONSTITUTION:The peripheral edge part of the lithium tantalate single crystal wafer corresponding to DELTAPXY at the cross section of the water in the thickness direction is chamfered. In this case, point P is the vertex of the edge part, and X is in a line linking point P and the central point O of the wafer and at the distance of 0.1t<=X<=1.5t (t is the thickness of the wafer) from the point P. Point Y is on line of the thickness direction and at the distance of 0.1t<=Y<=t/2 from the point P. The cracks and especially chips having >=0.1mm size are never generated in the obtained lithium tantalate single crystal wafer, when the crystal is lapped by abrasive grains and polished or used for the formation of the device.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はタンタル酸リチウム単結晶ウェーハの周囲エツ
ジ部分の特定領域を面取り加工してなる該ウェーハに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a lithium tantalate single crystal wafer obtained by chamfering a specific region of the peripheral edge portion of the wafer.

(従来の技術) タンタル酸リチウム単結晶は表面が研磨されたウェーハ
としてSAWデバイス等各種デバイス用に提供されてい
るが、チョクラルスキー法により引上げ製造されたタン
タル酸リチウム単結晶をスライスして得たウェーハは、
従来、面取り加工が施されずにそのまま研磨工程、さら
にはデバイス作成工程に供されていた。
(Prior art) Lithium tantalate single crystals are provided as wafers with polished surfaces for use in various devices such as SAW devices. The wafer is
Conventionally, the material was subjected to the polishing process and further to the device manufacturing process without being chamfered.

しかし、結晶の(102)面がへきかい面であり。However, the (102) plane of the crystal is a cleavage plane.

エツジ部からクラックが入りやすく小片のかけを発生し
やすいため1歩留りが低い欠点があった。
Cracks tend to occur at the edges, and small pieces tend to break off, resulting in a low yield.

(発明の構成) 本発明者らはタンタル酸リチウム単結晶ウェーハについ
て1周囲エツジ部分の特定領域を面取り加工することに
より、′@磨工程さらにデバイス作成時にクラックが入
ったりかけが生じたりすることが大幅に少なくなり1歩
留りが格段に向上することを見出し本発明を完成した。
(Structure of the Invention) The present inventors have chamfered a specific region of the peripheral edge portion of a lithium tantalate single crystal wafer to prevent cracks and chips from occurring during the polishing process and during device fabrication. The present invention was completed based on the discovery that the amount was significantly reduced and the yield was significantly improved.

すなわち本発明は、タンタル酸リチウム単結晶ウェーへ
の周囲エツジ部分を、ウェーへの厚さ方向断面において
、エツジ部頂点Pと、P点とウェーハ中心点○との線上
でP点から 0.1 t  ≦ X≦1.5を (t:ウェーハの厚さ)の範囲内の距離にある点Xと、
P点から厚さ方向の線上で 0.1 t  ≦Y≦ t/2 の範囲内の距離にある点Yとを結ぶΔPXY相当部分で
面取り加工してなることを特徴とするタンタル酸リチウ
ム単結晶ウェーハに関するものである。
That is, in the present invention, the peripheral edge portion of a lithium tantalate single crystal wafer is separated by 0.1 from point P on the line between the edge apex P, the point P, and the wafer center point ○ in the cross section in the thickness direction of the wafer. t ≦ X ≦ 1.5 with a point X located at a distance within the range of (t: wafer thickness),
A lithium tantalate single crystal characterized by being chamfered at a portion corresponding to ΔPXY connecting point P to point Y located at a distance within the range of 0.1 t≦Y≦t/2 on a line in the thickness direction. It concerns wafers.

以下添付図面に基づいて詳しく説明する。A detailed explanation will be given below based on the attached drawings.

第1図はタンタル酸リチウム単結晶ウェーハの厚さ方向
断面を示したものである。同図においてPはウェーハの
円周エツジ部分の頂点、0はウェーハの中心点、tはウ
ェーハの厚さをそれぞれ示す、そしてXはP点とウェー
ハ中心点0を結ぶ線上にあって、かつP点から0.1 
t  ≦X≦1.5 tの範囲内の距離にあり、またY
はP点からウェーハ厚さ方向の線上にあって、かつP点
がら0.1t≦Y≦ t/2の距離にある0本発明はX
およびYがかかる条件を満足する特定領域であるΔPX
Y相当のウェーハエツジ部分を円周全体にわたって面取
り加工することを特徴とする。この場合線分X−Yは直
線状もしくは弧状のいずれでもよい(後記第2図、第3
図参照)。
FIG. 1 shows a cross section in the thickness direction of a lithium tantalate single crystal wafer. In the figure, P is the apex of the circumferential edge portion of the wafer, 0 is the center point of the wafer, t is the thickness of the wafer, and X is on the line connecting point P and wafer center point 0, and 0.1 from point
t ≦X≦1.5 The distance is within the range of t, and Y
is on a line in the wafer thickness direction from point P, and is at a distance of 0.1t≦Y≦t/2 from point P.
and ΔPX, where Y is a specific area that satisfies such conditions.
The wafer edge portion corresponding to Y is chamfered over the entire circumference. In this case, the line segment X-Y may be linear or arcuate (see Figures 2 and 3 below).
(see figure).

第2図、第3図は本発明になる面取り加工されたウェー
ハの具体例を示したものであり、第2図は線分x−Y相
当部分が直線状であり、また第3図では弧状となってい
る。第2図、第3図において傘印を付した曲折部はなめ
らかに削り取ることが望ましい、なお、ウェーハの少な
くとも上面あるいは上面と下面の両方の円周エツジ部分
を面取り加工するが、この面取り形状は両面において同
形であってもまた異なっていてもよい。
Figures 2 and 3 show specific examples of chamfered wafers according to the present invention. In Figure 2, the portion corresponding to the line segment It becomes. In Figures 2 and 3, it is desirable to scrape off the bent portions marked with umbrella marks smoothly.Also, at least the circumferential edges of the upper surface or both the upper and lower surfaces of the wafer are chamfered, but this chamfered shape is The shapes may be the same or different on both sides.

本発明において、ウェーハの面取り加工はタンタル酸リ
チウム単結晶を内周刃等を用いてスライスして得たウェ
ーハの円周エツジ部分をたとえば研磨皿および砥粒(a
 C# tooo等)を用いて削り取る方法により行わ
れるが、もちろん他の方法で行ってもよい。
In the present invention, chamfering of a wafer is performed by slicing a lithium tantalate single crystal using an inner circumferential blade or the like, and cutting the circumferential edge portion of the wafer using a polishing plate and abrasive grains (a).
C# toooo, etc.), but other methods may of course be used.

本発明になるタンタル酸リチウム単結晶ウェーハは、砥
粒によりラッピング工程、研磨工程、さらにSAWデバ
イス等のデバイス作成工程において、クラックが入った
り特に0.1■よりも大きいかけが生じたりすることが
なく、シたがって従来の面取り加工が施こされていない
タンタル酸リチウム単結晶ウェーハに比べて、高い歩留
りを達成することができる。
The lithium tantalate single crystal wafer of the present invention does not suffer from cracks or chips larger than 0.1 cm due to abrasive grains during the lapping process, polishing process, and device fabrication process such as SAW devices. Therefore, a higher yield can be achieved compared to lithium tantalate single crystal wafers that are not chamfered.

つぎに具体的実施例をあげる。Next, a specific example will be given.

声施例I X軸引上げタンタル酸リチウム単結晶(直径3インチ)
を0.7am厚さにスライスしてウェーハを作り、これ
を7ORの研磨皿およびG C#100Gの砥粒を用い
て、第2図に示す断面形状となるように、ハントラッピ
ング面取り加工を施こした。
Voice Example I X-axis pulled lithium tantalate single crystal (3 inches in diameter)
A wafer was made by slicing it to a thickness of 0.7 am, and this was subjected to a hunt wrapping chamfering process using a 7OR polishing plate and G C#100G abrasive grains so that it had the cross-sectional shape shown in Figure 2. I strained it.

上記のようにして面取り加工を施こしたウェーハについ
て、G C111000の砥粒を用いて両面ラッピング
を行い、ついでコロイダルシリカによる片面研磨加工を
行って厚さ0.5mのタンタル酸リチウム単結晶ウェー
ハを得、これを用いてSAWデバイス素子を作った。こ
のラッピング工程、研磨工程、およびデバイス素子作成
工程において0.1閣よりも大きいかけ(チップ)の発
生は皆無であり1面取り加工を施こさなかった場合に比
べて、歩留りが著しく向上した。
The wafers chamfered as described above were lapped on both sides using G C111000 abrasive grains, and then polished on one side with colloidal silica to form lithium tantalate single crystal wafers with a thickness of 0.5 m. This was used to fabricate a SAW device element. In this lapping process, polishing process, and device element fabrication process, there were no chips larger than 0.1 mm, and the yield was significantly improved compared to the case where one chamfering process was not performed.

実施例2 実施例1と同様にしてスライスして得たウェーハ(厚さ
0.5■)について、固定砥粒(1600)を用いた面
取り加工機を使用して第3図に示す断面形状となるよう
に加工を施こした。
Example 2 A wafer (thickness: 0.5 mm) obtained by slicing in the same manner as in Example 1 was cut into a cross-sectional shape as shown in FIG. 3 using a chamfering machine using fixed abrasive grains (1600). It has been processed to look like this.

このようにして面取り加工されたウェーハは。The wafer was chamfered in this way.

その後のラッピング工程、研磨工程、デバイス素子作成
工程において0.11よりも大きいかけを発生すること
がなく、すぐれたものであった。
In the subsequent lapping process, polishing process, and device element fabrication process, no chipping larger than 0.11 occurred, which was excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタンタル酸リチウム単結晶ウェーハについて、
面取り部分を説明するための、ウェーハ厚さ方向の断面
図を示したものであり、また第2図および第3図は本発
明のなる面取り加工されたウェーハの一部断面図を例示
したものである。
Figure 1 shows a lithium tantalate single crystal wafer.
This is a cross-sectional view in the wafer thickness direction for explaining the chamfered portion, and FIGS. 2 and 3 are partial cross-sectional views of the chamfered wafer according to the present invention. be.

Claims (1)

【特許請求の範囲】 1、タンタル酸リチウム単結晶ウェーハの周囲エッジ部
分を、ウェーハの厚さ方向断面において、エッジ部頂点
Pと、P点とウェーハ中心点Oとの線上でP点から 0.1t≦X≦1.5を (t:ウェーハの厚さ)の範囲内の距離にある点Xと、
P点から厚さ方向の線上で 0.1t≦Y≦t/2 の範囲内の距離にある点Yとを結ぶΔPXY相当部分で
面取り加工してなることを特徴とするタンタル酸リチウ
ム単結晶ウェーハ。
[Claims] 1. The peripheral edge portion of a lithium tantalate single crystal wafer is measured from point P on the line between the edge apex P and the point P and the center point O of the wafer in a cross section in the thickness direction of the wafer. 1t≦X≦1.5 with a point X located at a distance within the range of (t: wafer thickness),
A lithium tantalate single crystal wafer characterized by being chamfered at a portion corresponding to ΔPXY connecting point P to point Y located at a distance within the range of 0.1t≦Y≦t/2 on a line in the thickness direction. .
JP26804584A 1984-12-19 1984-12-19 Single crystal wafer of lithium tantalate Granted JPS61146799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26804584A JPS61146799A (en) 1984-12-19 1984-12-19 Single crystal wafer of lithium tantalate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26804584A JPS61146799A (en) 1984-12-19 1984-12-19 Single crystal wafer of lithium tantalate

Publications (2)

Publication Number Publication Date
JPS61146799A true JPS61146799A (en) 1986-07-04
JPH053438B2 JPH053438B2 (en) 1993-01-14

Family

ID=17453111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26804584A Granted JPS61146799A (en) 1984-12-19 1984-12-19 Single crystal wafer of lithium tantalate

Country Status (1)

Country Link
JP (1) JPS61146799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061974A1 (en) * 2018-09-27 2020-04-02 盐城市振弘电子材料厂 Lithium tantalate single crystal rod

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144269A (en) * 1976-05-27 1977-12-01 Mitsubishi Metal Corp Method of chamfering single crystal wafers
JPS54129995A (en) * 1978-03-31 1979-10-08 Jiekoo Kk Method of trimming crystal plate
JPS55113332A (en) * 1979-02-23 1980-09-01 Hitachi Ltd Manufacture of wafer
JPS55165638A (en) * 1979-06-13 1980-12-24 Nec Kyushu Ltd Semiconductor wafer
JPS59188921A (en) * 1983-04-12 1984-10-26 Nec Corp Manufacture of dielectric isolation substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144269A (en) * 1976-05-27 1977-12-01 Mitsubishi Metal Corp Method of chamfering single crystal wafers
JPS54129995A (en) * 1978-03-31 1979-10-08 Jiekoo Kk Method of trimming crystal plate
JPS55113332A (en) * 1979-02-23 1980-09-01 Hitachi Ltd Manufacture of wafer
JPS55165638A (en) * 1979-06-13 1980-12-24 Nec Kyushu Ltd Semiconductor wafer
JPS59188921A (en) * 1983-04-12 1984-10-26 Nec Corp Manufacture of dielectric isolation substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061974A1 (en) * 2018-09-27 2020-04-02 盐城市振弘电子材料厂 Lithium tantalate single crystal rod

Also Published As

Publication number Publication date
JPH053438B2 (en) 1993-01-14

Similar Documents

Publication Publication Date Title
EP0393951B1 (en) Semiconductor silicon wafer and manufacturing method thereof
US4756796A (en) Method of producing wafer
JPS5958827A (en) Semiconductor wafer and method and apparatus for manufacturing semiconductor wafer
JP3328193B2 (en) Method for manufacturing semiconductor wafer
WO2021153120A1 (en) Indium phosphide substrate
WO2021019886A1 (en) Indium phosphide substrate and method for producing indium phosphide substrate
JPS61146799A (en) Single crystal wafer of lithium tantalate
KR102537794B1 (en) Indium phosphide substrate and manufacturing method of indium phosphide substrate
US20030181023A1 (en) Method of processing silicon single crystal ingot
KR100375173B1 (en) Method for cropping a single crystal ingot and slicing wafer using thereof
JPS5821039B2 (en) Inner peripheral diamond blade
US6390889B1 (en) Holding strip for a semiconductor ingot
JP7271468B2 (en) Grinding method of sapphire substrate
JP6906080B2 (en) Indium phosphide substrate
JP6906079B2 (en) Indium phosphide substrate
SU1314401A1 (en) Method of cutting monocrystal ingots
JPS59129669A (en) Inner peripheral edge diamond grindstone
JPH0443734B2 (en)
JP3854353B2 (en) Wafer manufacturing method and semiconductor device manufacturing method
JP2971049B2 (en) Single crystal wafer and method for manufacturing the same
JPH07283176A (en) Polishing method of semiconductor wafer
JPH02212075A (en) Grindstone plate
JPS58110500A (en) Production of single crystal wafer
JPH08267445A (en) Inner peripheral abrasive wheel
JP2000124520A (en) Piezoelectric single crystal wafer for pseudo-elastic surface wave device and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term