JPH0443734B2 - - Google Patents

Info

Publication number
JPH0443734B2
JPH0443734B2 JP57189661A JP18966182A JPH0443734B2 JP H0443734 B2 JPH0443734 B2 JP H0443734B2 JP 57189661 A JP57189661 A JP 57189661A JP 18966182 A JP18966182 A JP 18966182A JP H0443734 B2 JPH0443734 B2 JP H0443734B2
Authority
JP
Japan
Prior art keywords
blade
thin
thickness
cutter blade
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57189661A
Other languages
Japanese (ja)
Other versions
JPS5981063A (en
Inventor
Toshihiko Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tottori Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tottori Sanyo Electric Co Ltd
Priority to JP18966182A priority Critical patent/JPS5981063A/en
Publication of JPS5981063A publication Critical patent/JPS5981063A/en
Publication of JPH0443734B2 publication Critical patent/JPH0443734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/12Cut-off wheels
    • B24D5/126Cut-off wheels having an internal cutting edge

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は特に化合物半導体の単結晶の切断に好
適な内周刃式のカツタ刃に関する。
The present invention particularly relates to an inner peripheral cutter blade suitable for cutting single crystals of compound semiconductors.

【従来の技術】[Conventional technology]

従来第1図に示すように、半導体単結晶6をウ
エハに切り出す際に、ドーナツ状をした円板の内
径周縁に刃を有したカツタ刃10(いわゆる内周
刃式ダイヤモンドブレード)を利用していた。こ
のようなカツタ刃は内径形状が真円に近くないと
刃の寿命や切削速度に影響を及ぼすが、カツタ刃
を真円に近づける条件としてカツタ刃10の取
付治具11の精度及び取付方法、切削対象材料
(主に硬度)に対する切削剤微粉末粒径及び回転
速度(又は切削速度)及び切りくずの除去量、
内径大きさに対する刃の厚み、の3点を考慮して
行う事とされていた。このうちは取付時のカツ
タ刃の真円度ならびに張力を調整するもので比較
的容易に行え、に関しては半導体材料や刃厚が
定まれば自ずと好ましい回転速度が与えられ、シ
リコン等に比べてはるかにもろい−族化合物
の場合は周速度10mないし20m/分である。
Conventionally, as shown in FIG. 1, when cutting a semiconductor single crystal 6 into wafers, a cutter blade 10 (so-called inner peripheral diamond blade) having a blade on the inner circumference of a donut-shaped disk is used. Ta. If the inner diameter of such a cutter blade is not close to a perfect circle, it will affect the lifespan and cutting speed of the blade, but the conditions for making the cutter blade close to a perfect circle are the accuracy and mounting method of the mounting jig 11 of the cutter blade 10, Cutting agent fine powder particle size, rotation speed (or cutting speed) and amount of chips removed for the material to be cut (mainly hardness),
Three points were to be taken into consideration: the thickness of the blade relative to the inner diameter size. Among these, adjusting the roundness and tension of the cutter blade at the time of installation is relatively easy, and once the semiconductor material and blade thickness are determined, a preferable rotation speed will be automatically given, and it is much faster than silicone etc. In the case of brittle compounds, the circumferential speed is 10 to 20 m/min.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところでこのようなカツタ刃において、内径が
大きくなると刃渡りが長くなるから寿命が長くな
るかというとそうでもなく、カツタ刃の母材であ
るステンレスに加わる力により回転中に内周が楕
円形となつて、刃に対する力の加わり方が不均一
となるから寿命はかえつて短くなる。しかし半導
体単結晶の大径化、作業のしやすさから内径が大
きい方がよい。この場合はカツタ刃の刃厚が厚く
なり、例えば内径が100mmのとき母材厚み60μm
(刃厚み180μm)であるが、内径が184mmになる
と母材厚みは160μm(刃厚み280μm)が必要と
なる。 一方切り出されたウエハは200ないし400μmの
厚みであるからカツタ刃が厚いと切りしろがウエ
ハと同程度の単結晶量になつてしまい歩留まりが
悪い。これは高価な化合物半導体はもちろん廉価
な単元素結晶でも同様である。本発明は上述の点
を考慮してなされたもので、切削速度が早く寿命
が長く刃厚が薄くかつ製造し易いカツタ刃を提供
するものである。
By the way, with such cutter blades, the larger the inner diameter, the longer the length of the blade, which does not necessarily mean that the life will be longer.The inner circumference becomes oval during rotation due to the force applied to the stainless steel, which is the base material of the cutter blade. As a result, the force applied to the blade becomes uneven, which shortens its life. However, for the sake of increasing the diameter of semiconductor single crystals and ease of work, it is better to have a larger inner diameter. In this case, the blade thickness of the cutter blade becomes thicker, for example, when the inner diameter is 100mm, the base material thickness is 60μm.
(blade thickness: 180 μm), but when the inner diameter becomes 184 mm, the base material thickness needs to be 160 μm (blade thickness: 280 μm). On the other hand, since the cut wafer has a thickness of 200 to 400 μm, if the cutter blade is thick, the cutting margin will be the same amount of single crystal as the wafer, resulting in poor yield. This applies not only to expensive compound semiconductors but also to inexpensive single-element crystals. The present invention has been made in consideration of the above-mentioned points, and provides a cutter blade that has a fast cutting speed, a long life, a thin blade thickness, and is easy to manufacture.

【課題を解決するための手段】 本発明は上述の課題を解決するために、ドーナ
ツ状円板の内径周縁に肉薄部を形成し、その肉薄
部の端縁に連なりかつその肉薄部より肉厚の径大
部を形成し、肉薄部と径大部にダイヤモンド粒子
を略一定の厚さに電着するものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention forms a thin part on the inner periphery of a donut-shaped disk, and has a structure that is continuous with the edge of the thin part and has a thickness greater than that of the thin part. A large-diameter portion is formed, and diamond particles are electrodeposited to a substantially constant thickness on the thin-walled portion and the large-diameter portion.

【作用】[Effect]

上述の様に肉薄部の端縁に肉厚の径大部を連ね
てカツタ刃の端縁近くに段差を形成し、この段差
を利用して切りくずの流れをよくすることによつ
て、切削速度が早く寿命も長くなる。
As mentioned above, the thick, large-diameter part is connected to the edge of the thin part to form a step near the edge of the cutter blade, and this step is used to improve the flow of chips. Faster speed and longer life.

【実施例】【Example】

最初に実施例を説明する前に、第2図により本
発明の基になつた構成を説明する。厚さ110μm
のステンレスからなるドーナツ状円板1の内径周
縁にはエツチングにより厚さ60μmの肉薄部2が
長さ200μmにわたつて設けてある。平均粒径65μ
mのダイヤモンド粒子3はニツケル4を用いて肉
薄部2に電着してある。これにより有効刃厚は
190μmとなつている。このように肉薄部2を設
けて刃厚を薄くして、切りしろを減らすという効
果が得られる。 次に本発明の実施例を第3図の断面図に従い説
明する。第2図と対応するところには同一の番号
が付してある。異なるのは肉薄部12の厚さが
40μmである事と、肉薄部12の端縁に階段状に
連なりかつそれより肉厚の径大部5(厚さ60μ
m)を設けたことである。この刃の有効刃厚は
190μmである。また径大部5の厚さは肉薄部1
2の厚さと略同一から1.8倍の間がよく、有効刃
厚は300μm以下がよい。このようにカツタ刃全
体の断面形状を径大部5では厚く、肉薄部12で
は薄さを略平行に維持することにより、この両者
の段差を利用して、切りくずの流れがよくなる。
故にカツタ刃の回転を早めることができる。 次に本実施例のカツタ刃の実験結果を具体的に
例示する。従来有効刃厚み250μmで内径150mmの
カツタ刃を用いて、ガリウム燐単結晶を切断する
時に1枚当り8分の速度で3000枚切断できた。そ
して第2図のカツタ刃(同一内径)では1枚当り
5分と速くなり、5000枚の切断ができた。これに
対して本実施例のカツタ刃(同一内径)のカツタ
刃では1枚当り2分の速度で10000枚切断できる。 またダイヤモンド粒子は大きい方が回転速度を
速める事ができかつ寿命が長い。例えば本実施例
のカツタ刃に於て、平均粒径60μmのものと65μ
mのものでは1枚当りの速度で1.5分、切断可能
枚数は約1.8ないし2.2倍に及ぶ。そして第2図の
カツタ刃に於て、結晶の切りくずの中に切りくず
粒径は略同一でも切れたものではなく割れたもの
が混じる。それに対して本実施例に於てダイヤモ
ンド粒子を70μm以上にすると、切りくずの中に
割れたものが混じらないのでさらに望ましい。
Before explaining the embodiments, the configuration on which the present invention is based will be explained with reference to FIG. Thickness 110μm
A thin portion 2 having a thickness of 60 .mu.m and a length of 200 .mu.m is provided by etching on the inner circumferential edge of a donut-shaped disk 1 made of stainless steel. Average particle size 65μ
Diamond particles 3 of m are electrodeposited on the thin portion 2 using nickel 4. As a result, the effective blade thickness is
It is 190μm. In this way, by providing the thin wall portion 2, the thickness of the blade is reduced, and the effect of reducing the cutting margin can be obtained. Next, an embodiment of the present invention will be described with reference to the sectional view of FIG. The same numbers are given to the parts corresponding to those in FIG. 2. The difference is the thickness of the thin section 12.
40 μm, and a large diameter portion 5 (thickness 60 μm) that is continuous in a step-like manner at the edge of the thin wall portion 12 and is thicker than the edge of the thin wall portion 12.
m) was established. The effective blade thickness of this blade is
It is 190 μm. Also, the thickness of the large diameter portion 5 is the same as that of the thin portion 1.
The thickness is preferably between approximately the same as No. 2 and 1.8 times, and the effective blade thickness is preferably 300 μm or less. In this way, by keeping the cross-sectional shape of the entire cutter blade thick in the large-diameter portion 5 and thin in the thin-walled portion 12 so as to be substantially parallel, the flow of chips is improved by utilizing the difference in level between the two.
Therefore, the rotation of the cutter blade can be accelerated. Next, the experimental results of the cutter blade of this example will be specifically illustrated. Conventionally, using a cutter blade with an effective blade thickness of 250 μm and an inner diameter of 150 mm, it was possible to cut 3000 pieces at a speed of 8 minutes per piece when cutting gallium phosphorus single crystals. With the cutter blade shown in Figure 2 (same inner diameter), it was possible to cut 5,000 pieces in 5 minutes per piece. In contrast, the cutter blade of this embodiment (having the same inner diameter) can cut 10,000 pieces at a speed of 2 minutes per piece. Also, the larger the diamond particles, the faster the rotation speed and the longer the life. For example, in the cutter blade of this example, one with an average particle size of 60 μm and one with an average particle size of 65 μm
The speed per sheet is 1.5 minutes, and the number of sheets that can be cut is approximately 1.8 to 2.2 times. In the case of the cutter blade shown in FIG. 2, even though the grain size of the chips is approximately the same, cracks rather than cuts are mixed in with the crystal chips. On the other hand, in this embodiment, it is more preferable to make the diamond particles 70 μm or larger, since cracks will not be mixed in with the chips.

【発明の効果】【Effect of the invention】

以上の如く本発明は、ドーナツ状円板の内径周
縁に肉薄部を設け、それに連なりそれより肉厚の
径大部にダイヤモンド粒子を電着したカツタ刃で
あるから、切りしろを小さくして歩留まりを上げ
ることができる。そしてカツタ刃の全体の断面形
状を径大部では厚く肉薄部では薄さを略平行に維
持することにより、この両者の段差を利用して切
りくずの流れをよくして切断時間を短くできる。
また肉薄部に電着されたダイヤモンド粒子により
切りくずが、直接肉薄部に触れて損傷することを
防止することにより、長寿命が得られる。更にダ
イヤモンド粒子を略一定の厚さで電着すればよい
ので、数分で電着作業ができるから製造し易い。
As described above, the present invention is a cutter blade in which a thin part is provided on the inner circumferential edge of a donut-shaped disk, and diamond particles are electrodeposited on the thicker diameter part that is connected to the thin part, so that the cutting margin can be reduced and the yield can be improved. can be raised. By maintaining the overall cross-sectional shape of the cutter blade to be thicker in the large-diameter part and thinner in the thinner part so as to be approximately parallel, the flow of chips can be improved by utilizing the difference in level between the two parts, and the cutting time can be shortened.
In addition, the diamond particles electrodeposited on the thin wall portion prevent chips from directly touching the thin wall portion and damaging it, resulting in a long life. Furthermore, since the diamond particles need only be electrodeposited to a substantially constant thickness, the electrodeposition process can be carried out in a few minutes, making it easy to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカツタ刃を用いた切断機の断面図、第
2図は本発明の基になつた構成図、第3図は本発
明の実施例のカツタ刃の刃先断面図である。 1……ドーナツ状円板、2,12……肉薄部、
3,3……ダイヤモンド粒子、4……ニツケル、
5……径大部。
FIG. 1 is a cross-sectional view of a cutting machine using a cutter blade, FIG. 2 is a configuration diagram on which the present invention is based, and FIG. 3 is a cross-sectional view of the cutting edge of a cutter blade according to an embodiment of the present invention. 1... Donut-shaped disk, 2, 12... Thin wall part,
3, 3...diamond particles, 4...nickel,
5...Large diameter section.

Claims (1)

【特許請求の範囲】[Claims] 1 ドーナツ状円板の内径周縁に肉薄部を設け、
その肉薄部の端縁に連なりかつその肉薄部より肉
厚の径大部を有し、前記肉薄部と前記径大部にダ
イヤモンド粒子を略一定の厚さに電着した事を特
徴としたカツタ刃。
1. A thin wall portion is provided on the inner circumference of the donut-shaped disk,
A cutter characterized by having a large-diameter portion continuous to the edge of the thin-walled portion and thicker than the thin-walled portion, and having diamond particles electrodeposited to a substantially constant thickness on the thin-walled portion and the large-diameter portion. blade.
JP18966182A 1982-10-27 1982-10-27 Cutter blade Granted JPS5981063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18966182A JPS5981063A (en) 1982-10-27 1982-10-27 Cutter blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18966182A JPS5981063A (en) 1982-10-27 1982-10-27 Cutter blade

Publications (2)

Publication Number Publication Date
JPS5981063A JPS5981063A (en) 1984-05-10
JPH0443734B2 true JPH0443734B2 (en) 1992-07-17

Family

ID=16245051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18966182A Granted JPS5981063A (en) 1982-10-27 1982-10-27 Cutter blade

Country Status (1)

Country Link
JP (1) JPS5981063A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190876A (en) * 1984-10-08 1986-05-09 Hiroshi Ishizuka Super abrasive grain electrodeposition circular saw
JPS62193776A (en) * 1986-02-18 1987-08-25 Sanwa Daiyamondo Kogyo Kk Hard work cutting circular saw
KR100501822B1 (en) * 2003-02-20 2005-07-20 최정열 A diamond-cutting wheel and method for manufacturing the cutting wheel
CN112746304B (en) * 2020-12-28 2022-04-12 赛尔科技(如东)有限公司 Hub type scribing cutter, preparation method thereof and application thereof in gallium arsenide material processing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447981U (en) * 1977-09-09 1979-04-03

Also Published As

Publication number Publication date
JPS5981063A (en) 1984-05-10

Similar Documents

Publication Publication Date Title
KR20060113438A (en) Semiconductor wafer and processing method for same
US2713339A (en) Circular saws
US20150105006A1 (en) Method to sustain minimum required aspect ratios of diamond grinding blades throughout service lifetime
JPH0443734B2 (en)
JPS5821039B2 (en) Inner peripheral diamond blade
JP2002075923A (en) Machining method of silicon single-crystal ingot
KR20170108868A (en) Cutting blade
JPS58179609A (en) Cutter for thin piece
JP2972629B2 (en) Inner peripheral blade
JPH08309668A (en) Manufacture of inner circumferential blade grinding wheel
JPH0716887B2 (en) Cutting blade and manufacturing method thereof
JPH03104555A (en) Thin plate blade for cutting monocrystal ingot
JP2893822B2 (en) Manufacturing method of thin blade whetstone with hub
JPH0288177A (en) Grinding wheel with inner peripheral cutting edge
JP2893828B2 (en) Thin blade whetstone with hub and method of manufacturing the same
JPH0692073B2 (en) Electroformed thin blade grindstone and manufacturing method thereof
GB2362654A (en) Diamond saw blade
JPH0462244B2 (en)
JPH08267445A (en) Inner peripheral abrasive wheel
JP2554424Y2 (en) Inner circumference grinding wheel
JPS6384878A (en) Slicing blade
JPH0970760A (en) Inner circumferential blade grinding wheel having multiple layered abrasive grain structure
JPH02107406A (en) Cutting method for wafer and cutting rotary blade
JPH0259271A (en) Cutting tool for slicing machine
JPH11300624A (en) Inner peripheral cutting edge type grinding wheel