JPS6114633B2 - - Google Patents

Info

Publication number
JPS6114633B2
JPS6114633B2 JP17350380A JP17350380A JPS6114633B2 JP S6114633 B2 JPS6114633 B2 JP S6114633B2 JP 17350380 A JP17350380 A JP 17350380A JP 17350380 A JP17350380 A JP 17350380A JP S6114633 B2 JPS6114633 B2 JP S6114633B2
Authority
JP
Japan
Prior art keywords
wafer
disk
hole
diagonal
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17350380A
Other languages
Japanese (ja)
Other versions
JPS5796452A (en
Inventor
Koji Matsuda
Masahiko Aoki
Katsuo Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSHIN HAIBORUTEEJI KK
Original Assignee
NITSUSHIN HAIBORUTEEJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUSHIN HAIBORUTEEJI KK filed Critical NITSUSHIN HAIBORUTEEJI KK
Priority to JP17350380A priority Critical patent/JPS5796452A/en
Publication of JPS5796452A publication Critical patent/JPS5796452A/en
Publication of JPS6114633B2 publication Critical patent/JPS6114633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Description

【発明の詳細な説明】 本発明は荷電粒子加速によるイオン注入装置用
ウエハー装着装置に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wafer mounting device for an ion implanter using charged particle acceleration.

周知のようにシリコンその他の基体に種々のイ
オンも注入して半導体を作ることは広く実施され
ている。
As is well known, it is widely practiced to manufacture semiconductors by implanting various ions into silicon or other substrates.

第1図A,Bにはこの種装置に用いられる従来
のウエハー装着装置の一例が示される。上面を示
すA図において、1はアルミニウムその他の金属
材料よりなるデイスクであり、デイスク1の周辺
部には等間隔に多数の同径のウエハー装着孔2が
あけられている。装着孔2はイオン照射を受け
る、例えば、シリコンウエハーを装着するための
ものである。B図に一つの装着孔2の断面が示さ
れるが、装着孔2の上側(ウエハー挿入側)は装
着されるウエハー3より僅かにその径を大きく
し、下側(支持側)は装着されるウエハー3の径
より若干小さく形成され、上側より挿入されるウ
エハーを保持する。
FIGS. 1A and 1B show an example of a conventional wafer mounting apparatus used in this type of apparatus. In FIG. A showing the top surface, 1 is a disk made of aluminum or other metal material, and a large number of wafer mounting holes 2 of the same diameter are bored at equal intervals around the periphery of the disk 1. The mounting hole 2 is for mounting, for example, a silicon wafer that is subjected to ion irradiation. Figure B shows a cross section of one mounting hole 2. The upper side (wafer insertion side) of the mounting hole 2 has a slightly larger diameter than the wafer 3 to be mounted, and the lower side (support side) is the wafer inserted. It is formed to be slightly smaller in diameter than the wafer 3, and holds the wafer inserted from above.

各装着孔2に例えば、シリコンウエハーを装着
し、イオン注入装置の運転時には、、回転軸O―
Oにより数百回/分でデイスク1を回転する。そ
してこの回転と同時に、デイスク1の下側矢印方
向よりイオンの照射が行われる。この時、デイス
ク1の回転軸O―Oは平行移動するように構成さ
れ、デイスク1は並進し、これにより装着孔2の
下側に露出した各ウエハー3は一様なイオン照射
を受けることになる。
For example, when a silicon wafer is mounted in each mounting hole 2 and the ion implanter is operated, the rotation axis O-
The disk 1 is rotated several hundred times/minute by O. Simultaneously with this rotation, ion irradiation is performed from the lower side of the disk 1 in the direction of the arrow. At this time, the rotation axis O-O of the disk 1 is configured to move in parallel, and the disk 1 is translated, so that each wafer 3 exposed below the mounting hole 2 receives uniform ion irradiation. Become.

このようにウエハー3にイオン照射した場合、
イオンビームのパワー(加速エネルギー×ビーム
電流)を増大させれば、イオン注入作業はより効
率的となるが、ビームのパワーが増大すると、温
度が上昇しウエハー3よりの熱輻射だけによる熱
放出ではウエハー3の温度上昇を下げることがで
きず、ウエハー3を損うことになる。
When ion irradiation is performed on the wafer 3 in this way,
If the power of the ion beam (acceleration energy x beam current) is increased, the ion implantation process becomes more efficient, but as the power of the beam increases, the temperature rises, and heat release due to thermal radiation from the wafer 3 alone is not possible. The temperature rise of the wafer 3 cannot be reduced, and the wafer 3 will be damaged.

またウエハー3の装着面はすでに説明したとこ
ろから理解できるように装着孔2において接触す
る面積は微小であつて、熱伝導による熱放出も多
く期待することができない。
Further, as can be understood from the above description, the area of the mounting surface of the wafer 3 that comes into contact with the mounting hole 2 is minute, and it is not expected that much heat will be released through thermal conduction.

本発明は以上のような問題に鑑み、熱輻射に加
え熱伝導を利用してウエハーの温度上昇を抑制す
るために、ウエハー装着の際の接触面積を大きく
し、接触はデイスクの回転による遠心力を巧に利
用するようにしたものである。
In view of the above-mentioned problems, the present invention utilizes thermal conduction in addition to thermal radiation to suppress the temperature rise of the wafer by increasing the contact area when mounting the wafer, and the contact is caused by the centrifugal force caused by the rotation of the disk. This is a clever use of the .

以下第2図に示す本発明の一実施例について説
明する。
An embodiment of the present invention shown in FIG. 2 will be described below.

A図はデイスク1をその回転軸O―Oとその周
辺に形成された一つのウエハー装着孔の中心線を
含む平面で切断した部分的図面であり、B図はA
図のデイスク1の上面図である。
Figure A is a partial drawing of the disk 1 cut along a plane that includes its rotation axis O-O and the center line of one wafer mounting hole formed around it, and Figure B is a partial view of the disk 1 cut along a plane that includes the rotation axis OO and the center line of one wafer mounting hole formed around it.
FIG. 2 is a top view of the disk 1 shown in FIG.

デイスク1はアルミニウムその他の金属材料よ
りなる。4は後述のようにウエハーが装着され、
イオン照射をうけたとき、ウエハーの結晶格子の
方向に対し、打込まれるイオンの突抜けを防止す
るようにするため、デイスクの回転軸O―Oより
半径方向に向けて斜め方向デイスク1にあけられ
た斜め孔であり、この斜め孔4の高さは保持すべ
きウエハー8の厚みよりも若干大きくし、その幅
は保持すべきウエハー8の直径よりも若干大きく
し、奥行きはウエハー8の面が斜め孔4内に収納
できる程度ものもとする。また、斜め孔4の天井
部5に対し、回転軸方向よりの溝切りにより、斜
め孔4内に達する開溝6が形成される。開溝6は
真空チヤツクによつてウエハー8を斜め孔4に挿
入し、引出すためのものであり、開溝幅は斜め孔
4の幅より狭いものとされる。なお斜め孔4の傾
斜角は図においては誇張して示しているが、水平
より5〜7度程度下る角度を有している。
The disk 1 is made of aluminum or other metal material. 4, the wafer is mounted as described below,
In order to prevent the implanted ions from penetrating in the direction of the crystal lattice of the wafer when irradiated with ions, a diagonal opening is made in the disk 1 in the radial direction from the rotation axis O-O of the disk. The height of this diagonal hole 4 is slightly larger than the thickness of the wafer 8 to be held, the width is slightly larger than the diameter of the wafer 8 to be held, and the depth is set to be slightly larger than the surface of the wafer 8. be stored in the diagonal hole 4. Further, an open groove 6 reaching into the diagonal hole 4 is formed in the ceiling portion 5 of the diagonal hole 4 by grooving in the direction of the rotation axis. The opening groove 6 is used for inserting and pulling out the wafer 8 into the diagonal hole 4 using a vacuum chuck, and the width of the groove is narrower than the width of the diagonal hole 4. Although the angle of inclination of the oblique hole 4 is exaggerated in the drawing, it is approximately 5 to 7 degrees lower than the horizontal.

ビーム孔7はデイスク1の下面より回転軸O―
Oと平行方向に前記斜め孔4に連通するようにあ
けられた孔であり、ビーム孔7の中心線は前記斜
め孔4の奥行方向の中間にあり、その孔径は、斜
め孔4より挿入されるウエハー8よりも若干小さ
くとられている。
The beam hole 7 is connected to the rotation axis O- from the bottom surface of the disk 1.
This is a hole drilled in a direction parallel to O so as to communicate with the diagonal hole 4, the center line of the beam hole 7 is located in the middle of the diagonal hole 4 in the depth direction, and the diameter of the hole is set so that the beam hole 7 is inserted through the diagonal hole 4. The wafer 8 is made slightly smaller than the wafer 8.

従つて、回転軸O―Oの方向よりウエハー8を
斜め孔4に挿入すれば、ウエハー8は斜め孔4中
に保持され、デイスク1の上面からみれば、開溝
6よりウエハー8の表面の一部がみえ、下面より
はビーム孔7を介してウエハー8の裏面の大部分
がみえる状態で装着されたことになる。
Therefore, if the wafer 8 is inserted into the diagonal hole 4 from the direction of the rotation axis O-O, the wafer 8 will be held in the diagonal hole 4, and when viewed from the top surface of the disk 1, the surface of the wafer 8 will be more visible than the opening groove 6. This means that the wafer 8 is mounted in such a manner that a part of it is visible, and most of the back surface of the wafer 8 is visible from the bottom surface through the beam hole 7.

以上一つのウエハーの装着孔について説明した
が、実際にはすでに第1図において説明したのと
同様に第2図の装着孔がデイスク1の周辺に等間
隔で、また場合によつては周辺において、同心的
に等間隔でかつ外側の装着孔の間に内側の装着孔
が配列されるような形で、複数のウエハー装着孔
が形成される。
Although the mounting holes for one wafer have been explained above, in reality, the mounting holes shown in FIG. A plurality of wafer mounting holes are formed concentrically and equally spaced such that inner mounting holes are arranged between outer mounting holes.

すでに述べたようにイオン照射を行う場合、矢
印で示す方向よりイオンビームによる照射が行わ
れ、ウエハー8をそれぞれの装着孔に保持したデ
イスク1は回転し、且つ並進して各ウエハー8の
面に対して照射が行われ、イオンが注入される。
なおウエハー8は照射軸に対し、直角より5〜7
度程度傾いているが、これはイオン注入効率を上
げるためのものである。
As already mentioned, when ion irradiation is performed, ion beam irradiation is performed from the direction shown by the arrow, and the disk 1 holding the wafers 8 in their respective mounting holes rotates and translates to irradiate the surface of each wafer 8. Irradiation is performed to implant ions.
Note that the wafer 8 is placed 5 to 7 times perpendicular to the irradiation axis.
Although it is tilted by a degree, this is to increase the ion implantation efficiency.

このようにイオンビームによる照射の場合、デ
イスク1は前述のように数百回/分で回転するの
で、本発明では、ウエハー8は第2図Aにより理
解されるように遠心力により、斜め孔4の天井部
5の面と密着する状態を形成することになり、天
井部5は金属製のデイスク1の一部であるから、
ウエハー8が矢印方向よりの照射により発生した
熱はこれと密着する斜め孔4の天井部5の面に伝
わり、更に回転軸O―Oを経て外部に放出され
る。回転軸O―Oを外部より冷却すれば、熱の伝
導は急速であり、従つて大きなイオンビームで照
射を行つてもウエハー8が熱的に損われることが
ない。
In the case of ion beam irradiation, the disk 1 rotates at several hundred times per minute as described above, so in the present invention, the wafer 8 is rotated through diagonal holes by centrifugal force as understood from FIG. 2A. Since the ceiling part 5 is a part of the metal disk 1,
The heat generated when the wafer 8 is irradiated in the direction of the arrow is transmitted to the surface of the ceiling 5 of the diagonal hole 4 that is in close contact with the wafer 8, and is further released to the outside via the rotation axis OO. If the rotating shaft OO is cooled from the outside, heat conduction is rapid, and therefore the wafer 8 is not thermally damaged even when irradiated with a large ion beam.

このようなことからすれば、開溝6の幅をでき
るだけ狭くして回転時、ウエハー8による斜め孔
の天井部5との接触面積を増大させれば、ウエハ
ー8の温度上昇抑制度を向上させることになる
が、開溝6はウエハー8の挿入、引出しに真空チ
ヤツクを案内する部分であつて前記のような構成
においてはもちろん限度がある。このように、天
井部5はウエハー8に対するデイスク1の回転時
の接触面とその開溝6によつて真空チヤツクを案
内する機能をもたせている。
Considering this, if the width of the groove 6 is made as narrow as possible to increase the area of contact between the wafer 8 and the ceiling 5 of the diagonal hole during rotation, the degree of suppression of the temperature rise of the wafer 8 can be improved. However, since the opening groove 6 is a part for guiding the vacuum chuck in inserting and extracting the wafer 8, there is a limit to the structure as described above. In this way, the ceiling part 5 has the function of guiding the vacuum chuck through the contact surface of the disk 1 with respect to the wafer 8 during rotation and the opening groove 6 thereof.

イオンビームの照射方向が下から上であるイオ
ン注入装置によれば、この装置のウエハー装着用
デイスクに装着されるウエハーは加工面を下向き
として装着することができ、塵埃を受けにくくす
ることができるが、下方向より上方向へのイオン
ビームの照射に対して、本発明はすでに説明した
構成により、デイスクの上面より開溝によつて、
斜め孔に対してウエハーの挿入、引出しを容易と
し、且つ斜め孔の天井部によつて回転中十分ウエ
ハーに接触を保たせることができる。
According to an ion implantation device in which the ion beam irradiation direction is from bottom to top, the wafer mounted on the wafer mounting disk of this device can be mounted with the processed surface facing downward, making it less susceptible to dust. However, for the ion beam irradiation from the bottom to the top, the present invention uses the structure described above to open the groove from the top surface of the disk.
The wafer can be easily inserted into and pulled out from the diagonal hole, and the ceiling of the diagonal hole can maintain sufficient contact with the wafer during rotation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のウエハー装着装置の一例を示
し、A図は上面図であり、B図は一つの装着孔の
断面を示す。第2図は本発明の一実施を示し、A
図は回転軸O―Oとその周辺に形成されたウエハ
ー装着孔の中心線を含む平面で切断した部分的図
面であり、B図はA図の上面図である。 1…デイスク、2…ウエハー装着孔、3…ウエ
ハー、4…斜め孔、5…斜め孔の天井部、6…開
溝、7…ビーム孔、8…ウエハー。
FIG. 1 shows an example of a conventional wafer mounting apparatus, with FIG. A being a top view and FIG. B showing a cross section of one mounting hole. FIG. 2 shows one implementation of the invention, A
The figure is a partial drawing taken along a plane including the rotation axis OO and the center line of the wafer mounting hole formed around it, and figure B is a top view of figure A. DESCRIPTION OF SYMBOLS 1... Disk, 2... Wafer mounting hole, 3... Wafer, 4... Diagonal hole, 5... Ceiling part of diagonal hole, 6... Open groove, 7... Beam hole, 8... Wafer.

Claims (1)

【特許請求の範囲】[Claims] 1 イオンビームの照射方向が下から上であるイ
オン注入装置のウエハー装着用デイスクの回転軸
より半径方向において、デイスク上面より斜めに
下るウエハー保持用の斜め孔を複数設け、該斜め
孔に対し、デイスク下面よりイオンビーム孔を連
通させ、該斜め孔の天井部にデイスク上面より斜
め孔に達する開溝を設けたことを特徴とするイオ
ン注入装置用ウエハー装着装置。
1. A plurality of diagonal holes for holding wafers are provided diagonally downward from the upper surface of the disk in the radial direction from the rotation axis of the wafer mounting disk of an ion implantation device in which the ion beam irradiation direction is from bottom to top, and for the diagonal holes, A wafer mounting device for an ion implanter, characterized in that an ion beam hole is communicated from the bottom surface of the disk, and an opening groove is provided in the ceiling of the diagonal hole that reaches the diagonal hole from the top surface of the disk.
JP17350380A 1980-12-08 1980-12-08 Wafer mounting device for ion implanting device Granted JPS5796452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17350380A JPS5796452A (en) 1980-12-08 1980-12-08 Wafer mounting device for ion implanting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17350380A JPS5796452A (en) 1980-12-08 1980-12-08 Wafer mounting device for ion implanting device

Publications (2)

Publication Number Publication Date
JPS5796452A JPS5796452A (en) 1982-06-15
JPS6114633B2 true JPS6114633B2 (en) 1986-04-19

Family

ID=15961719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17350380A Granted JPS5796452A (en) 1980-12-08 1980-12-08 Wafer mounting device for ion implanting device

Country Status (1)

Country Link
JP (1) JPS5796452A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267458U (en) * 1985-10-17 1987-04-27

Also Published As

Publication number Publication date
JPS5796452A (en) 1982-06-15

Similar Documents

Publication Publication Date Title
JP2582552B2 (en) Ion implanter
US5753923A (en) Ion injection device and method therefor
EP0074691A2 (en) Electrostatic chuck for holding a semiconductor wafer
JPS63109166A (en) Ion implantation apparatus
JPS60240041A (en) Method and device for controlling thermal transmission in cyclic vacuum processor
JP2004303499A (en) Ion implanter and ion implantation method
KR20140099903A (en) Ion implant apparatus and a method of implanting ions
US4315182A (en) Frosted X-ray tube
JPS6114633B2 (en)
US5124557A (en) Apparatus and methods relating to ion implantation and heat transfer
US5932883A (en) Ion implanter for implanting ion on wafer with low contamination
JPS6127857B2 (en)
US6667485B2 (en) Ion implanting apparatus and sample processing apparatus
EP0217616A2 (en) Substrate processing apparatus
JPH05326471A (en) Method for cleaning semiconductor devices
US5084624A (en) Apparatus for making homogeneous the implantation of ions on the surface of planar samples
JPS6276147A (en) Ion implanting apparatus
JPS58126978A (en) Base plate holding device
JPS59134543A (en) Ion implanting device
JPS63108713A (en) Ion implantation
JP6982701B2 (en) Electrostatic chuck, vacuum processing equipment and substrate processing method
JP2002231176A (en) Ion implanter
JPS6048234U (en) Ion implantation device
JPH05159738A (en) Ton implantation device
JP2707080B2 (en) Ion implantation method and apparatus