JPS6114607B2 - - Google Patents

Info

Publication number
JPS6114607B2
JPS6114607B2 JP58225562A JP22556283A JPS6114607B2 JP S6114607 B2 JPS6114607 B2 JP S6114607B2 JP 58225562 A JP58225562 A JP 58225562A JP 22556283 A JP22556283 A JP 22556283A JP S6114607 B2 JPS6114607 B2 JP S6114607B2
Authority
JP
Japan
Prior art keywords
temperature
sample
value
mol
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58225562A
Other languages
Japanese (ja)
Other versions
JPS60119006A (en
Inventor
Takeshi Wada
Hiroshi Nakamura
Masami Fukui
Nobutate Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP58225562A priority Critical patent/JPS60119006A/en
Priority to EP84114404A priority patent/EP0155366B1/en
Priority to DE8484114404T priority patent/DE3475063D1/en
Priority to KR1019840007495A priority patent/KR860001758B1/en
Priority to US06/676,796 priority patent/US4610969A/en
Publication of JPS60119006A publication Critical patent/JPS60119006A/en
Priority to US06/753,240 priority patent/US4626394A/en
Publication of JPS6114607B2 publication Critical patent/JPS6114607B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、誘電体磁器組成物に関し、更に詳細
には、積層型磁器コンデンサの誘電体として好適
な誘電体磁器組成物に関する。 従来技術 従来、積層磁器コンデンサを製造する際には、
誘電体磁器組成物から成る誘電体生シート(グリ
ーンシート)に白金、パラジウム等の貴金属の導
電性ペーストを印刷し、これを複数枚積み重ねて
圧着し、1300℃以上の酸化性雰囲気中で高温焼成
し、誘電体磁器組成物の焼結と内部電極の焼付け
とを同時に行つた。上述の如く、貴金属を使用す
れば、酸化性雰囲気中で高温焼成しても目的とす
る内部電極を得ることが出来る。しかし、白金、
パラジウム等の貴金属は高価であるため、必然的
に積層磁器コンデンサがコスト高になつた。 この問題を解決するために、本件出願人は、特
願昭57―200103号によつて非酸化雰囲気、1100〜
1200℃で焼結させることが可能な誘電体磁器組成
物を提案した。この誘電体磁器組成物によれば、
ニツケル等の卑金属を主成分とする導電性ペース
トを塗布し、焼付けることによつて内部電極を形
成することが出来る。しかし、この磁器組成物を
誘電体とする磁器コンデンサにおいて、静電容量
の温度変化率をJIS規格で規定されている−25℃
〜+85℃で±10%の範囲に保証することが出来な
かつた。 発明の目的 そこで、本発明の目的は、1200℃以下で焼結さ
せることが出来且つ静電容量の温度変化率を±10
%の範囲にすることが出来る誘電体磁器組成物を
提供することにある。 発明の構成 上記目的を達成するための本発明は、
BakxMxOkTiO2(但し、MはMg及びZnの少な
くとも1種の金属、kは1.0〜1.04の範囲の数
値、xは0.02〜0.05の範囲の数値)から成る100
重量部の基本成分と、25〜50モル%のLi2Oと50
〜75モル%のSiO2とから成る0.2〜10.0重量部の
添加成分との混合物質を焼成して成る誘電体磁器
組成物に係わるものである。なお、上記基本成分
を示す組成式において、k―x、x、kは、勿論
それぞれの元素の原子数を示す。 発明の作用効果 上記発明によれば次の作用効果が得られる。 (イ) この誘電体磁器組成物は1200℃以下の焼成温
度で得られるので、焼成時のエネルギ消費量を
低減させることが出来る。従つて、誘電体磁器
組成物のコストダウンが可能になる。 (ロ) 非酸化性雰囲気で焼結可能であるので、ニツ
ケル等の卑金属を内部電極として有する積層磁
器コンデンサを提供することが出来る。 (ハ) 比誘電率が高く且つ静電容量の温度変化率が
−25℃〜+85℃で±10%の範囲に収まる誘電体
磁器組成物を提供することが出来る。 実施例 次に、本発明の実施例及び比較例について述べ
る。 第1表の試料No.1のk―x=0.95、Mg=
0.03、Zn=0.02、x=0.05、k=1.0に従つて決定
されるBa0.95M0.05O1.00TiO2、更に詳細には、
Ba0.95Mg0.03Zn0.02O1.00TiO2から成る基本成分を
得るために、純度99.0%以上のBaCO3、MgO、
ZzO、及びTiO2を903.77g、5.86g、7.88g、及び
385.93gそれぞれ秤量し、これ等の原料を15時間
湿式混合した。なお、上記原料を不純物を目方に
入れないでモル部で示すと、BaCO30.95モル部、
MgO0.03モル部、ZnO0.02モル部、TiO21.0モル
部となる。次に、上記原料混合物を150℃で4時
間乾燥後、粉砕して約1200℃、2時間大気中で仮
焼し、Ba0.95Mg0.03Zn0.02O1.00TiO2から成る基本
成分の粉末を得た。 一方、第1表の試料No.1の添加成分を得るため
に、Li2CO350.15g(45モル%)とSiO249.85g(55
モル%)とを秤量し、この混合物にアルコールを
300cc加え、ポリエチレンポツトにてアルミナボ
ールを用いて10時間撹拌した後、大気中1000℃で
2時間間仮焼成し、これを300ccの水と共にアル
ミナポツトに入れ、アルミナボールで15時間粉砕
し、しかる後、150℃で4時間乾燥させてLi2O45
モル%、SiO255モル%の組成の添加成分の粉末
を得た。 次に、基本成分の粉末1000gに対して上記添加
成分の粉末30gを加え、更に、アクリル酸エステ
ルポリマー、グリセリン、縮合リン酸塩の水溶液
から成る有機バインダを基本成分と添加成分との
合計重量に対して15重量%(154.5g)添加し、更
に、50重量%(515cc)の水を加え、これ等をボ
ールミルに入れて粉砕及び混合して磁器原料のス
ラリーを作製した。 次に、上記スラリーを真空脱泡機に入れて脱泡
し、このスラリーをリバースロールコーターに入
れ、これから得られる薄膜成形物を長尺なポリエ
ステルフイルム上に連続して受け取ると共に、同
フイルム上でこれを100℃に加熱して乾燥させ、
厚さ約25μの未焼結磁器シートを得た。このシー
トは、長尺なものであるが、これを10cm角の正方
形に栽断して使用する。 一方、内部電極用の導電ペーストは、粒径平均
1.5μのニツケル粉末10gと、エチルセルローズ
0.9gをブチルカルビトール9.1gに溶解させたもの
とを撹拌機に入れ、10時間撹拌することにより得
た。この導電ペーストを長さ14mm、幅7mmのパタ
ーンを50個程有するスクリーンを介して上記未焼
結磁器シートの片面に印刷した後、これを乾燥さ
せた。 次に、上記印刷面を上にして未焼結磁器シート
を2枚積層した。この際、隣接する上下のシート
において、その印刷面がパターンの長手方向に約
半分程ずれるように配置した。更に、この積層物
の上下両面にそれぞれ4枚ずつ厚さ60μの未焼結
磁器シートを積層した。次いで、この積層物を約
50℃の温度で厚さ方向に約40トンの圧力を加えて
圧着させた。しかる後、この積層物を格子状に裁
断し、約100個の積層チツプを得た。 次に、この積層体を雰囲気焼成が可能な炉に入
れ、大気雰囲気中で100℃/hの速度で600℃まで
昇温して、有機バインダを焼結させた。しかる
後、炉の雰囲気を大気からH22体積%+N298体積
%の雰囲気に変えた。そして、炉を上述の如き還
元性雰囲気とした状態を保つて、積層体加熱温度
を600℃から焼結温度の1110℃まで100℃/hの速
度で昇温して3時間保持した後、100℃/hの速度
で600℃まで降温し、雰囲気を大気雰囲気におき
かえて、600℃を30分間保持して酸化処理を行
い、その後、室温まで冷却して積層焼結体チツプ
を作製した。 次に、電極が露出する焼結体チツプの側面に亜
鉛とガラスフリツトとビヒクルとから成る導電性
ペーストを塗布して乾燥し、これを大気中で550
℃の温度で15分間焼付け、亜鉛電極層を形成し、
更にこの上に銅を無電解メツキで被着させて、更
にこの上に電気メツキ法でPb―Sn半田層を設け
て、一対の外部電極を形成した。 これにより、第1図に示す如く、誘電体磁器層
1,2,3と、内部電極4,5と、外部電極6,
7から成る積層磁器コンデンサ10が得られた。
なお、このコンデンサ10の誘電体磁器層2の厚
さは0.02mm、内部電極4,5の対向面積は、5mm
×5mm=25mm2である。また、焼結後の磁器層1,
2,3の組成は、焼結前の基本成分と添加成分と
の混合組成と実質的に同じであり、複合プロブス
カイト型構造の基本成分
(Ba0.95Mg0.03Zn0.02O1.00TiO2)の結晶粒子間に
Li2O45モル%とSiO255モル%とから成る添加成
分が均一に分布したものであると考えられる。 次に、10個のコンデンサ10の電気特性を測定
し、その平均値を求めたところ、第2表に示す如
く、比誘電率εsが2690、tanδが1.3%、抵抗率
ρが7.4×106MΩ・cm、+20℃の静電容量を基準
にした−25℃及び+85℃の静電容量の変化率△
C-25、△C+85が−9.1%、−8.7%であつた。ま
た、JIS規格に基づく静電容量の温度特性を−25
℃〜+85℃の範囲で測定したところ、第2図の特
性曲線となり、±10%の範囲に収まつた。 なお、電気的特性は次の要領で測定した。 (A) 比誘電率εsは、温度20℃、周波数1kHz、電
圧〔実効値〕0.5Vの条件で静電容量を測定
し、この測定値と電極4,5の対向面積25mm2
電極4,5間の磁器層2の厚さ0.02mmから計算
で求めた。 (B) 誘電体損失tanδ(%)は比誘電率と同一条
件で測定した。 (C) 抵抗率ρ(MΩ・cm)は、温度20℃において
DC50Vを1分間印加した後に電極6,7間の
抵抗値を測定し、この測定値と寸法とに基づい
て計算で求めた。 (D) 静電容量の温度特性は恒温槽の中に試料を入
れ、−25℃、0℃、+20℃、+40℃、+60℃、+85
℃の各温度において、周波数1kHz、電圧〔実
効値〕0.5Vの条件で静電容量を測定し、20℃
の時の静電容量に対する各温度の変化率を求め
ることによつて得た。 以上、試料No.1の作製方法及びその特性につい
て述べたが、試料No.2〜21についても、基本成分
及び添加成分の組成、これ等の割合、及び還元性
雰囲気での焼成温度を変えた他は、試料No.1と全
く同一の方法で積層磁器コンデンサを作製し、同
一方法で電気的特性を測定した。 第1表は、それぞれの試料の基本成分と添加成
分との組成及び焼結時の焼成温度を示し、第2表
はそれぞれの試料の電気的特性を示す。なお、第
1表の基本成分の欄のk―x、x、kは組成式の
各元素の原子数、即ちTiの原子数を1とした場
合の各元素の原子数の割合を示す。xの欄のMg
とZnとは、一般式のMの内容を示し、Mg及びZn
の欄にはこれ等の原子数が示され、合計の欄には
MgとZnとの合計値が示されている。第2表にお
いて、静電容量の温度特性は、−25℃と+85℃の
静電容量変化率△C-25(%)と△C+85(%)で示
されている。
TECHNICAL FIELD The present invention relates to a dielectric ceramic composition, and more particularly to a dielectric ceramic composition suitable as a dielectric of a multilayer ceramic capacitor. Conventional technology Conventionally, when manufacturing multilayer ceramic capacitors,
A conductive paste of noble metals such as platinum and palladium is printed on a dielectric raw sheet (green sheet) made of a dielectric ceramic composition, multiple sheets are stacked and pressed together, and then fired at a high temperature in an oxidizing atmosphere of 1300℃ or higher. Then, sintering of the dielectric ceramic composition and baking of the internal electrodes were performed simultaneously. As mentioned above, if a noble metal is used, the intended internal electrode can be obtained even if it is fired at a high temperature in an oxidizing atmosphere. However, platinum
Since precious metals such as palladium are expensive, multilayer ceramic capacitors have inevitably become expensive. In order to solve this problem, the applicant of the present invention proposed a non-oxidizing atmosphere,
We proposed a dielectric ceramic composition that can be sintered at 1200℃. According to this dielectric ceramic composition,
Internal electrodes can be formed by applying a conductive paste containing a base metal such as nickel as a main component and baking it. However, in a ceramic capacitor that uses this ceramic composition as a dielectric, the temperature change rate of capacitance is -25℃ specified by the JIS standard.
It was not possible to guarantee a range of ±10% at ~+85°C. Purpose of the Invention Therefore, the purpose of the present invention is to sinter at a temperature below 1200°C and to reduce the temperature change rate of capacitance by ±10.
% range. Structure of the Invention The present invention to achieve the above object is as follows:
Ba k - x M x O k TiO 2 (where M is at least one metal of Mg and Zn, k is a numerical value in the range of 1.0 to 1.04, x is a numerical value in the range of 0.02 to 0.05) 100
Basic components in parts by weight and 25-50 mol% Li2O and 50
The present invention relates to a dielectric ceramic composition obtained by firing a mixed material consisting of ~75 mol% SiO 2 and 0.2 to 10.0 parts by weight of additional components. In addition, in the compositional formula showing the above-mentioned basic components, k-x, x, and k naturally indicate the number of atoms of each element. Effects of the invention According to the above invention, the following effects can be obtained. (a) Since this dielectric ceramic composition can be obtained at a firing temperature of 1200° C. or lower, energy consumption during firing can be reduced. Therefore, it is possible to reduce the cost of the dielectric ceramic composition. (b) Since sintering can be performed in a non-oxidizing atmosphere, it is possible to provide a multilayer ceramic capacitor having a base metal such as nickel as an internal electrode. (c) It is possible to provide a dielectric ceramic composition that has a high dielectric constant and a temperature change rate of capacitance within the range of ±10% from -25°C to +85°C. Examples Next, examples and comparative examples of the present invention will be described. k-x=0.95, Mg= of sample No. 1 in Table 1
0.03, Zn=0.02, x = 0.05, k=1.0 determined according to Ba 0.95 M 0.05 O 1.00 TiO 2 , more specifically :
In order to obtain the basic component consisting of Ba 0 . 95 Mg 0 . 03 Zn 0 . 02 O 1 . 00 TiO 2 , BaCO 3 , MgO,
ZzO, and TiO 2 at 903.77g, 5.86g, 7.88g, and
385.93g of each was weighed and these raw materials were wet mixed for 15 hours. In addition, when the above raw material is expressed in molar parts without including impurities, it is BaCO 3 0.95 molar part,
0.03 mol part of MgO, 0.02 mol part of ZnO, and 1.0 mol part of TiO 2 . Next, the above raw material mixture was dried at 150°C for 4 hours, pulverized and calcined at about 1200°C for 2 hours in the air to obtain a mixture of Ba 0 . 95 Mg 0 . 03 Zn 0 . 02 O 1 . 00 TiO 2 A powder of the basic ingredients was obtained. On the other hand, in order to obtain the additive components of sample No. 1 in Table 1, 50.15 g (45 mol%) of Li 2 CO 3 and 49.85 g (55 mol%) of SiO 2 were added.
(mol%) and add alcohol to this mixture.
Add 300cc and stir in a polyethylene pot for 10 hours using an alumina ball, then pre-calcinate in the air at 1000℃ for 2 hours, put this together with 300cc of water in an alumina pot, pulverize with an alumina ball for 15 hours, and then After that, dry at 150℃ for 4 hours to remove Li 2 O45.
An additive component powder having a composition of 55 mol % of SiO 2 was obtained. Next, 30g of the above additive component powder was added to 1000g of the basic component powder, and an organic binder consisting of an aqueous solution of acrylic acid ester polymer, glycerin, and condensed phosphate was added to the total weight of the basic component and additive component. 15% by weight (154.5 g) was added, and further 50% by weight (515 cc) of water was added, and these were placed in a ball mill and ground and mixed to prepare a slurry of porcelain raw material. Next, the above slurry is put into a vacuum deaerator to defoam, this slurry is put into a reverse roll coater, the thin film molding obtained from this is continuously received on a long polyester film, and the film is coated on the same film. Heat this to 100℃ and dry it.
A green porcelain sheet with a thickness of about 25μ was obtained. This sheet is long and is used by cutting it into 10cm squares. On the other hand, the conductive paste for internal electrodes has an average particle size of
10g of 1.5μ nickel powder and ethyl cellulose
A solution of 0.9 g dissolved in 9.1 g of butyl carbitol was placed in a stirrer and stirred for 10 hours. This conductive paste was printed on one side of the unsintered porcelain sheet through a screen having about 50 patterns of 14 mm in length and 7 mm in width, and then dried. Next, two unsintered porcelain sheets were laminated with the printed surfaces facing up. At this time, the adjacent upper and lower sheets were arranged so that their printed surfaces were shifted by about half in the longitudinal direction of the pattern. Further, four unsintered porcelain sheets each having a thickness of 60 μm were laminated on the upper and lower surfaces of this laminate. This laminate is then approximately
Approximately 40 tons of pressure was applied in the thickness direction at a temperature of 50°C to bond. Thereafter, this laminate was cut into a grid shape to obtain about 100 laminate chips. Next, this laminate was placed in a furnace capable of atmospheric firing, and the temperature was raised to 600°C at a rate of 100°C/h in an air atmosphere to sinter the organic binder. Thereafter, the atmosphere in the furnace was changed from air to an atmosphere containing 2% by volume of H 2 + 98% by volume of N 2 . Then, while maintaining the reducing atmosphere in the furnace as described above, the heating temperature of the laminate was increased from 600°C to the sintering temperature of 1110°C at a rate of 100°C/h and held for 3 hours. The temperature was lowered to 600°C at a rate of °C/h, the atmosphere was changed to air, and 600°C was maintained for 30 minutes for oxidation treatment, and then cooled to room temperature to produce a laminated sintered chip. Next, a conductive paste consisting of zinc, glass frit, and vehicle is applied to the side surface of the sintered chip where the electrodes are exposed, and dried.
Baking for 15 minutes at a temperature of °C to form a zinc electrode layer;
Furthermore, copper was deposited on this by electroless plating, and a Pb--Sn solder layer was further provided on this by electroplating to form a pair of external electrodes. As a result, as shown in FIG. 1, the dielectric ceramic layers 1, 2, 3, internal electrodes 4, 5, external electrodes 6,
A multilayer ceramic capacitor 10 consisting of 7 was obtained.
Note that the thickness of the dielectric ceramic layer 2 of this capacitor 10 is 0.02 mm, and the opposing area of the internal electrodes 4 and 5 is 5 mm.
×5mm= 25mm2 . In addition, the porcelain layer 1 after sintering,
The compositions of Nos. 2 and 3 are substantially the same as the mixed composition of the basic components and additive components before sintering, and the basic components of the composite probskite structure (Ba 0 . 95 Mg 0 . 03 Zn 0 . 02 O 1.00 TiO 2 ) between the crystal grains .
It is considered that the additive components consisting of 45 mol% Li 2 O and 55 mol% SiO 2 were uniformly distributed. Next, we measured the electrical characteristics of the 10 capacitors 10 and found the average value. As shown in Table 2, the relative dielectric constant ε s is 2690, tan δ is 1.3%, and resistivity ρ is 7.4 × 10 6 MΩ・cm, capacitance change rate at -25℃ and +85℃ based on +20℃ capacitance △
C -25 and △C +85 were -9.1% and -8.7%. In addition, the temperature characteristics of capacitance based on the JIS standard are −25
When measured in the range of .degree. C. to +85.degree. C., the characteristic curve shown in FIG. 2 was obtained, and the temperature was within ±10%. Note that the electrical characteristics were measured in the following manner. (A) The relative permittivity ε s is determined by measuring the capacitance under the conditions of temperature 20℃, frequency 1kHz, and voltage [effective value] 0.5V, and this measured value and the opposing area of electrodes 4 and 5 of 25mm 2 and electrode 4 , 5 was calculated from the thickness of the porcelain layer 2 of 0.02 mm. (B) Dielectric loss tanδ (%) was measured under the same conditions as the relative dielectric constant. (C) Resistivity ρ (MΩ・cm) at a temperature of 20℃
After applying DC50V for 1 minute, the resistance value between the electrodes 6 and 7 was measured, and calculated based on this measured value and the dimensions. (D) Temperature characteristics of capacitance are measured by placing the sample in a thermostatic chamber at -25°C, 0°C, +20°C, +40°C, +60°C, and +85°C.
The capacitance was measured at each temperature of °C under the conditions of a frequency of 1 kHz and a voltage [effective value] of 0.5 V.
It was obtained by determining the rate of change of capacitance at each temperature when . Above, we have described the preparation method of sample No. 1 and its characteristics, but for samples No. 2 to 21, the compositions of the basic components and additive components, their ratios, and the firing temperature in a reducing atmosphere were also changed. Otherwise, a multilayer ceramic capacitor was manufactured in the same manner as Sample No. 1, and its electrical characteristics were measured in the same manner. Table 1 shows the composition of the basic components and additive components of each sample and the firing temperature during sintering, and Table 2 shows the electrical characteristics of each sample. Note that k-x, x, and k in the column of basic components in Table 1 indicate the number of atoms of each element in the composition formula, that is, the ratio of the number of atoms of each element when the number of Ti atoms is 1. Mg in the x column
and Zn indicate the content of M in the general formula, and Mg and Zn
The column shows the number of these atoms, and the total column shows the number of atoms.
The total value of Mg and Zn is shown. In Table 2, the temperature characteristics of capacitance are shown as capacitance change rates ΔC -25 (%) and ΔC +85 (%) at -25°C and +85°C.

【表】【table】

【表】【table】

【表】【table】

【表】 本発明では、比誘電率εsが2000以上、誘電体
損失tanδが2.5%以下、抵抗率ρが1×106MΩ・
cm以上、静電容量の温度変化率△Cが±10%の範
囲となるものを良品とする。従つて、試料No.4、
5、6、8、12、16、17、19、21は本発明の範囲
外のものである。 第2図には試料No.1の温度特性のみが示され、
その他の試料の温度特性の曲線が示されず、且つ
第2表には△C-25と△C+85のみが示されている
が、本発明の範囲に属する試料の−25℃〜+85℃
の範囲の静電容量の変化率△Cは、±10%の範囲
に収まつている。 次に、組成の限定理由について述べる。 添加成分の添加量が零の場合には試料No.8から
明らかな如く、焼成温度が1250℃であつても緻密
な焼結体が得られないが、試料No.9に示す如く、
添加量が100重量部の基本成分に対して0.2重量部
の場合には、1170℃の焼成で所望の電気的特性を
有する焼結体を得ることが出来る。従つて、添加
成分の下限は0.2重量部である。一方、試料No.12
に示す如く、添加量が12重量部の場合にはtanδ
が3.5%となり、目標特性よりも悪くなるが、試
料No.14に示す如く、添加量が10重量部の場合には
目標とする電気的特性を得ることが出来る。従つ
て、添加量の上限は10重量部である。 xの値が、試料No.19及び20に示す如く、0.01の
場合には、△C-25が±10%の範囲外の−12.5%、
−13.2%となるが、試料No.18に示す如く、xの値
が0.02の場合には、目標の電気的特性を得ること
が出来る。従つて、xの値の下限は0.02である。
一方、試料No.5に示す如く、xの値が0.06の場合
には、△C-25が±10%の範囲外の−14.5%となる
が、試料No.1〜3に示す如く、xの値が0.05の場
合には目標の電気的特性を得ることが出来る。従
つて、xの値の上限は0.05である。なお、M成分
のMgとZnとは何れも族の金属であり、ほぼ同
様な働きをなし、何れか一方のみを使用する場合
においてもxの値を0.02〜0.05の範囲にすること
が望ましく、また両方を使用する場合にもxの値
を0.02〜0.05の範囲にすることが望ましい。 kの値が、試料No.4に示す如く、0.98の場合に
は、ρが6.2×103MΩ・cmとなり、目標値よりも
大幅に低くなるが、試料No.1に示す如く、kの値
が1.00の場合には、目標の電気的特性が得られ
る。従つて、kの値の下限は1.00である。一方、
kの値が、試料No.16に示す如く、1.05の場合には
緻密な焼結体が得られないが、試料No.20に示す如
く、kの値が1.04の場合には所望の電気的特性が
得られる。従つて、kの値の上限は1.04である。 添加成分のSiO2が、試料No.17に示す如く、45
モル%の場合には、tanδが3.2%となり、目標値
よりも悪くなるが、試料No.9及び18に示す如く、
SiO2が50モル%の場合には目標の電気的特性が
得られる。従つて、SiO2の下限は50モル%であ
る。一方、SiO2が、試料No.6に示す如く、80モ
ル%の場合には緻密な焼結体が得られないが、試
料No.2に示す如く、SiO2が75モル%の場合には
目標の電気的特性が得られる。従つて、SiO2
上限は75モル%である。なお、LiO2の範囲は必
然的に25〜50モル%となる。 変形例 以上、本発明の実施例について述べたが、本発
明はこれに限定されるものではなく、例えば次の
変形例が可能なものである。 (a) 基本成分の中に、本発明の目的を阻害しない
範囲で微量のMnO2(好ましくは0.05〜0.1重量
%)等の鉱化剤を添加し、焼結性を向上させて
もよい。また、その他の物質を必要に応じて添
加してもよい。 (b) 基本成分及び添加成分を得るための出発原料
を、実施例で示したもの以外の例えば、BaO、
Li2O等の酸化物又は水酸化物又はその他の化
合物としてもよい。 (c) 酸化温度を600℃以外の焼結温度よりも低い
温度(好ましくは1000℃以下)としてもよい。
即ち、ニツケル等の電極と磁器の酸化とを考慮
して種々変更することが可能である。 (d) 還元性雰囲気中の焼成温度を、電極材料を考
慮して種々変えることが出来る。 (e) 焼結を中性雰囲気で行う場合にも適用可能で
ある。 (f) 積層磁器コンデンサ以外の一般的な磁器コン
デンサにも勿論適用可能である
[Table] In the present invention, the relative dielectric constant ε s is 2000 or more, the dielectric loss tan δ is 2.5% or less, and the resistivity ρ is 1×10 6 MΩ・
cm or more, and the temperature change rate △C of capacitance is within the range of ±10%. Therefore, sample No. 4,
5, 6, 8, 12, 16, 17, 19, and 21 are outside the scope of the present invention. Figure 2 shows only the temperature characteristics of sample No. 1.
Although the temperature characteristic curves of other samples are not shown and only △C -25 and △C +85 are shown in Table 2, the temperature characteristic curves of the samples belonging to the scope of the present invention are -25°C to +85°C.
The rate of change in capacitance ΔC in the range of is within the range of ±10%. Next, the reasons for limiting the composition will be described. When the amount of the additive component is zero, as shown in sample No. 8, a dense sintered body cannot be obtained even if the firing temperature is 1250°C, but as shown in sample No. 9,
When the amount added is 0.2 parts by weight per 100 parts by weight of the basic components, a sintered body having desired electrical properties can be obtained by firing at 1170°C. Therefore, the lower limit of the added components is 0.2 parts by weight. On the other hand, sample No. 12
As shown in , when the amount added is 12 parts by weight, tanδ
is 3.5%, which is worse than the target properties, but as shown in sample No. 14, when the amount added is 10 parts by weight, the target electrical properties can be obtained. Therefore, the upper limit of the amount added is 10 parts by weight. When the value of x is 0.01 as shown in sample Nos. 19 and 20, △C -25 is -12.5% outside the range of ±10%,
-13.2%, but as shown in sample No. 18, when the value of x is 0.02, the target electrical characteristics can be obtained. Therefore, the lower limit of the value of x is 0.02.
On the other hand, as shown in Sample No. 5, when the value of x is 0.06, △C -25 is -14.5%, which is outside the range of ±10%, but as shown in Samples No. 1 to 3, x When the value of is 0.05, the target electrical characteristics can be obtained. Therefore, the upper limit of the value of x is 0.05. In addition, both Mg and Zn of the M component are group metals and have almost the same function, so even when using only one of them, it is desirable that the value of x be in the range of 0.02 to 0.05. Furthermore, even when both are used, it is desirable that the value of x be in the range of 0.02 to 0.05. When the value of k is 0.98, as shown in sample No. 4, ρ becomes 6.2×10 3 MΩ・cm, which is significantly lower than the target value, but as shown in sample No. 1, the value of k is 0.98. If the value is 1.00, the target electrical characteristics are obtained. Therefore, the lower limit of the value of k is 1.00. on the other hand,
When the value of k is 1.05, as shown in sample No. 16, a dense sintered body cannot be obtained, but when the value of k is 1.04, as shown in sample No. 20, the desired electrical characteristics are obtained. Therefore, the upper limit of the value of k is 1.04. As shown in sample No. 17, the additive component SiO 2 is 45
In the case of mol%, tan δ is 3.2%, which is worse than the target value, but as shown in samples No. 9 and 18,
Target electrical properties are obtained when SiO 2 is 50 mol %. Therefore, the lower limit for SiO 2 is 50 mol%. On the other hand, when SiO 2 is 80 mol% as shown in sample No. 6, a dense sintered body cannot be obtained, but when SiO 2 is 75 mol% as shown in sample No. 2, a dense sintered body cannot be obtained. Target electrical characteristics can be obtained. Therefore, the upper limit for SiO 2 is 75 mol%. Note that the range of LiO 2 is necessarily 25 to 50 mol%. Modifications Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and, for example, the following modifications are possible. (a) A trace amount of a mineralizing agent such as MnO 2 (preferably 0.05 to 0.1% by weight) may be added to the basic components to improve the sinterability, within a range that does not impede the object of the present invention. Further, other substances may be added as necessary. (b) The starting materials for obtaining the basic components and additive components may be other than those shown in the examples, such as BaO,
It may also be an oxide or hydroxide such as Li 2 O or other compounds. (c) The oxidation temperature may be set to a temperature other than 600°C lower than the sintering temperature (preferably 1000°C or less).
That is, various changes can be made in consideration of the electrodes made of nickel or the like and the oxidation of the porcelain. (d) The firing temperature in a reducing atmosphere can be varied depending on the electrode material. (e) It is also applicable when sintering is performed in a neutral atmosphere. (f) Of course, it can also be applied to general ceramic capacitors other than multilayer ceramic capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係わる積層型磁器コ
ンデンサを示す断面図、第2図は試料No.1の磁器
コンデンサの静電容量の温度特性を示す図であ
る。 1,2,3…磁器層、4,5…内部電極、6,
7…外部電極。
FIG. 1 is a sectional view showing a multilayer ceramic capacitor according to an embodiment of the present invention, and FIG. 2 is a diagram showing the temperature characteristics of capacitance of the ceramic capacitor of sample No. 1. 1, 2, 3...Porcelain layer, 4,5...Internal electrode, 6,
7...External electrode.

Claims (1)

【特許請求の範囲】 1 BakxMxOkTiO2(但し、MはMg及びZnの
少なくとも1種の金属、kは1.0〜1.04の範囲の
数値、xは0.02〜0.05の範囲の数値)から成る
100重量部の基本成分と、 25〜50モル%のLi2Oと50〜75モル%のSiO2
から成る0.2〜10.0重量部の添加成分と の混合物質を焼成して成る誘電体磁器組成物。
[Claims] 1 Ba k - x M x O k TiO 2 (where M is at least one metal of Mg and Zn, k is a numerical value in the range of 1.0 to 1.04, and x is in the range of 0.02 to 0.05. consisting of numerical values)
A dielectric ceramic composition obtained by firing a mixed material of 100 parts by weight of the basic component and 0.2 to 10.0 parts by weight of additive components consisting of 25 to 50 mol% Li 2 O and 50 to 75 mol % SiO 2 thing.
JP58225562A 1983-11-30 1983-11-30 Dielectric porcelain composition Granted JPS60119006A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58225562A JPS60119006A (en) 1983-11-30 1983-11-30 Dielectric porcelain composition
EP84114404A EP0155366B1 (en) 1983-11-30 1984-11-28 Low temperature sinterable ceramic materials for use in solid dielectric capacitors or the like, and method of manufacture
DE8484114404T DE3475063D1 (en) 1983-11-30 1984-11-28 Low temperature sinterable ceramic materials for use in solid dielectric capacitors or the like, and method of manufacture
KR1019840007495A KR860001758B1 (en) 1983-11-30 1984-11-29 Ceramic compositions
US06/676,796 US4610969A (en) 1983-11-30 1984-11-30 Low temperature sintered ceramic material for use in solid dielectric capacitors or the like, and method of manufacture
US06/753,240 US4626394A (en) 1983-11-30 1985-07-09 Method of manufacturing low temperature sintered ceramic materials for use in solid dielectric capacitors or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225562A JPS60119006A (en) 1983-11-30 1983-11-30 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS60119006A JPS60119006A (en) 1985-06-26
JPS6114607B2 true JPS6114607B2 (en) 1986-04-19

Family

ID=16831241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225562A Granted JPS60119006A (en) 1983-11-30 1983-11-30 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPS60119006A (en)

Also Published As

Publication number Publication date
JPS60119006A (en) 1985-06-26

Similar Documents

Publication Publication Date Title
JPS621595B2 (en)
JPH0552604B2 (en)
JPH0524656B2 (en)
JPH0552602B2 (en)
JPH0524655B2 (en)
KR930002631B1 (en) Ceramic capacitor and method of manufacture
JPH0518204B2 (en)
JPH0524653B2 (en)
JPH0524652B2 (en)
JPH0544764B2 (en)
JPS6114610B2 (en)
JPS621596B2 (en)
JPS6114611B2 (en)
JPH0552603B2 (en)
JPS6114608B2 (en)
JPH0551127B2 (en)
JPS6114607B2 (en)
JPH0524651B2 (en)
JPS6114609B2 (en)
JPH0518202B2 (en)
JPH0518203B2 (en)
JPH0532892B2 (en)
JPH0574883B2 (en)
JPH0525376B2 (en)
JPH0551126B2 (en)