JPS6114597A - Method and device for melting and solidifying radioactive waste - Google Patents
Method and device for melting and solidifying radioactive wasteInfo
- Publication number
- JPS6114597A JPS6114597A JP59135543A JP13554384A JPS6114597A JP S6114597 A JPS6114597 A JP S6114597A JP 59135543 A JP59135543 A JP 59135543A JP 13554384 A JP13554384 A JP 13554384A JP S6114597 A JPS6114597 A JP S6114597A
- Authority
- JP
- Japan
- Prior art keywords
- container
- radioactive waste
- melting
- furnace body
- induction heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Processing Of Solid Wastes (AREA)
- Gasification And Melting Of Waste (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は放射性廃棄物の溶融固化方法および装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to a method and apparatus for melting and solidifying radioactive waste.
(従来の技術)
従来原子力発電所等の放射性物質取扱施設から発生する
放射能によって汚染された廃棄物のうち、HEPAフィ
ルタや各種保温材のように嵩密度が小さい放射性廃棄物
は、圧力をかけて圧縮減容化しVラム在中に保管されて
いる。(Prior technology) Among radioactively contaminated waste generated from radioactive material handling facilities such as nuclear power plants, radioactive waste with a low bulk density, such as HEPA filters and various heat insulating materials, is processed by pressure. It is compressed and reduced in volume and stored in a V-ram.
(発明が解決しようとする問題点)
しかし上記の方法によると、圧縮圧力を大きくしても1
/2 乃至1/4程度の減容化率しか得られない。そこ
で放射性廃棄物の焼却灰を容器内で加熱して溶融させ、
この溶湯中に上記の嵩密度の小さい放射性廃棄物を投入
して溶融させる方法が考えられるが、この場合廃棄物が
溶湯表面に浮い −てしまい、下面だけで溶湯と接触
するため溶融速度が遅く、処理能力が劣る。(Problem to be solved by the invention) However, according to the above method, even if the compression pressure is increased,
A volume reduction rate of only 1/2 to 1/4 can be obtained. Therefore, the incineration ash of radioactive waste is heated and melted in a container.
One possible method is to pour the above-mentioned radioactive waste with a low bulk density into the molten metal and melt it, but in this case, the waste floats on the surface of the molten metal and comes into contact with the molten metal only on the bottom surface, resulting in a slow melting rate. , processing capacity is inferior.
この発明は上記問題点を解決するもので、嵩密度の小さ
い放射性廃棄物を能率的に溶融して大141に減容化さ
れた固化体を得ることができ、また焼却灰等の粉粒状の
放射性廃棄物と同時に同一装置を用いて溶融固化処理す
ることができる放射性廃棄物の溶融固化方法および装置
を提供しようとするものである。This invention solves the above problems, and can efficiently melt radioactive waste with a small bulk density to obtain a solidified material whose volume is reduced to 141. It is an object of the present invention to provide a method and apparatus for melting and solidifying radioactive waste, which can be melted and solidified at the same time as radioactive waste using the same equipment.
(問題点を解決するための手段)
この発明方法は、誘導加熱コイルをそなえた炉
′内に容器を設置し、上記容器を上記誘導加熱コイル
により加熱し該容器内で粉粒状の放射性廃棄物を溶融さ
せ、得られた溶融体中に嵩密度の小さい放射性廃棄物を
押込みながら溶融させ、その後冷却して上記容器内に固
定化された固化体を得ることを特徴とする放射性廃棄物
の溶融固化方法であり、またこの発明装置は、昇降駆動
される底蓋によって底部を開放可能に閉鎖した密封容器
状の炉本体と、上記炉本体の側壁の外周部に設けた誘導
加熱コイルと、上記炉本体の内部において上記誘導加熱
コイルに対応する位置に配設され上記底蓋に固設した支
台上に載置されて上記炉本体内に下方から挿脱自在であ
る金属製の容器と、上記炉本体の上部に設けた徘〃スロ
と、上記炉本体に取付けられ上記容器内へ放射性廃棄物
を供給する投入シュートと、上記投入シュート内に昇降
自在に配設した押込板を昇降駆動する押圧装置と、上記
炉本体に取付けられ上記容器内の溶融状態を検知する検
知装置とをそなえて成る放射性廃棄物の溶融固化装置で
ある。(Means for solving the problem) This invention method is based on a furnace equipped with an induction heating coil.
A container is placed inside the chamber, and the container is heated by the induction heating coil to melt the powdery radioactive waste inside the container, and the radioactive waste with a low bulk density is forced into the resulting melt and melted. This is a method for melting and solidifying radioactive waste, which is characterized in that it is then cooled to obtain a solidified body fixed in the container, and the apparatus of this invention is capable of opening the bottom part by means of a bottom lid that is driven up and down. A furnace body in the form of a sealed container closed to the inside, an induction heating coil provided on the outer periphery of the side wall of the furnace body, and an induction heating coil disposed inside the furnace body at a position corresponding to the induction heating coil and fixed to the bottom cover. A metal container is placed on a support base and can be inserted into and removed from the furnace body from below; an input chute for supplying radioactive waste to the input chute, a pressing device that drives up and down a pushing plate disposed in the input chute so as to be able to move up and down, and a detection device attached to the furnace body to detect the molten state in the container. This is a radioactive waste melting and solidification equipment equipped with:
この発明1こおいて粉粒状の放射性廃棄物とは、放射性
廃棄物の焼却灰、液状の放射性廃業物より得られる硫酸
ソーダ、ホウ酸ソーダ等の粉状あるいは粒状の廃棄物を
いう。In this invention 1, granular radioactive waste refers to powdery or granular waste such as incinerated ash of radioactive waste, sodium sulfate and sodium borate obtained from liquid radioactive industrial waste.
またこの発明においで嵩密度の小さい放射性廃棄物とは
、HEPAフィルタ、ガラスフィルタ、各種の保温材酔
の嵩ばった固体状の廃棄物をいう。Furthermore, in the present invention, radioactive waste having a low bulk density refers to bulky solid waste such as HEPA filters, glass filters, and various types of heat insulating material.
(作用)
この発明においては、粉粒状の放射性廃棄物を容器内で
誘導加熱により溶融させて得た溶湯内に、嵩密度の小さ
い放射性廃棄物が押圧装置に上り押圧浸漬され、これに
よって該廃棄物の溶湯に対する接触面積が大巾に増加し
、高い溶融速度が得られるのである。(Function) In this invention, radioactive waste having a small bulk density is ascended to a pressing device and pressed into a molten metal obtained by melting powdery radioactive waste by induction heating in a container, thereby allowing the waste to be disposed of. The contact area of the object with the molten metal increases greatly, resulting in a high melting rate.
(実施例)
以下第1図および第2図によりこの発明の一実施例を説
明する。(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2.
第1図はこの発明に係る放射性廃棄物の溶融固化装置を
示し、基礎に立設した支枠1により支持された密閉容器
状の炉本体2は、非金属祠料、例えば石英質製の円筒状
の側壁3と、これに被着された金属製の蓋部4とから成
る。基礎に立設したガイド5によって昇降自在に案内さ
れ図示しないモーター等の駆tIJ装置により昇降駆動
される昇降台6には、炉本体2の底部を開放自在に閉鎖
する底蓋7が固着しである。側壁3の外周部には誘導加
熱コイル8が取付けである。この誘導加熱コイル8はカ
バー9内に収められ、空冷あるいは水冷などの公知の冷
却方法によって冷却されるものである。一方炉本体2の
側壁3の内側にはアスベスト、キャスタブル等の断熱材
製の円筒状の断熱壁11が設けられ、この断熱壁11の
内側には誘導加熱コイル8に対応する位置に會R*の筒
状加熱体12が設けられ、断熱壁11との間に外側空間
13が形成されている。断熱壁11の上端部には穴14
をそなえた断熱蓋15が被着され、この断熱蓋15と筒
状加熱体12の間には少量のすきま16が形成されてい
る。これらIR熱壁11および筒状加熱体12は、炉本
体2または支枠1に固定支持されている。一方底M7に
固設した断熱材などの非金属製の支台18上には、底蓋
7による炉本体2の底部閉鎖時に筒状加熱体12の下端
部を閉鎖する底板19が取付けである。この底板19の
材料は金属材料が好ましいが、非金属材料でもよい。底
板19上にはカーボングツファイトやセラミック等の非
金属材料、好ましくはステンレス等の金属材料より成る
容器2oが載置しである。FIG. 1 shows an apparatus for melting and solidifying radioactive waste according to the present invention, in which a furnace body 2 in the form of a closed container supported by a support frame 1 erected on a base is made of a cylindrical cylinder made of a non-metallic abrasive material, for example quartz. It consists of a shaped side wall 3 and a metal lid 4 attached to the side wall 3. A bottom cover 7 for freely closing the bottom of the furnace body 2 is fixed to a lifting platform 6 that is guided to be raised and lowered by a guide 5 set up on a foundation and driven up and down by a drive unit such as a motor (not shown). be. An induction heating coil 8 is attached to the outer periphery of the side wall 3. This induction heating coil 8 is housed within a cover 9 and is cooled by a known cooling method such as air cooling or water cooling. On the other hand, inside the side wall 3 of the furnace body 2, a cylindrical insulation wall 11 made of a heat insulating material such as asbestos or castable is provided. A cylindrical heating body 12 is provided, and an outer space 13 is formed between it and the heat insulating wall 11. A hole 14 is provided at the upper end of the heat insulating wall 11.
A heat insulating lid 15 is attached, and a small gap 16 is formed between the heat insulating lid 15 and the cylindrical heating element 12. The IR hot wall 11 and the cylindrical heating body 12 are fixedly supported by the furnace body 2 or the supporting frame 1. On the other hand, a bottom plate 19 that closes the lower end of the cylindrical heating element 12 when the bottom of the furnace body 2 is closed by the bottom cover 7 is mounted on a non-metallic support 18 such as a heat insulating material fixed to the bottom M7. . The material of this bottom plate 19 is preferably a metal material, but may be a non-metal material. A container 2o made of a non-metallic material such as carbon gutsphite or ceramic, preferably a metallic material such as stainless steel, is placed on the bottom plate 19.
容器20は底蓋7およびこれと一体の支台18と共に昇
降駆動され、筒状加熱体12内に下方がら挿脱自在であ
る。底板19には不活性ガス供給口21が設けられ、こ
の供給口21に連通する穴22およびこの穴22の上端
に連通し上向きに開口する放射状の4本の溝23が、支
台18に?殺しである。また底板19には、上記容器2
oと筒状加熱体12との間の内側空間24と底板19の
溝23とを連通ずる通気穴25が穿設してあり、炉本体
2の上部には徘〃スロ26が設けである。The container 20 is driven up and down together with the bottom cover 7 and a supporting base 18 integrated therewith, and can be freely inserted into and removed from the cylindrical heating element 12 from below. The bottom plate 19 is provided with an inert gas supply port 21 , and a hole 22 communicating with the supply port 21 and four radial grooves 23 communicating with the upper end of the hole 22 and opening upward are provided on the support base 18 . It's murder. The bottom plate 19 also includes the container 2.
A ventilation hole 25 is provided to communicate the inner space 24 between the heating element 12 and the cylindrical heating element 12 with the groove 23 of the bottom plate 19, and a protrusion slot 26 is provided in the upper part of the furnace body 2.
これによって不活性〃ス供給口21がら穴22、溝23
、外側空間13、すきま16、穴14を経て#γλ口2
6に至る外側〃ス流通路27と、同様に溝23がら分流
して通気穴25、内gllI空間24、穴14を経て排
γスロ26に至る内側〃ス流通路28とが形成されてい
る。また炉本体2の蓋部4には、容器20内へ放射性廃
棄物を供給する廃棄物供給装置31と、同じく容器20
内へ焼却灰中の未燃分を燃焼させるに必要な燃焼用空気
などを供給する酸素供給管32と、容器20内の溶融状
態を検知する放射温度計などの温度計33が、それぞれ
蓋部4を貫通して取付けである。As a result, the inert gas supply port 21, the hole 22, the groove 23
, outer space 13, gap 16, hole 14 to #γλ port 2
6, and an inner solenoid flow passage 28 which is similarly separated from the groove 23 and reaches the exhaust gamma slot 26 via the ventilation hole 25, the inner gllI space 24, and the hole 14. . Further, the lid part 4 of the reactor body 2 is provided with a waste supply device 31 that supplies radioactive waste into the container 20, and a waste supply device 31 that supplies radioactive waste into the container 20.
An oxygen supply pipe 32 that supplies combustion air necessary to burn the unburned content in the incineration ash, and a thermometer 33 such as a radiation thermometer that detects the molten state inside the container 20 are connected to the lid. It is installed by penetrating 4.
第2図は廃棄物供給装置31の詳細を示し、炉本体2の
蓋部4に固設した鉛直管状の投入シュート35が、断熱
蓋15を貫通して容器20の上方に開口している。投入
シュート35の上部には、粉粒状の放射性廃棄物C以下
粉体という)投入用の粉体投入口36と、嵩比重の小さ
い放射性廃棄物(以下固体という)投入用の固体投入口
37が設けである。また投入シュート35内には押込板
38が昇降自在に配設され、この押込板38を昇降駆動
する押圧装置であるエアシリング39のピストンロンド
が押込板38に連結されている。40は押込板38案内
用のガイドバーである。また粉体投入口36および固体
投入口37の下方の投入シュート35には、スライドダ
ンパ41が開閉自在に取付けられている。FIG. 2 shows details of the waste supply device 31, in which a vertical tubular input chute 35 fixed to the lid 4 of the furnace body 2 passes through the heat insulating lid 15 and opens above the container 20. At the top of the input chute 35, there are a powder input port 36 for inputting granular radioactive waste (hereinafter referred to as powder) and a solid input port 37 for inputting radioactive waste with a small bulk specific gravity (hereinafter referred to as solid). It is a provision. A push plate 38 is disposed within the input chute 35 so as to be movable up and down, and a piston rond of an air cylinder 39, which is a pressing device for driving the push plate 38 up and down, is connected to the push plate 38. 40 is a guide bar for guiding the push plate 38. Further, a slide damper 41 is attached to the input chute 35 below the powder input port 36 and the solid input port 37 so as to be openable and closable.
上記構成を有する放射性廃棄物の溶融固化装置43にお
いては、誘導加熱コイル8に通電して筒状加熱体12を
加熱すれば、この加熱体12よりの熱輻射および熱伝達
により容器20が加熱される6また容器20が金属製の
場合は容器自身の誘導加熱も付加される。また不活性ガ
ス供給口21からはアルゴン、窒素ガスなどの不活性ガ
スを炉本体2内に供給して筒状加熱体12の内外部、す
なわち内側空間24および外側空間13を不活性ガス雰
囲気とする。そして放射性廃棄物の焼却灰、液状の放射
性廃棄物より得られる硫酸ソーダ、ホウ酸ソーダ等の粉
体44を粉体投入口36から投入シュート35を経て容
器20内に投入する。このときスライドダンパ41を開
くが、投入後は閉じて熱遮断をおこなう。投入された粉
体44は約1100℃に加熱された容器20により加熱
されて溶融し、表面温度が950〜1050℃程度の溶
融体45を形成する。上記の溶融操作時において、必要
に応じて酸素供給管32から燃焼用空気あるいはその他
の酸素含有ガスを容器20内に供給すれば、たとえば焼
却灰中に未燃分があっても燃焼し、灰分となって溶融す
る。また粉体44のうち焼却灰の融点が高い場合は、焼
却灰と共融物を形成する融剤、たとえばホウ酸、ホウ砂
、炭酸ナトリウム等を焼却灰とともに容器20内に供給
してもよいし、またこの融剤のみを先に粉体投入口36
から容器20内(二供給して加熱溶融させ液状としてお
き、その上に焼却灰等の粉粒状の放射性廃棄物を供給し
て溶融処理をおこなうようにしてもよい。In the radioactive waste melting and solidifying apparatus 43 having the above configuration, when the induction heating coil 8 is energized to heat the cylindrical heating body 12, the container 20 is heated by heat radiation and heat transfer from the heating body 12. In addition, if the container 20 is made of metal, induction heating of the container itself is also added. In addition, an inert gas such as argon or nitrogen gas is supplied into the furnace body 2 from the inert gas supply port 21 to create an inert gas atmosphere inside and outside the cylindrical heating element 12, that is, the inner space 24 and the outer space 13. do. Then, powder 44 of incineration ash of radioactive waste, sodium sulfate, sodium borate, etc. obtained from liquid radioactive waste is introduced into the container 20 from the powder input port 36 through the input chute 35. At this time, the slide damper 41 is opened, but after it is turned on, it is closed to cut out the heat. The charged powder 44 is heated and melted by the container 20 heated to about 1100°C to form a molten body 45 having a surface temperature of about 950 to 1050°C. During the above melting operation, if combustion air or other oxygen-containing gas is supplied into the container 20 from the oxygen supply pipe 32 as needed, even if there is unburned content in the incinerated ash, it will be combusted and the ash will be and melts. Furthermore, if the melting point of the incinerated ash among the powders 44 is high, a flux that forms a eutectic with the incinerated ash, such as boric acid, borax, sodium carbonate, etc., may be supplied into the container 20 together with the incinerated ash. In addition, only this flux is first poured into the powder inlet 36.
Alternatively, the radioactive waste may be heated and melted into the container 20 (20) to form a liquid, and then powdered radioactive waste such as incinerated ash may be fed thereon to perform the melting process.
上記の溶融操作中において容器20内の溶融状態は温度
計33により検知することができる。なおこの温度計3
3のかわりに、あるいは温度計と併用して、液面計やモ
ニターテレビなどを用いてもよい。During the above melting operation, the melting state inside the container 20 can be detected by the thermometer 33. Furthermore, this thermometer 3
In place of 3, or in combination with a thermometer, a liquid level gauge, monitor TV, etc. may be used.
容器20内に粉体44の溶融体(溶湯)45が所定量形
成されたら、HEPAフィルタ、各種保温材などの軽量
の固体46を固体投入口37から投入シュート35を経
て溶融体45上へ投下する。When a predetermined amount of the molten material (molten metal) 45 of the powder 44 is formed in the container 20, a lightweight solid 46 such as a HEPA filter or various heat insulating materials is dropped from the solid inlet 37 through the input chute 35 onto the molten material 45. do.
この投下時には前記と同様にスライドグンバ41を開く
。この固体46をエアシリング39を駆動して押込板3
8で押圧するのであるが、第1図に示すように投入シュ
ート35内に収容できる複数個の固体46を投入してか
ら、最上部を押圧し、固体46が1個分溶融したら、最
上部に新たな固体46を追加投入して押圧するのが好ま
しい。最終的には第2図に示すように最後の固体46を
容器20の上部付近まで押込んで終了する。溶融体45
内に押込まれた固体46は、極めて広面積で溶融体45
と接触して短時間で確実に溶融する。At the time of this dropping, the slide gunba 41 is opened in the same manner as described above. This solid 46 is pushed into the pushing plate 3 by driving the air cylinder 39.
As shown in Fig. 1, a plurality of solids 46 that can be accommodated in the input chute 35 are charged, and then the top part is pressed, and when one solid 46 melts, the top part is pressed. It is preferable to add a new solid 46 and press it. Finally, as shown in FIG. 2, the final solid 46 is pushed into the container 20 near the top. Melt body 45
The solid 46 pushed inside the melt 45 over a very wide area.
It melts reliably in a short time when it comes into contact with.
エアシリング39による固体46の押込速度および誘導
加熱コイル8への投入電力量は、温度計33により溶融
体45の表面温度を検知しつつ調節する。The pushing speed of the solid 46 by the air cylinder 39 and the amount of power input to the induction heating coil 8 are adjusted while the surface temperature of the melt 45 is detected by the thermometer 33.
上記各工程において炉本体2内のガスは徘がスロ26か
ら吸引しフィルタなどにより清浄化処理する。容器20
内の溶融物が所定の量になったら、炉本体2を自然放冷
なとで冷却し、溶融物が容器20内で固化して容器20
内に固定化されたら、昇降台6を降下させ容器20を底
板19上から取去って、新たな容器20を底板19上に
装着し、以下上記と同様な工程を繰返す。なお廃棄物中
に混入している金属類、レンガ、プラス等の不燃性夾雑
物もすべて容器20内の溶融物中にとり込まれ固定化さ
れる。In each of the above steps, the gas inside the furnace body 2 is sucked through the slot 26 and purified using a filter or the like. container 20
When the molten material in the furnace reaches a predetermined amount, the furnace body 2 is allowed to cool naturally, and the molten material solidifies in the container 20.
Once the container 20 is fixed inside, the lifting table 6 is lowered, the container 20 is removed from the bottom plate 19, a new container 20 is mounted on the bottom plate 19, and the same steps as described above are repeated. Incidentally, all non-combustible impurities such as metals, bricks, and plastics mixed in the waste are also incorporated into the molten material in the container 20 and fixed.
この発明は上記実施例に限定されるものではなく、たと
えば炉本体2が断熱性に富む場合等は断熱壁11および
断熱蓋15を省略してもよい。また不活性〃ス供給口2
1がら筒状加熱体12の内周部および外周部に至るガス
流通路は支台18および底板19を貫通させずに、たと
えば支台18の周囲から、筒状加熱体12に穿設した穴
あるいは筒状加熱体12と底板19との間に形成したす
きまなどを経て内側空間24に不活性ガスを流入させる
ようにしてもよいし、各部の材質および運転温度によっ
ては、不油性ガスの流通を省略することもできる。さら
に上記実施例においては誘導加熱コイル8により筒状加
熱体12を介して容器20を間接的に加熱する構成とし
たが、筒状加熱体12を用いずに金属製の容器20を誘
導加熱コイル8により直接加熱して廃棄物の溶融をおこ
なうようにしでもよい。The present invention is not limited to the above-mentioned embodiment, and the heat insulating wall 11 and the heat insulating lid 15 may be omitted, for example, if the furnace body 2 has good heat insulation properties. Also, inert gas supply port 2
1 to the inner and outer circumferences of the cylindrical heating element 12 do not pass through the abutment 18 and the bottom plate 19, but instead are formed through holes drilled in the cylindrical heating element 12 from, for example, around the abutment 18. Alternatively, the inert gas may be allowed to flow into the inner space 24 through a gap formed between the cylindrical heating element 12 and the bottom plate 19, or depending on the material of each part and the operating temperature, the inert gas may be allowed to flow. can also be omitted. Further, in the above embodiment, the container 20 is indirectly heated by the induction heating coil 8 via the cylindrical heating body 12, but the metal container 20 is heated by the induction heating coil 8 without using the cylindrical heating body 12. Alternatively, the waste may be melted by direct heating.
(発明の効果)
以上説明したようにこの発明によれば、)(EPAフィ
ルタや保温材のように嵩密度の小さい放射性廃棄物を能
率的に溶融して大巾に減容化された固化体を得ることが
でき、さらに放射性廃棄物の焼却灰等の粉粒状の放射性
廃棄物と同時に同一装置を用いて溶融固化処理すること
がで鰺る。(Effects of the Invention) As explained above, according to the present invention, () (a solidified material whose volume is greatly reduced by efficiently melting radioactive waste having a small bulk density such as an EPA filter or a heat insulating material) Furthermore, it can be melted and solidified using the same equipment at the same time as powdered radioactive waste such as radioactive waste incineration ash.
第1図はこの発明の一実施例を示す溶融固化装置の縦断
面図、第2図は同じく廃棄物供給装置部分の詳細縦断面
図である。
2・・・炉本体、6・・・昇降台、7・・・底蓋、8・
・・誘導加熱コイル、12・・・筒状加熱体、18・・
・支台、19・・・底板、20・・・容器、26・・・
徘〃スロ、31・・・投入シュート、38・・・押込板
、39・・・エアシリング(押圧装置)、43・・・溶
融固化装置、44・・・粉体(放射性廃棄物)、45・
・・溶融体、46・・・固体(放射性廃棄物)。
7面
q8開昭Gl−14597(5)
第2回FIG. 1 is a longitudinal cross-sectional view of a melting and solidifying apparatus showing an embodiment of the present invention, and FIG. 2 is a detailed longitudinal cross-sectional view of a portion of the waste supply apparatus. 2... Furnace body, 6... Lifting platform, 7... Bottom cover, 8...
...Induction heating coil, 12...Cylindrical heating body, 18...
・Abutment, 19... Bottom plate, 20... Container, 26...
Wandering slot, 31... Input chute, 38... Pushing plate, 39... Air silling (pressing device), 43... Melting solidification device, 44... Powder (radioactive waste), 45・
...Melted body, 46...Solid (radioactive waste). 7th page q8 Kaisho Gl-14597 (5) 2nd
Claims (1)
記容器を上記誘導加熱コイルにより加熱し該容器内で粉
粒状の放射性廃棄物を溶融させ、得られた溶融体中に嵩
密度の小さい放射性廃棄物を押込みながら溶融させ、そ
の後冷却して上記容器内に固定化された固化体を得るこ
とを特徴とする放射性廃棄物の溶融固化方法。 2 粉粒状の放射性廃棄物が放射性廃棄物の焼却灰、液
状の放射性廃棄物より得られる硫酸ソーダ、ホウ酸ソー
ダのうちの少なくとも一種以上から成る特許請求の範囲
第1項記載の放射性廃棄物の溶融固化方法。 3 嵩比重の小さい放射性廃棄物がHEPAフィルタ、
ガラスフィルタ、保温材のうちの少なくとも一種以上か
ら成る特許請求の範囲第1項または第2項記載の放射性
廃棄物の溶融固化方法。 4 炉内に金属製の筒状加熱体が設けてあり、この筒状
加熱体内に容器を設置する特許請求の範囲第1項または
第2項または第3項記載の放射性廃棄物の溶融固化方法
。 5 容器が金属製であり、上記容器を誘導加熱コイルに
より直接加熱する特許請求の範囲第1項または第2項ま
たは第3項記載の放射性廃棄物の溶融固化方法。 6 昇降駆動される底蓋によつて底部を開放可能に閉鎖
した密封容器状の炉本体と、上記炉本体の側壁の外周部
に設けた誘導加熱コイルと、上記炉本体の内部において
上記誘導加熱コイルに対応する位置に配設され上記底蓋
に固設した支台上に載置されて上記炉本体内に下方から
挿脱自在である金属製の容器と、上記炉本体の上部に設
けた排ガス口と、上記炉本体に取付けられ上記容器内へ
放射性廃棄物を供給する投入シュートと、上記投入シュ
ート内に昇降自在に配設した押込板を昇降駆動する押圧
装置と、上記炉本体に取付けられ上記容器内の溶融状態
を検知する検知装置とをそなえて成る放射性廃棄物の溶
融固化装置。 7 容器の外周囲の炉本体内に金属製の筒状加熱体を載
置し、底蓋による炉本体底部の閉鎖時に上記筒状加熱体
の下端部をほぼ閉鎖する底板上に容器を載置した特許請
求の範囲第6項記載の放射性廃棄物の溶融固化装置。[Claims] 1. A container is placed in a furnace equipped with an induction heating coil, and the container is heated by the induction heating coil to melt powdery radioactive waste in the container, resulting in a molten product. A method for melting and solidifying radioactive waste, which comprises melting radioactive waste while pushing it into the container, and then cooling it to obtain a solidified body fixed in the container. 2. Radioactive waste according to claim 1, in which the powdery radioactive waste comprises at least one of the following: incineration ash of radioactive waste, sodium sulfate obtained from liquid radioactive waste, and sodium borate. Melting solidification method. 3 Radioactive waste with low bulk specific gravity is used in HEPA filters,
The method for melting and solidifying radioactive waste according to claim 1 or 2, comprising at least one of a glass filter and a heat insulating material. 4. A method for melting and solidifying radioactive waste according to claim 1, 2, or 3, wherein a metal cylindrical heating body is provided in the furnace, and a container is installed in the cylindrical heating body. . 5. The method for melting and solidifying radioactive waste according to claim 1, 2, or 3, wherein the container is made of metal and the container is directly heated by an induction heating coil. 6. A furnace body in the form of a sealed container whose bottom part is releasably closed by a bottom lid that is driven up and down, an induction heating coil provided on the outer periphery of a side wall of the furnace body, and an induction heating coil provided inside the furnace body. a metal container placed on a support fixed to the bottom cover and placed at a position corresponding to the coil, and capable of being inserted into and removed from the furnace body from below; an exhaust gas port, an input chute that is attached to the furnace body and supplies radioactive waste into the container, a pressing device that drives up and down a push plate that is movably disposed in the input chute, and is attached to the furnace body. and a detection device for detecting the molten state in the container. 7 A metal cylindrical heating element is placed inside the furnace body around the outer periphery of the container, and the container is placed on a bottom plate that substantially closes the lower end of the cylindrical heating element when the bottom of the furnace body is closed by the bottom cover. An apparatus for melting and solidifying radioactive waste according to claim 6.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59135543A JPS6114597A (en) | 1984-06-29 | 1984-06-29 | Method and device for melting and solidifying radioactive waste |
KR1019850004560A KR900000326B1 (en) | 1984-06-29 | 1985-06-26 | Method and device melting and solidifying radioactive waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59135543A JPS6114597A (en) | 1984-06-29 | 1984-06-29 | Method and device for melting and solidifying radioactive waste |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6114597A true JPS6114597A (en) | 1986-01-22 |
JPH032440B2 JPH032440B2 (en) | 1991-01-16 |
Family
ID=15154237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59135543A Granted JPS6114597A (en) | 1984-06-29 | 1984-06-29 | Method and device for melting and solidifying radioactive waste |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS6114597A (en) |
KR (1) | KR900000326B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0419894A (en) * | 1990-05-14 | 1992-01-23 | Nec Corp | Elastic store circuit |
JPH0528746A (en) * | 1991-07-24 | 1993-02-05 | Nec Ic Microcomput Syst Ltd | Fifo memory circuit |
EP0640992A1 (en) * | 1993-08-25 | 1995-03-01 | Doryokuro Kakunenryo Kaihatsu Jigyodan | Method of melting treatment of radioactive miscellaneous solid wastes |
JP2007271184A (en) * | 2006-03-31 | 2007-10-18 | Chugoku Electric Power Co Inc:The | Melting furnace structure preventing turning of combustion flame to canister outer periphery |
JP2016509663A (en) * | 2013-01-17 | 2016-03-31 | アー エル デー ヴァキューム テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツングALD Vacuum Technologies GmbH | Melting equipment for collecting contaminated scrap |
CN109073129A (en) * | 2016-10-28 | 2018-12-21 | 获劳动红旗勋章和Czsr劳动勋章的水压试验设计院联合股份公司 | Electric heating bath apparatus for decontamination |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100361830B1 (en) * | 1998-06-20 | 2003-01-24 | 주식회사 엘지생명과학 | Process for preparing alkali metal salts of quinolone carboxylic acid |
KR100672907B1 (en) * | 2005-07-05 | 2007-01-24 | (주)메덱스 | Vacuum incinerator for disposal of waste materials and waste materials disposal method using the same |
KR102295599B1 (en) * | 2019-11-22 | 2021-08-31 | 한국수력원자력 주식회사 | Radioactive gas removal device that improves cfvs performance by lowering the pressure of the filtration exhaust container |
-
1984
- 1984-06-29 JP JP59135543A patent/JPS6114597A/en active Granted
-
1985
- 1985-06-26 KR KR1019850004560A patent/KR900000326B1/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0419894A (en) * | 1990-05-14 | 1992-01-23 | Nec Corp | Elastic store circuit |
JPH0528746A (en) * | 1991-07-24 | 1993-02-05 | Nec Ic Microcomput Syst Ltd | Fifo memory circuit |
EP0640992A1 (en) * | 1993-08-25 | 1995-03-01 | Doryokuro Kakunenryo Kaihatsu Jigyodan | Method of melting treatment of radioactive miscellaneous solid wastes |
JP2007271184A (en) * | 2006-03-31 | 2007-10-18 | Chugoku Electric Power Co Inc:The | Melting furnace structure preventing turning of combustion flame to canister outer periphery |
JP2016509663A (en) * | 2013-01-17 | 2016-03-31 | アー エル デー ヴァキューム テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツングALD Vacuum Technologies GmbH | Melting equipment for collecting contaminated scrap |
CN109073129A (en) * | 2016-10-28 | 2018-12-21 | 获劳动红旗勋章和Czsr劳动勋章的水压试验设计院联合股份公司 | Electric heating bath apparatus for decontamination |
Also Published As
Publication number | Publication date |
---|---|
KR900000326B1 (en) | 1990-01-25 |
KR860000671A (en) | 1986-01-30 |
JPH032440B2 (en) | 1991-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6114597A (en) | Method and device for melting and solidifying radioactive waste | |
JPS6216399B2 (en) | ||
EP0196809B1 (en) | Apparatus for melting waste | |
US20220415532A1 (en) | Mobile compression and melting composite volume reduction system and method for treating non-combustible waste of dismantled nuclear power plant | |
WO2000031482A1 (en) | Improved apparatus and process for separating aluminium from a mixture of aluminium and aluminium dross | |
US4065299A (en) | Magnesium reclamation process and apparatus | |
JPS5836276B2 (en) | Scrap metal preheating method and device | |
JPS60186800A (en) | Method and device for incinerating and solidifying radioactive waste | |
JPS6038698A (en) | Device for melting and solidifying radioactive waste incinerated ash | |
RU12220U1 (en) | INSTALLATION FOR PROCESSING BY MELTING SOLID INDUSTRIAL AND HOUSEHOLD WASTE | |
RU2012080C1 (en) | Equipment for reprocessing of solid radioactive waste | |
JPS6216400B2 (en) | ||
RU1810912C (en) | Plasma furnace for processing of radioactive waste | |
JPS6211320B2 (en) | ||
JPH04286999A (en) | Melting treatment device of radioactive waste | |
US5743937A (en) | Earth melter with rubble walls and method of use | |
RU2097855C1 (en) | Solid radioactive waste recovery facility | |
JPS6239720B2 (en) | ||
JPS56149523A (en) | Melting furnace | |
JP3096184B2 (en) | Waste melting method | |
JPS6114598A (en) | Continuous melter for waste | |
Nafziger et al. | Electric arc furnace melting of simulated transuranic wastes | |
JPS6148119B2 (en) | ||
JPS6255640B2 (en) | ||
Binstock | Arc Melting and Casting of UC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |