JPS6038698A - Device for melting and solidifying radioactive waste incinerated ash - Google Patents
Device for melting and solidifying radioactive waste incinerated ashInfo
- Publication number
- JPS6038698A JPS6038698A JP14618583A JP14618583A JPS6038698A JP S6038698 A JPS6038698 A JP S6038698A JP 14618583 A JP14618583 A JP 14618583A JP 14618583 A JP14618583 A JP 14618583A JP S6038698 A JPS6038698 A JP S6038698A
- Authority
- JP
- Japan
- Prior art keywords
- container
- furnace body
- radioactive waste
- melting
- incineration ash
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Gasification And Melting Of Waste (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は放射性廃棄物の固化処理装置に関するものであ
り、さらに詳しくは放射性廃棄物の焼却灰を溶融固化す
るだめの装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for solidifying radioactive waste, and more particularly to an apparatus for melting and solidifying incinerated ash of radioactive waste.
従来原子力発電所等の放A4性物質取扱施設から発生ず
る放射能によって汚染された廃棄物のうちIjf燃性の
もの1よ、一般的には焼却処理されその焼却灰はドラム
罐等に充填されて施設内の適当な場所に貯蔵されている
のが普通である。しかしながらこれら焼却灰は、粉粒状
であるだめ、焼却灰を充填したドラム罐を輸送または貯
蔵するにあたっては焼却灰の安定化、減容処理を施すこ
とが望ましく、その処理法がいろいろ研究されている。Conventional waste contaminated with radioactivity generated from facilities handling A4 radioactive materials such as nuclear power plants is generally incinerated, and the incinerated ash is filled into drum cans, etc. They are usually stored in an appropriate location within the facility. However, since these incinerated ash are in the form of powder and granules, it is desirable to stabilize and reduce the volume of the incinerated ash before transporting or storing the drum can filled with incinerated ash, and various methods for this treatment are being researched. .
最近提案されているこれら焼却灰の処理法としては、焼
却灰をセメントで固化する方法あるいは焼却灰にアスフ
ァルト、プラスチック等を混合して固化する方法等が知
られている。しかしながら焼却灰をセメントで固化する
0i1者の方法では、(1) 灰とセメントを混合して
安定した密度、強度等をもつ固化体を得るには、灰とセ
メントの重111割合を灰1に対してセメント4以上と
する必要があり、このため固化体容積が灰の容積よりも
増大し増容となってしまう。Recently proposed methods for treating incinerated ash include a method of solidifying incinerated ash with cement, and a method of mixing asphalt, plastic, etc. with incinerated ash and solidifying it. However, in the 0i1 method of solidifying incineration ash with cement, (1) In order to mix ash and cement to obtain a solidified material with stable density, strength, etc. On the other hand, it is necessary to use a cement of 4 or more, which results in an increase in the volume of the solidified body as it becomes larger than the volume of the ash.
(2)灰とセメントを混練するときに焼却灰中の金属混
入物とセメントのアルカリ水溶液が反応して水素ガスを
発生するため、固化体中に空隙ができて密度、強度等が
低下することがあり安定性に欠ける。従って、こ糺を解
決するためには水素ガスの発生を防止するだめの前処理
が必要となり装置が複雑化する。(2) When mixing ash and cement, metal contaminants in the incinerated ash react with the alkaline aqueous solution of cement to generate hydrogen gas, which creates voids in the solidified material and reduces density, strength, etc. and lacks stability. Therefore, in order to solve the problem of stiffness, pretreatment to prevent the generation of hydrogen gas is required, which complicates the apparatus.
などの欠点があった。また後者の焼却灰をアスファルト
、プラスチック等で固化する方法あるいは装置では、焼
却灰中の金属片の除去、粉体化等の前処理が必要であり
設備が複雑かつ大型となる欠点があった。There were drawbacks such as. In addition, the latter method or device for solidifying incinerated ash with asphalt, plastic, etc. requires pretreatment such as removal of metal pieces from incinerated ash and pulverization, which has the disadvantage of requiring complicated and large-sized equipment.
本発明は上記従来の欠点を解消するもので、粉粒状の放
射性廃棄物焼却灰を溶融して輸送、貯蔵に適した安定な
減容した固化体に転換することができる溶融固化装置を
提供しようとするものであって、その要旨とするところ
は、昇降駆動される底蓋によって底部を開放可能に閉鎖
した密封容器状の炉本体と、上記炉本体の側壁の外周部
に設けた誘導加熱コイルと、上記炉本体の内部において
上記誘導加熱コイルに対応する位置に配設された金属製
の筒状加熱体と、上記底蓋に固設した支台上に取付けら
れ上記底蓋による上記炉本体底部閉鎖時に上記筒状加熱
体の下端部をほぼ閉鎖する底板と、上記底板上に載置さ
れ上記筒状加熱体内に丁方から挿脱自在である容器と、
上記炉本体の上部に設けた排ガス口と、上記底蓋に設け
た不活性ガス供給]−1と、上記炉本体内に形成され上
記不活性ガス供給1」から供給されたガスを上記筒状加
熱体の内外部を経て」二記刊ガス1コに誘導するガス流
通路と、」二記炉本体に取付けられ上記容器内、へ放射
性廃棄物焼却灰を供給する焼却灰供給口と、上記力1本
体に取イー1けられ上記容器内へ酸素含有ガスを01、
給する酸素供給管と、上記炉本体に1lffi (=1
けられjf記容器内の溶融状態を検知する検知装置とを
そなえて成る放射性廃棄物焼却灰の溶融固化装置にある
。The present invention solves the above-mentioned conventional drawbacks, and provides a melting and solidifying device capable of melting and converting granular radioactive waste incineration ash into a stable, volume-reduced solidified material suitable for transportation and storage. The gist of the furnace is a sealed container-like furnace body whose bottom can be opened by a bottom lid that is driven up and down, and an induction heating coil installed on the outer periphery of the side wall of the furnace body. a metal cylindrical heating element disposed inside the furnace body at a position corresponding to the induction heating coil; and a metal cylindrical heating body disposed inside the furnace body at a position corresponding to the induction heating coil; and the furnace body mounted on a support fixed to the bottom lid and supported by the bottom lid. a bottom plate that substantially closes the lower end of the cylindrical heating body when the bottom is closed; a container that is placed on the bottom plate and can be inserted into and removed from the cylindrical heating body;
The exhaust gas port provided at the top of the furnace body, the inert gas supply provided in the bottom cover]-1, and the gas supplied from the inert gas supply 1 formed in the furnace main body are fed into the cylindrical shape. a gas flow path that guides one gas through the inside and outside of the heating body; an incineration ash supply port that is attached to the furnace body and supplies radioactive waste incineration ash into the container; The oxygen-containing gas is taken into the main body and into the container,
1lffi (=1
An apparatus for melting and solidifying radioactive waste incineration ash is provided with a detection device for detecting a molten state in a container.
す1:図面によってこの発明の一実施例を説明する。S1: An embodiment of the present invention will be explained with reference to the drawings.
)、(礎に)r設した支枠lにより支持された密閉容イ
g状の炉本体2は、非金属材料、例えば石英質製の円筒
状の側壁3と、これに被着された金属製の蓋部4とから
成る。基礎に立設したガイド5によって昇降自在に案内
され図示しなら・モーター等の駆動装置により昇降駆動
される昇降台6には、炉本体2の底部を開放自在に閉鎖
する底蓋7が固着しである。側壁3の外周部には誘導加
熱コイル8が取付けである。この誘導加熱コイル8はカ
バー9内に収められ、空冷あるいは水冷などの公知の冷
却方法によって冷却されるものである。一方炉本体2の
側壁3の内側にはアスベスト、キャスタブル等の断熱利
製の円筒状の断熱1.! l lが設けられ、この断熱
壁11の内側には誘導加熱コイル8に対応する位置に金
属製の筒状加熱体I2が設けられ、断熱壁11との間に
外側空間13が形成されている。断熱壁11の上端部に
は穴14をそなえた断熱蓋15が被着され、この断熱i
15と筒状加熱体12の間には少量のすきま16が形成
されている。これら断熱壁11および筒状加熱体12は
、炉本体2または支枠1に固定支持されている。一方底
蓋7に固設した断熱材などの非金属製の支台18」二に
は、底蓋7による炉本体2の底部閉鎖時に筒状加熱体1
2の下端部を閉鎖する底板19が散イー1けである。こ
の底板19の材料は金属AA料が好ましいが、非金属材
料でもよい。底板19上にはカーボングラファイトやセ
ラミック等の非金属拐料、好ましくはステンレス等の金
属材料より成る容器20が載置しである。容器20は底
蓋7およびこれと一体の支台18と共に昇降駆動され、
筒状加熱体12内に下方から挿脱自在である。底板19
には不活性ガス供給口21が設けられ、この供給1コに
連通ずる穴22およびこの穴22の上端に連通し上向き
に開口する放射状の4本の溝23が、支台18に穿設し
である。また底板19には、上記界R820と筒状加熱
体12との間の内側空間24と底板【9の溝23とを連
通ずる通気穴25が穿設してあり、炉本体2の上部には
υ1ガスロ26が設けである。これによって不活性ガス
供給口21から穴22、溝23、外側空間13、すきま
16、穴14を経て排ガス口26に至る外側ガス流通路
27と、同様に溝23から分流して通気穴25、内側空
間24、穴i4を経て排ガス口26に至る内側ガス流通
路28とが形成されている。また炉本体2の蓋部4には
、容器20内へ放射性廃棄物焼却灰を供給する焼却灰供
給口31と、同じく容器20内へ焼却灰中の未燃分を燃
焼させるに必要な燃焼用空気などを供給する酸素供給管
32と、容器20内の溶融状態を検知する放射温度計な
どの温度計33が、それぞれ蓋部4を貫通して取付けで
ある。), the furnace body 2 is in the shape of a closed container supported by a supporting frame l (on the foundation), and has a cylindrical side wall 3 made of a non-metallic material, for example quartz, and a metal covered with the side wall 3. It consists of a lid part 4 made of A bottom cover 7 that freely closes the bottom of the furnace body 2 is fixed to a lifting platform 6 that is guided by a guide 5 erected on the foundation and is driven up and down by a driving device such as a motor (as shown in the figure). It is. An induction heating coil 8 is attached to the outer periphery of the side wall 3. This induction heating coil 8 is housed within a cover 9 and is cooled by a known cooling method such as air cooling or water cooling. On the other hand, inside the side wall 3 of the furnace body 2, there is a cylindrical heat insulating material 1. made of asbestos, castable, etc. ! A metal cylindrical heating element I2 is provided inside the heat insulating wall 11 at a position corresponding to the induction heating coil 8, and an outer space 13 is formed between the heat insulating wall 11 and the heat insulating wall 11. . A heat insulating lid 15 with a hole 14 is attached to the upper end of the heat insulating wall 11.
A small gap 16 is formed between the heating element 15 and the cylindrical heating element 12. The heat insulating wall 11 and the cylindrical heating body 12 are fixedly supported by the furnace body 2 or the supporting frame 1. On the other hand, when the bottom of the furnace body 2 is closed by the bottom cover 7, a cylindrical heating body 1
The bottom plate 19 that closes the lower end of 2 is a single piece. The material of this bottom plate 19 is preferably a metallic AA material, but may be a non-metallic material. A container 20 made of a non-metallic material such as carbon graphite or ceramic, preferably a metallic material such as stainless steel, is placed on the bottom plate 19. The container 20 is driven up and down together with the bottom cover 7 and the base 18 integrated therewith,
It can be inserted into and removed from the cylindrical heating body 12 from below. Bottom plate 19
An inert gas supply port 21 is provided in the support base 18, and a slotted hole 22 communicating with this supply port and four radial grooves 23 communicating with the upper end of this hole 22 and opening upward are bored in the support base 18. It is. Further, the bottom plate 19 is provided with a ventilation hole 25 that communicates the inner space 24 between the field R820 and the cylindrical heating element 12 with the groove 23 of the bottom plate [9]. υ1 gas slot 26 is provided. As a result, an outer gas flow passage 27 runs from the inert gas supply port 21 through the hole 22, the groove 23, the outer space 13, the gap 16, and the hole 14 to the exhaust gas port 26, and similarly, the flow branches off from the groove 23 to the ventilation hole 25, An inner space 24 and an inner gas flow passage 28 leading to the exhaust gas port 26 via the hole i4 are formed. The lid 4 of the furnace body 2 also has an incineration ash supply port 31 for supplying radioactive waste incineration ash into the container 20, and a combustion port 31 for incineration necessary to burn unburned content in the incineration ash into the container 20. An oxygen supply pipe 32 for supplying air and the like and a thermometer 33 such as a radiation thermometer for detecting the molten state inside the container 20 are installed by penetrating the lid 4, respectively.
上記構成を有する放射性廃棄物焼却灰の溶融固化装置3
4においては、誘導加熱コイル8に通電して筒状加熱体
12を加熱すれば、この加熱体よりの熱輻射および熱伝
達により容器20が加熱される。また容器20が金属製
の場合は容器自身の誘導加熱もイ」加される。また不活
性ガス供給口21からはアルゴン、窒素ガスなどの不活
性ガスを炉本体2内に供給して筒状加熱体12の内外部
、すなわち内側空間24および外側空間13を不活性ガ
ス算囲気とする。そして放射性廃棄物焼却灰を焼却灰供
給口31より容器20内に供給し、これとともに酸素供
給管32から燃焼用空気あるいはその他の酸素含有ガス
を容器20内に供給すれは、焼却灰中の未燃分が燃焼し
、灰分は高温により加熱され融解する。このとき焼却灰
の融点が高い場合は、焼却灰と共融物を形成する融剤、
たとえばホウ酸、ホウ砂、炭酸ナトリウム等を焼却灰と
ともに容器20内に供給してもよいし、またこの融剤の
みを先に焼却灰供給口31から容器20内に供給して加
熱溶融させ液状としておき、その」二に焼却灰を供給し
て溶融処理をおこなうようにしてもよい。たとえばSi
O□が35〜45wt%、A、+203、C+hO1M
gOが夫々12−17wL%、Fe2O2がs〜13w
t%、その他にN a 20、zlloりJ′を少量含
むような化学組成の焼却灰では、融点が1200°C程
度であってかなり高温での溶融操作を必要とするが、0
11述のように焼却灰と共融物を形成するホウ酸、ホウ
砂、炭酸ナトリウム等を融剤として使用ずれば900〜
1100°C程度の加熱温度で溶融ができる。上記の溶
融操作中において容器20内の溶融状態は温度計33に
より検知することができる。なおこの温度計33のかわ
りに、あるいは温度計と併用して、液面計やモニターテ
レビなどを用いてもよい。1また力4本体2内のガスは
排ガス口26から吸引しフィルタなどにより清浄化処理
する。容器20内の溶融物が所定の量になったら、炉本
体2を自然放冷なとで冷却し、溶融物が容器20内で固
化して容器20内に固定化されたら、昇降台6を降下さ
せ容器20を底板19上から取去って、新たな容器2o
を底板19上に装着し、以下上記と同様な工程を繰返す
。Radioactive waste incineration ash melting and solidification device 3 having the above configuration
4, when the induction heating coil 8 is energized to heat the cylindrical heating body 12, the container 20 is heated by heat radiation and heat transfer from the heating body. Furthermore, if the container 20 is made of metal, induction heating of the container itself is also applied. In addition, an inert gas such as argon or nitrogen gas is supplied into the furnace body 2 from the inert gas supply port 21 to fill the inside and outside of the cylindrical heating element 12, that is, the inner space 24 and the outer space 13, with an inert gas atmosphere. shall be. Then, radioactive waste incineration ash is supplied into the container 20 from the incineration ash supply port 31, and at the same time, combustion air or other oxygen-containing gas is supplied into the container 20 from the oxygen supply pipe 32. The fuel is burned, and the ash is heated and melted at high temperatures. At this time, if the melting point of the incinerated ash is high, a flux that forms a eutectic with the incinerated ash,
For example, boric acid, borax, sodium carbonate, etc. may be supplied into the container 20 together with the incinerated ash, or only this flux may be first supplied into the container 20 from the incinerated ash supply port 31 and heated and melted to form a liquid. The melting process may be performed by supplying incineration ash to the second part. For example, Si
O□ is 35 to 45 wt%, A, +203, C + hO1M
gO is 12-17wL%, Fe2O2 is s~13w, respectively.
Incineration ash with a chemical composition that contains a small amount of Na 20 and zllo J' has a melting point of about 1200°C and requires a melting operation at a fairly high temperature.
If boric acid, borax, sodium carbonate, etc., which form a eutectic with the incinerated ash as described in 11, are used as a flux, it will be 900~
It can be melted at a heating temperature of about 1100°C. During the above melting operation, the melting state inside the container 20 can be detected by the thermometer 33. Note that a liquid level gauge, a monitor television, or the like may be used instead of the thermometer 33 or in combination with the thermometer. 1 and 4 The gas inside the main body 2 is sucked through the exhaust gas port 26 and cleaned using a filter or the like. When the molten material in the container 20 reaches a predetermined amount, the furnace body 2 is cooled by natural cooling, and when the molten material is solidified and fixed in the container 20, the lifting platform 6 is moved. Lower the container 20, remove it from the bottom plate 19, and replace it with a new container 2o.
is mounted on the bottom plate 19, and the same steps as above are repeated.
なお焼却灰中に混入している金属類、レンガ、ガラス等
の不燃性夾雑物もすべて容器20内の融解物中にとり込
まれ固定化される。Incidentally, all non-combustible impurities such as metals, bricks, and glass mixed in the incineration ash are also incorporated into the molten material in the container 20 and fixed.
この発明は上記実施例に限定されるものではなく、たと
えば炉本体2が断熱性に富む場合等は断熱壁11および
断熱蓋15を省略してもよい。まだ不活性ガス供給口2
1から筒状加熱体12の内周部および外周部に至るガス
流通路は支台18および底板19を貫通させずに、たと
えば支台18の周囲から、筒状加熱体12に穿設した穴
あるいは筒状加熱体12と底板19との間に形成したす
きまなどを経て内側空間24に不活性ガスを流入させる
ようにしてもよい。The present invention is not limited to the above-mentioned embodiment, and the heat insulating wall 11 and the heat insulating lid 15 may be omitted, for example, if the furnace body 2 has good heat insulation properties. Still inert gas supply port 2
1 to the inner circumference and outer circumference of the cylindrical heating element 12 do not pass through the abutment 18 and the bottom plate 19, but instead are formed through holes drilled in the cylindrical heating element 12 from around the abutment 18, for example. Alternatively, the inert gas may be allowed to flow into the inner space 24 through a gap formed between the cylindrical heating element 12 and the bottom plate 19.
以上説明したように本発明によれば、かさ比重の小さい
粉粒状の放射性廃棄物焼却灰を簡潔な構造の誘導加熱炉
形式の装置により小容積の無機固化体として容器内へ封
じ込めることができ、特に酸素イノ(給管をそなえてい
るので未燃分を多量に含む焼却灰てあっても安定した固
化体とすることができる。また金属製の筒状加熱体内に
容器を設置して誘導加熱するので、筒状加熱体の形状、
材質の選定により焼却灰を効率よく加熱できる。さらに
1面状加熱体の内外部および容器の外部は不活性ガス雰
囲気とするため高温でも酸化損耗が少なく、装置の寿命
が長い。As explained above, according to the present invention, granular radioactive waste incineration ash with a small bulk specific gravity can be confined in a container as a small-volume inorganic solidified body using an induction heating furnace type device with a simple structure, In particular, since it is equipped with an Oxygen Ino (supply pipe), even incineration ash containing a large amount of unburned matter can be solidified stably.In addition, a container is placed inside a metal cylindrical heating body for induction heating. Therefore, the shape of the cylindrical heating element,
Incineration ash can be heated efficiently by selecting the material. Furthermore, since the inside and outside of the one-sided heating element and the outside of the container are kept in an inert gas atmosphere, there is little oxidation loss even at high temperatures, and the life of the device is long.
第1図はこの発明の一実施例を示す溶融固化装置の縦断
面図である。
2・・・炉本体、6・・・昇降台、7・・・底蓋、8・
・・誘導加熱コイル、12・・・筒状加熱体、13・・
・外側空間、18・・・支台、19・・・底板、20・
・・容器、21・・・不活性ガス供給口、24・・・内
側空間、26・・・υ1ガスロ、27・・・外側ガス流
通路、28・・Y内側ガス流細路、31・・・焼却灰供
給口、3′2・・酸素供給管、33・・・温度計、34
・・・溶融固化装置。
出願人 東京電力株式会社
日本碍子株式会社
代理人 乾 昌 雄FIG. 1 is a longitudinal sectional view of a melting and solidifying apparatus showing an embodiment of the present invention. 2... Furnace body, 6... Lifting platform, 7... Bottom cover, 8...
...Induction heating coil, 12...Cylindrical heating body, 13...
・Outside space, 18... Abutment, 19... Bottom plate, 20.
...Container, 21...Inert gas supply port, 24...Inner space, 26...υ1 gas flow path, 27...Outer gas flow path, 28...Y inner gas flow path, 31...・Incineration ash supply port, 3'2...Oxygen supply pipe, 33...Thermometer, 34
...Melting and solidifying equipment. Applicant Tokyo Electric Power Co., Ltd. Nippon Insulators Co., Ltd. Agent Masao Inui
Claims (1)
した密封容器状の炉本体と、上記炉本体の側壁の外周部
に設けた誘導加熱コイルと、上記炉本体の内部において
上記誘導加熱コイルに対応する位置に配設された金属製
の筒状加熱体と、上記底蓋に固設した支台上に11y、
(で1けられ上記底蓋による上記蜘本体底部閉鎖時に上
記筒状加熱体の下端部をほぼ閉鎖する底抜と、上記底板
上に載置され上記筒状加熱体内に13力から挿脱自在で
ある容器と、上記炉本体の上部に設けた排ガス1」と、
上記底部に、1ジけだ不活11.ガス供給口と、上記炉
本体内に形成され上記不活性ガス供給口から供給された
ガスを上記筒状加熱体の内外部を経て」二記排ガスロに
誘導するガス流通路と、上記炉本体に取(=1けられ上
記容器内へ放射性廃棄物焼却灰を供給する焼却灰供給口
と、上記炉本体に取付けられ上記容器内へ酸素含有ガス
を供給する酸素供給管と、上記炉本体に取付けられ上記
容器内の溶融状態を検知する検知装置とをそなえて成る
放射性廃棄物焼却灰の溶融固化装置。 2 容器が金属製の容器である特許請求の範囲第1項記
載の放射性廃棄物焼却灰の溶融固化装置。 3 酸素供給管が燃焼用空気供給管である特許請求の範
囲第1項または第2項記載の放射性廃棄物焼却灰の溶融
固化装置。 4 容器内の溶融状態を検知する検知装置が錨I度計で
ある特許請求の範囲第1項または第2項または第3項記
載の放射性廃棄物焼却灰の溶融固化装置。[Scope of Claims] 1. A furnace body in the form of a sealed container whose bottom part is releasably closed by a bottom lid that is driven up and down, an induction heating coil provided on the outer periphery of a side wall of the furnace body, and an interior of the furnace body. A metal cylindrical heating body disposed at a position corresponding to the induction heating coil, and a support 11y fixed to the bottom cover,
(1) a bottom opening that substantially closes the lower end of the cylindrical heating body when the bottom of the spider body is closed by the bottom cover; and an exhaust gas 1 provided at the top of the furnace body,
At the bottom of the above, there is one inert 11. a gas supply port, a gas flow passage formed in the furnace body and guiding the gas supplied from the inert gas supply port to the exhaust gas outlet through the inside and outside of the cylindrical heating body; and the furnace body. An incineration ash supply port that supplies radioactive waste incineration ash into the container; an oxygen supply pipe that is attached to the furnace body and supplies oxygen-containing gas into the container; An apparatus for melting and solidifying radioactive waste incineration ash, comprising a detection device attached to the container to detect the molten state within the container. 2. Radioactive waste incineration according to claim 1, wherein the container is a metal container. Ash melting and solidifying device. 3. The radioactive waste incineration ash melting and solidifying device according to claim 1 or 2, wherein the oxygen supply pipe is a combustion air supply pipe. 4. Detecting the molten state in the container. The apparatus for melting and solidifying radioactive waste incineration ash according to claim 1, 2, or 3, wherein the detection device is an anchor temperature meter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14618583A JPH0231840B2 (en) | 1983-08-10 | 1983-08-10 | HOSHASEIHAIKIBUTSUSHOKYAKUBAINOYOJUKOKASOCHI |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14618583A JPH0231840B2 (en) | 1983-08-10 | 1983-08-10 | HOSHASEIHAIKIBUTSUSHOKYAKUBAINOYOJUKOKASOCHI |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6038698A true JPS6038698A (en) | 1985-02-28 |
JPH0231840B2 JPH0231840B2 (en) | 1990-07-17 |
Family
ID=15402056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14618583A Expired - Lifetime JPH0231840B2 (en) | 1983-08-10 | 1983-08-10 | HOSHASEIHAIKIBUTSUSHOKYAKUBAINOYOJUKOKASOCHI |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0231840B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186800A (en) * | 1984-03-06 | 1985-09-24 | 日本碍子株式会社 | Method and device for incinerating and solidifying radioactive waste |
JPS61209399A (en) * | 1985-03-14 | 1986-09-17 | 日本碍子株式会社 | Melting solidifying device for radioactive waste |
JPS61210998A (en) * | 1985-03-15 | 1986-09-19 | 日本碍子株式会社 | Continuous melter for waste |
JPS61226699A (en) * | 1985-04-01 | 1986-10-08 | 日揮株式会社 | Melting treatment reactor for miscellaneous waste |
US7149682B2 (en) | 1998-06-15 | 2006-12-12 | Yamaha Corporation | Voice converter with extraction and modification of attribute data |
-
1983
- 1983-08-10 JP JP14618583A patent/JPH0231840B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186800A (en) * | 1984-03-06 | 1985-09-24 | 日本碍子株式会社 | Method and device for incinerating and solidifying radioactive waste |
JPH0458598B2 (en) * | 1984-03-06 | 1992-09-17 | Ngk Insulators Ltd | |
JPS61209399A (en) * | 1985-03-14 | 1986-09-17 | 日本碍子株式会社 | Melting solidifying device for radioactive waste |
JPS61210998A (en) * | 1985-03-15 | 1986-09-19 | 日本碍子株式会社 | Continuous melter for waste |
JPS61226699A (en) * | 1985-04-01 | 1986-10-08 | 日揮株式会社 | Melting treatment reactor for miscellaneous waste |
US7149682B2 (en) | 1998-06-15 | 2006-12-12 | Yamaha Corporation | Voice converter with extraction and modification of attribute data |
US7606709B2 (en) | 1998-06-15 | 2009-10-20 | Yamaha Corporation | Voice converter with extraction and modification of attribute data |
Also Published As
Publication number | Publication date |
---|---|
JPH0231840B2 (en) | 1990-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4432942A (en) | Apparatus for filling a container with radioactive solid wastes | |
US4816228A (en) | Apparatus for melting waste | |
US5731564A (en) | Method of operating a centrifugal plasma arc furnace | |
CA2199003A1 (en) | Waste processing method and apparatus | |
US20080226511A1 (en) | Liquid metal reactor | |
KR900000326B1 (en) | Method and device melting and solidifying radioactive waste | |
JPS6038698A (en) | Device for melting and solidifying radioactive waste incinerated ash | |
JPH0458598B2 (en) | ||
JP2908584B2 (en) | Radioactive waste melting equipment | |
JP3073852B2 (en) | Radioactive waste melting equipment | |
KR900007748B1 (en) | Apparatus for melting waste | |
JPH0450558B2 (en) | ||
JP3236885B2 (en) | Waste treatment equipment | |
US5977528A (en) | Rectangular microwave applicator and waste treatment method | |
JPS5847300A (en) | Method and apparatus for solidifying radioactive waste by ceramics | |
JP2684322B2 (en) | Hazardous waste volume reduction equipment | |
US5743937A (en) | Earth melter with rubble walls and method of use | |
JP2004294308A (en) | Melting processing method of miscellaneous solid waste | |
JPS61210998A (en) | Continuous melter for waste | |
JP2000214294A (en) | Melting furnace for radioactive miscellaneous solid wastes, and treatment method therefor | |
JPH0629760Y2 (en) | Storage device for solidified packages | |
JP3096184B2 (en) | Waste melting method | |
JPH0530517B2 (en) | ||
JPS59200999A (en) | Method of melting and solidifying incineration ash of radioactive waste | |
JPH10319191A (en) | Method for processing sealing end crop of spent nuclear fuel |