JPH0458598B2 - - Google Patents

Info

Publication number
JPH0458598B2
JPH0458598B2 JP59042454A JP4245484A JPH0458598B2 JP H0458598 B2 JPH0458598 B2 JP H0458598B2 JP 59042454 A JP59042454 A JP 59042454A JP 4245484 A JP4245484 A JP 4245484A JP H0458598 B2 JPH0458598 B2 JP H0458598B2
Authority
JP
Japan
Prior art keywords
radioactive waste
container
incineration
flux
furnace body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59042454A
Other languages
Japanese (ja)
Other versions
JPS60186800A (en
Inventor
Naohiko Sakuramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4245484A priority Critical patent/JPS60186800A/en
Publication of JPS60186800A publication Critical patent/JPS60186800A/en
Publication of JPH0458598B2 publication Critical patent/JPH0458598B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は放射性廃棄物の焼却固化方法および装
置に関するものであり、さらに詳しくは放射性廃
棄物を焼却し、該焼却により得た焼却灰を溶融固
化する処理方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for incinerating and solidifying radioactive waste, and more particularly to a method and apparatus for incinerating radioactive waste and melting and solidifying the incineration ash obtained by the incineration. It is something.

従来原動力発電所等の放射性物質取扱施設から
発生する放射能によつて汚染された廃棄物のうち
可燃性のものは、一般的には焼却処理されその焼
却灰はドラム罐等に充填されて施設内の適当な場
所に貯蔵されているのが普通である。しかしなが
らこれら焼却灰は粉粒状であるため、焼却灰を充
填したドラム罐を輸送または貯蔵するにあたつて
は焼却灰の安定化、減容処理を施すことが望まし
く、その処理法がいろいろ研究されており、たと
えば焼却灰をセメントで固化する方法あるいは焼
却灰にアスフアルト、プラスチツク等を混合して
固化する方法等が知られている。しかしながら前
者の方法では、 (1) 安定した密度、強度等をもつ固化体を得るに
は、灰とセメントの重量割合を灰1に対してセ
メント4以上とする必要があり、このため固化
体容積は灰の容積よりも増大し増容となつてし
まう。
Conventionally, combustible waste contaminated with radioactivity generated from facilities handling radioactive materials such as motive power plants is generally incinerated, and the incinerated ash is filled into drum cans, etc., and transported to the facility. It is usually stored in an appropriate location inside the building. However, since these incinerated ash are in the form of powder, it is desirable to stabilize and reduce the volume of the incinerated ash before transporting or storing drum cans filled with incinerated ash, and various methods for this treatment have been studied. For example, a method of solidifying incinerated ash with cement or a method of mixing asphalt, plastic, etc. with incinerated ash and solidifying it are known. However, in the former method, (1) In order to obtain a solidified material with stable density, strength, etc., it is necessary to set the weight ratio of ash to cement to 1 ash to 4 cement or more; is larger than the volume of ash, resulting in an increase in volume.

(2) 灰とセメントを混練するときに焼却灰中の金
属混入物とセメントのアルカリ水溶液が反応し
て水素ガスを発生するため、固化体中に空〓が
できて密度、強度等が低下することがあり安定
性の欠ける。
(2) When mixing ash and cement, metal contaminants in the incinerated ash react with the alkaline aqueous solution of cement to generate hydrogen gas, which creates voids in the solidified material and reduces density, strength, etc. It may lack stability.

などの欠点があつた。また後者の方法あるいは装
置では、焼却灰中の金属片の除去、粉体化等の前
処理が必要であり設備が複雑かつ大型となる欠点
があつた。
There were drawbacks such as: In addition, the latter method or apparatus requires pretreatment such as removing metal pieces from the incineration ash and pulverizing it, resulting in a disadvantage that the equipment becomes complicated and large.

さらに、これらの方法はいずれも放射性廃棄物
を一旦焼却炉等により焼却し、その後別施設によ
り固化処理をおこなうので、非能率的であり、ま
た焼却から固化処理に至る間の焼却灰の容器等へ
の移し替えや保管、運搬などの際は、放射能を帯
びた焼却灰を取扱うため極めて慎重な作業を必要
とし、手間のかかるものであつた。
Furthermore, all of these methods are inefficient, as radioactive waste is first incinerated in an incinerator, etc., and then solidified in a separate facility. The transfer, storage, and transportation of incineration ash, which is radioactive, required extremely careful work and was time-consuming.

本発明は上記従来の欠点を解消するもので、放
射性廃棄物を大巾の減容化して安定な無機固化体
を得ることができるとともに、特に同一炉内で放
射性廃棄物の焼却と溶融固化処理をおこなうこと
ができ、能率および安全性の向上が達成できる放
射性廃棄物の焼却固化方法および装置を提供しよ
うとするものである。
The present invention solves the above-mentioned conventional drawbacks, and makes it possible to greatly reduce the volume of radioactive waste to obtain a stable inorganic solidified body, and in particular, incinerates and melts and solidifies radioactive waste in the same furnace. The present invention aims to provide a method and apparatus for incinerating and solidifying radioactive waste, which can improve efficiency and safety.

しかして本発明方法の要旨とするところは、誘
導加熱コイルをそなえた炉内に設けた金属製の筒
状加熱体内に、容器を設置し、放射性廃棄物の焼
却灰と共融物を形成する融剤を上記容器内に供給
し、上記誘導加熱コイルにより上記容器内で液状
に融解させた上記融剤上に焼却処理前の放射性廃
棄物を少量ずつ供給するとともに、上記融剤の液
面上方に酸素含有ガスを供給して上記焼却処理の
前放射性廃棄物を燃焼させ、該燃焼によつて生じ
た焼却灰を上記融剤中に溶解させたのち冷却し
て、上記容器内に固定化させることを特徴とする
放射性廃棄物の焼却固化方法にあり、また本発明
装置の要旨とするところは、昇降駆動される底蓋
によつて底部を開放可能に閉鎖した密封容器状の
炉本体と、上記炉本体の側壁の外周部に設けた誘
導加熱コイルと、上記炉本体の内部において上記
誘導加熱コイルに対応する位置に配置された金属
製の筒状加熱体と、上記底蓋に固設した支台上に
取付けられ上記底蓋による上記炉本体底部閉鎖時
に上記筒状加熱体の下端部をほぼ閉鎖する底板
と、上記底板上に載置され上記筒状加熱体内に下
方から挿脱自在である容器と、上記炉本体の上部
に設けた排気ガス口と、上記炉本体に取付けられ
上記容器へ焼却処理前の放射性廃棄物および該放
射性廃棄物の焼却灰と共融物を形成する融剤を供
給する供給口と、上記炉本体に取付けられ上記容
器内へ上記放射性廃棄物燃焼用の酸素含有ガスを
供給する酸素供給管と、上記炉本体に取付けられ
上記容器内の溶融状態を検知する検知装置とをそ
なえて成る放射性廃棄物の焼却固化装置ある。
However, the gist of the method of the present invention is that a container is installed in a metal cylindrical heating body provided in a furnace equipped with an induction heating coil, and a eutectic is formed with the incineration ash of radioactive waste. A flux is supplied into the container, and radioactive waste before incineration is supplied little by little onto the flux melted in the container by the induction heating coil, and the radioactive waste is supplied above the liquid level of the flux. The pre-incineration radioactive waste is combusted by supplying an oxygen-containing gas to the incineration process, and the incinerated ash produced by the combustion is dissolved in the flux, cooled, and fixed in the container. There is a method for incinerating and solidifying radioactive waste, and the gist of the apparatus of the present invention is to include a furnace body in the form of a sealed container, the bottom of which is closed so as to be openable by a bottom cover that is driven up and down; an induction heating coil provided on the outer periphery of the side wall of the furnace body; a metal cylindrical heating body placed inside the furnace body at a position corresponding to the induction heating coil; a bottom plate that is mounted on the support base and substantially closes the lower end of the cylindrical heating body when the bottom of the furnace body is closed by the bottom cover; A container, an exhaust gas port provided at the top of the furnace body, and a flux that is attached to the furnace body and forms a eutectic with radioactive waste before incineration and the incinerated ash of the radioactive waste. an oxygen supply pipe that is attached to the furnace body and supplies the oxygen-containing gas for burning the radioactive waste into the container; and an oxygen supply pipe that is attached to the furnace body and detects the molten state in the container. There is a radioactive waste incineration solidification device that is equipped with a detection device.

以下図面によつて本発明をさらに詳細に説明す
る。
The present invention will be explained in more detail below with reference to the drawings.

第1図は本発明に係る放射性廃棄物の焼却固化装
置を示し、基礎に立設した支枠1により支持され
た密閉容器状の炉本体2は、非金属材料、例えば
石英質製の円筒状の側壁3と、これに被着された
金属製の蓋部4とから成る。基礎に立設したガイ
ド5によつて昇降自在に案内され図示しないモー
ター等の駆動装置により昇降駆動される昇降台6
には、炉本体2の底部を開放自在に閉鎖する底蓋
7が固着してある。側壁3の外周部には誘導加熱
コイル8が取付けてある。この誘導加熱コイル8
はカバー9内に収められ、空冷あるいは水冷など
の公知の冷却方法によつて冷却されるものであ
る。一方炉本体2の側壁3の内側にはアスベス
ト、キヤスタブル等の断熱材製の円筒状の断熱壁
11が設けられ、この断熱壁11の内側には誘導
加熱コイル8に対応する位置に金属製の筒状加熱
体12が設けられ、断熱壁11との間に外側空間
13が形成されている。断熱壁11の上端部には
穴14をそなえた断熱蓋15が被着され、この断
熱蓋15と筒状加熱体12の間には少量のすきま
16が形成されている。これら断熱壁11および
筒状加熱体12は、炉本体2または支枠1に固定
支持されている。一方底蓋7に固設した断熱材な
どの非金属製の支台18上には、底蓋7による炉
本体2の底部閉鎖時の筒状加熱体12の下端部を
閉鎖する底板19が取付けてある。この底板19
の材料は金属材料が好ましいが、非金属材料でも
よい。底板19上にはステンレス等の金属材料よ
り成る容器20は底蓋7およびこれと一体の支台
18とともに昇降駆動され、筒状加熱体12内に
下方から挿脱自在である。蓋7には不活性ガス供
給口21が設けられ、この供給口に連通する穴2
2およびこの穴22の上端に連通し上向きに開口
する放射状の4本の溝23が、支台18に穿設し
てある。また底板19には、上記容器20と筒状
加熱体12との間の内側空間24と支台18の溝
23とを連通する通気穴25が穿設してあり、炉
本体2の上部には排気ガス口26が設けてある。
これによつて不活性ガス供給口21から穴22、
溝23、外側空間13、すきま16、穴14を経
て排ガス口26に至る外側ガス流通路27と、同
様に溝23から分流して通気穴25、内側空間2
4、穴14を経て排気ガス口26に至る内側ガス
流通路28とが形成されている。また炉本体2の
蓋部4には、容器20内へ焼却処理前の放射性廃
棄物、および該廃棄物の焼却灰と共融物を形成す
る融剤を供給する供給口31と、同じく容器20
内へ放射性廃棄物を燃焼させるのに必要な焼却用
空気などの酸素含有ガスを供給する酸素供給管3
2が、蓋部4および断熱蓋15を貫通して取付け
てある。33は酸素含有ガス供給源であるブロワ
である。また炉本体2の蓋部4には、容器20内
の焼却溶融状態検知のための放射温度計から成る
検知器34が取付けてある。一方炉本体2の排気
ガス口26、および供給口31内に連通する排ガ
ス口35には、ダクト36を介してフイルター3
7および吸気用のブロワ38が接続されている。
FIG. 1 shows a radioactive waste incineration and solidification apparatus according to the present invention, in which a closed container-shaped furnace body 2 supported by a support frame 1 erected on a base is made of a cylindrical shape made of a non-metallic material, such as quartz. It consists of a side wall 3 and a metal lid 4 attached to the side wall 3. An elevating platform 6 that is movably guided by a guide 5 set up on a foundation and driven up and down by a drive device such as a motor (not shown)
A bottom cover 7 is fixedly attached to the bottom cover 7 for releasably closing the bottom of the furnace body 2. An induction heating coil 8 is attached to the outer periphery of the side wall 3. This induction heating coil 8
is housed within the cover 9 and is cooled by a known cooling method such as air cooling or water cooling. On the other hand, inside the side wall 3 of the furnace body 2, a cylindrical insulation wall 11 made of a heat insulating material such as asbestos or castable is provided. A cylindrical heating element 12 is provided, and an outer space 13 is formed between the cylindrical heating element 12 and the heat insulating wall 11 . A heat insulating cover 15 having a hole 14 is attached to the upper end of the heat insulating wall 11, and a small gap 16 is formed between the heat insulating cover 15 and the cylindrical heating element 12. The heat insulating wall 11 and the cylindrical heating body 12 are fixedly supported by the furnace body 2 or the supporting frame 1. On the other hand, a bottom plate 19 is attached on a non-metallic support 18 such as a heat insulating material fixed to the bottom lid 7 to close the lower end of the cylindrical heating element 12 when the bottom of the furnace body 2 is closed by the bottom lid 7. There is. This bottom plate 19
The material is preferably a metallic material, but may be a non-metallic material. A container 20 made of a metal material such as stainless steel is mounted on the bottom plate 19 and is driven up and down together with the bottom cover 7 and a support 18 integrated therewith, and can be freely inserted into and removed from the cylindrical heating element 12 from below. The lid 7 is provided with an inert gas supply port 21, and a hole 2 communicating with this supply port is provided.
2 and four radial grooves 23 that communicate with the upper end of the hole 22 and open upward are bored in the abutment 18. Further, the bottom plate 19 is provided with a ventilation hole 25 that communicates the inner space 24 between the container 20 and the cylindrical heating element 12 with the groove 23 of the support 18. An exhaust gas port 26 is provided.
As a result, from the inert gas supply port 21 to the hole 22,
An outer gas flow passage 27 that passes through the groove 23, the outer space 13, the gap 16, and the hole 14 and reaches the exhaust gas port 26, and similarly, the flow branches off from the groove 23 and flows through the ventilation hole 25 and the inner space 2.
4. An inner gas flow passage 28 extending through the hole 14 to an exhaust gas port 26 is formed. The lid 4 of the furnace body 2 also has a supply port 31 for supplying radioactive waste before incineration into the container 20 and a flux that forms a eutectic with the incinerated ash of the waste.
Oxygen supply pipe 3 that supplies oxygen-containing gas such as incineration air necessary for burning radioactive waste into the interior
2 is attached to pass through the lid portion 4 and the heat insulating lid 15. 33 is a blower which is an oxygen-containing gas supply source. Furthermore, a detector 34 consisting of a radiation thermometer is attached to the lid 4 of the furnace body 2 to detect the incineration and molten state within the container 20. On the other hand, a filter 3 is connected to the exhaust gas port 26 of the furnace body 2 and the exhaust gas port 35 communicating with the supply port 31 via a duct 36.
7 and an intake blower 38 are connected.

上記構成を有する放射性廃棄物の焼却固化装置
39において放射性廃棄物を処理するには、容器
20を第1図に実線図示のように炉本体2内に設
置し、誘導加熱コイル8に通電して筒状加熱体1
2を400〜1100℃程度に加熱すれば、この加熱体
よりの熱輻射および熱伝達および容器自身の誘導
加熱により容器20が加熱される。また不活性ガ
ス供給口21からはアルゴン、窒素ガスなどの不
活性ガスを炉本体2内に供給して筒状加熱体12
の内外部、すなわち内側空間24および外側空間
13を不活性ガス雰囲気とし、筒状加熱体12お
よび容器20の高温中での酸化損耗の抑制をはか
る。
To process radioactive waste in the radioactive waste incineration and solidification apparatus 39 having the above configuration, the container 20 is installed in the furnace body 2 as shown by the solid line in FIG. 1, and the induction heating coil 8 is energized. Cylindrical heating element 1
When the container 20 is heated to about 400 to 1100° C., the container 20 is heated by heat radiation and heat transfer from the heating element and induction heating of the container itself. In addition, an inert gas such as argon or nitrogen gas is supplied into the furnace body 2 from the inert gas supply port 21 and the cylindrical heating body 12 is
The inside and outside, that is, the inner space 24 and the outer space 13, are made into an inert gas atmosphere to suppress oxidative wear and tear of the cylindrical heating element 12 and the container 20 at high temperatures.

そして放射性廃棄物の焼却灰と共融物を形成す
る融剤Fを供給口31を経て容器20内に供給す
る。一般に放射性廃棄物の焼却灰はその成分とし
てSiO2,CaO,Fe2O3,MgO,Al2O3のうち一つ
以上を含んでいるので、融剤Fとしてはこれらの
成分と共融物を形成するホウ酸、ホウ砂、炭酸ナ
トリウム等を用いる。容器20内に供給された融
剤Fは誘導加熱コイル8による前記加熱作用によ
り融解して液状となる。例えば融剤としてホウ酸
を使用した場合には450℃程度で融解し、ホウ砂
またはホウ酸と炭酸ナトリウムの混合物を使用し
た場合は800℃程度で融解して、それぞれ液状と
なる。なおこの場合ホウ砂、ホウ酸、炭酸ナトリ
ウム等の専用の融剤を用いるかわりに、廃ガラ
ス、使用ずみのペパーフイルター濾材などのガラ
ス廃棄物を用い、これらのガラス中のホウ素、ナ
トリウムなどを融剤として使用することもでき
る。
Then, a flux F that forms a eutectic with the incineration ash of radioactive waste is supplied into the container 20 through the supply port 31. In general, radioactive waste incineration ash contains one or more of SiO 2 , CaO, Fe 2 O 3 , MgO, and Al 2 O 3 as its components, so the flux F is a combination of these components and a eutectic. Boric acid, borax, sodium carbonate, etc. are used to form . The flux F supplied into the container 20 is melted and becomes liquid by the heating action by the induction heating coil 8. For example, when boric acid is used as a flux, it melts at about 450°C, and when borax or a mixture of boric acid and sodium carbonate is used, it melts at about 800°C and becomes liquid. In this case, instead of using a special fluxing agent such as borax, boric acid, or sodium carbonate, glass waste such as waste glass or used pepper filter media is used to melt the boron, sodium, etc. in the glass. It can also be used as an agent.

次に容器20内で融解した融剤上に、供給口3
1を経て布、紙、プラスチツク等の可燃性の放射
性廃棄物Aを少量ずつ供給するとともに、燃焼用
空気を酸素供給管32により容器20内の融剤液
面上方に供給し、この燃焼用空気により放射性廃
棄物Aを高温雰囲気中で燃焼させ、得られた焼却
灰Bの灰分を構成するSiO2その他の前記各成分
を融剤との共融物として溶解させることにより、
焼却灰Bを融剤中に溶解させる。この溶解を促進
させるために、焼却灰Bが融剤と共融物を形成し
にくい場合等に、SiO2などのガラス形成成分を
有する補助添加剤(たとえば珪砂)を、供給口3
1から容器20内に供給してもよい。なお融剤F
は放射性廃棄物Aおよび/または上記補助添加剤
と同時に容器20内に投入してもよい。また容器
20内に供給される放射性廃棄物A中には、金属
類、レンガ、アスベストその他の不燃性夾雑物が
混入していることもあるが、これらは共融物は形
成しないが全て融解物中にとりとり込まれる。
Next, the supply port 3 is placed on top of the melted flux in the container 20.
1, combustible radioactive waste A such as cloth, paper, plastic, etc. is supplied little by little, and combustion air is supplied above the flux level in the container 20 through the oxygen supply pipe 32, and this combustion air By burning radioactive waste A in a high-temperature atmosphere, and dissolving SiO 2 and other components mentioned above, which constitute the ash content of the obtained incinerated ash B, as a eutectic with a flux,
Incineration ash B is dissolved in a flux. In order to promote this dissolution, an auxiliary additive (for example, silica sand) having a glass-forming component such as SiO 2 is added to the supply port 3 in cases where the incinerated ash B is difficult to form a eutectic with the flux.
1 into the container 20. In addition, flux F
may be placed in the container 20 at the same time as the radioactive waste A and/or the above-mentioned auxiliary additives. In addition, the radioactive waste A supplied into the container 20 may contain metals, bricks, asbestos, and other non-combustible contaminants, but these do not form a eutectic but are all melted. be taken into it.

容器20内に共融物がほぼ一杯に充填されるま
で上記操作を続け、その後自然放冷等により炉本
体2および容器20を冷却し、共融物を固化させ
容器20内に固定化させる。固化した共融物は容
器20を載置した底蓋7とともに降下させて容器
20ごと取出し、新たな容器20を底蓋7上に載
置して以下同様な工程を繰返すのである。
The above operation is continued until the container 20 is almost completely filled with the eutectic, and then the furnace body 2 and the container 20 are cooled by natural cooling or the like, and the eutectic is solidified and fixed in the container 20. The solidified eutectic is lowered together with the bottom lid 7 on which the container 20 is placed, and the entire container 20 is taken out.A new container 20 is placed on the bottom lid 7, and the same process is repeated.

上記操中には、放射性汚染を防止するために、
炉本体2内、供給口31等はすべてブロワ38に
よりダクト36を介して吸引排気し、フイルター
37により清浄化処理する。また容器20内にお
ける放射性廃棄物の燃焼状態、焼却灰の溶融状態
等は、検知器34により検知することができる。
この検知器34としては、放射温度計のかわり
に、あるいは放射温度計と併用しても、液面計や
モニターテレビなどを用いもよい。
During the above operations, to prevent radioactive contamination,
The inside of the furnace body 2, the supply port 31, etc. are all suctioned and exhausted by a blower 38 through a duct 36, and cleaned by a filter 37. Further, the combustion state of radioactive waste, the melting state of incineration ash, etc. in the container 20 can be detected by the detector 34.
As this detector 34, a liquid level gauge, a monitor television, etc. may be used instead of a radiation thermometer, or in combination with a radiation thermometer.

なお上記工程において融解した融剤F上に放射
性廃棄物を供給するときは、一度に多量の放射性
廃棄物を供給すると該放射性廃棄物は完全燃焼せ
ず液面に浮遊して他の共融物の形成の妨げになる
ので、放射性廃棄物は完全燃焼する程度に少量ず
つ加えることが必要である。
In addition, when supplying radioactive waste onto the melted flux F in the above process, if a large amount of radioactive waste is supplied at once, the radioactive waste will not be completely burnt and will float on the liquid surface and become part of other eutectic materials. Radioactive waste must be added in small amounts to ensure complete combustion.

また上記具体例においては容器20として金属
製の容器を用いたので容器自体も誘導加熱される
という長所を有するが、カーボングラフアイトや
セラミツク等の非金属材料製の容器を用いてもよ
い。
Further, in the above specific example, since a metal container is used as the container 20, the container itself has the advantage of being induction heated, but a container made of a non-metallic material such as carbon graphite or ceramic may also be used.

次に上記装置を用いた本発明方法の実施例を挙
げる。
Next, examples of the method of the present invention using the above-mentioned apparatus will be given.

実施例 放射性廃棄物として原動力発電所の水処理で使
われた廃樹脂とほぼ同一の非放射性樹脂(見かけ
上の密度:0.1〜0.5g/cm3)に予めクラツドを添
加、調整し、出力100KWの高周波誘導加熱炉内
で1100℃に加熱された筒状加熱体内に設置した
350mmφ×500mmHのステンレス製の容器内におい
て、融剤であるホウ砂を融解し、その融解液面上
へ上記模擬樹脂を2〜5Kg/hr程度の供給速度で
同量の二酸化ケイ素とともに供給し、それと同時
に樹脂を燃焼させるために10〜50Nm3/hrの空気
を供給して樹脂を燃焼させ、灰分を全て融剤中に
溶解した。そして上記模擬樹脂および二酸化ケイ
素を容器が溶解物で一杯になるまで供給した後冷
却固化し、融剤との共融物として容器内に固化さ
せた。得られた固化体の密度は約2.8〜3、5
g/cm3、圧縮強度は約1000〜2000Kg/cm2であつ
た。また、固化体からのCsの浸出率は約10-5
10-7cm2/dであつた。
Example: A non-radioactive resin (apparent density: 0.1 to 0.5 g/cm 3 ), which is almost the same as the waste resin used as radioactive waste in water treatment at a power plant, is added and adjusted in advance to produce an output of 100 KW. It was installed inside a cylindrical heating body heated to 1100℃ in a high-frequency induction heating furnace.
In a stainless steel container of 350 mmφ x 500 mmH, melt borax as a flux, and feed the above-mentioned simulated resin onto the melt surface at a feeding rate of about 2 to 5 kg/hr together with the same amount of silicon dioxide, At the same time, 10 to 50 Nm 3 /hr of air was supplied to burn the resin, and all the ash was dissolved in the flux. The simulated resin and silicon dioxide were supplied until the container was filled with the melt, and then cooled and solidified to form a eutectic product with the flux and solidify in the container. The density of the obtained solidified material is approximately 2.8-3.5
g/cm 3 , and the compressive strength was approximately 1000 to 2000 Kg/cm 2 . In addition, the leaching rate of Cs from the solidified body is approximately 10 -5 ~
It was 10 -7 cm 2 /d.

以上説明したように本発明によれば、同一装置
内で放射性廃棄物の焼却と溶融固化処理をおこな
うようにしたので、飛散しやすく被曝のおそれの
ある粉粒状の焼却灰の取扱作業が不用となり、能
率的にかつ安全に放射性廃棄物の処理がおこなえ
るとともに、ドラム罐などの焼却灰の貯蔵手段お
よび貯蔵スペースが不要となり経済的である。ま
た本発明によれば放射性廃棄物を大巾に減容化さ
せて安定な無機固化体材として容器内へ封じ込め
ることができ、金属類等の不燃性夾雑物を含む廃
棄物であつても、これらの夾雑物を融剤と焼却灰
の共融物中へとり込んで固化することができ、本
発明は放射能レベルの高い廃棄物、たとえば使用
済の樹脂等の減容安定処理にも適用することがで
きる。
As explained above, according to the present invention, radioactive waste is incinerated and melted and solidified in the same device, which eliminates the need to handle powdery incineration ash, which is easily scattered and can cause radiation exposure. In addition to being able to efficiently and safely dispose of radioactive waste, it is also economical as it eliminates the need for storage means and storage space for incinerated ash such as drums. Furthermore, according to the present invention, radioactive waste can be greatly reduced in volume and contained in a container as a stable inorganic solidified material, even if the waste contains non-flammable impurities such as metals. These impurities can be incorporated into the eutectic mixture of flux and incineration ash and solidified, and the present invention can also be applied to volume reduction and stable treatment of waste with high radioactivity levels, such as used resin. can do.

さらに誘導加熱により昇温した金属製の筒状加
熱体を主熱源とするため、容器は薄い金属製のも
のや、カーボングラフアイトやセラミツク等の金
属以外の材質のものなど、温度条件や雰囲気に応
じて自由にその材質を選択できる。
Furthermore, since the main heat source is a metal cylindrical heating element heated by induction heating, the container may be made of thin metal or made of non-metallic materials such as carbon graphite or ceramic, depending on temperature conditions and atmosphere. You can freely select the material according to your needs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す焼却固化装
置の縦断面図である。 2……炉本体、6……昇降台、7……底蓋、8
……誘導加熱コイル、12……筒状加熱体、13
……外側空間、18……支台、19……底板、2
0……容器、31……供給口、32……酸素供給
管、34……検知器、39……焼却固化装置、A
……放射性廃棄物、B……焼却灰、F……融剤。
FIG. 1 is a longitudinal sectional view of an incineration solidification apparatus showing an embodiment of the present invention. 2...Furnace body, 6...Elevating platform, 7...Bottom cover, 8
... Induction heating coil, 12 ... Cylindrical heating body, 13
...Outside space, 18...Abutment, 19...Bottom plate, 2
0... Container, 31... Supply port, 32... Oxygen supply pipe, 34... Detector, 39... Incineration solidification device, A
...Radioactive waste, B...Incineration ash, F...Fluxing agent.

Claims (1)

【特許請求の範囲】 1 誘導加熱コイルをそなえた炉内に設けた金属
製の筒状加熱体内に、容器を設置し、放射性廃棄
物の焼却灰と共融物を形成する融剤を上記容器内
に供給し、上記誘導加熱コイルにより上記容器内
で液状に融解させた上記融剤上に焼却処理前の放
射性廃棄物を少量ずつ供給するとともに、上記融
剤の液面上方に酸素含有ガスを供給して上記焼却
処理前の放射性廃棄物を燃焼させ、該燃焼によつ
て生じた焼却灰を上記融剤中に溶解させたのち冷
却して上記容器内に固定化させることを特徴とす
る放射性廃棄物の焼却固化方法。 2 融剤がホウ酸、ホウ砂、炭酸ナトリウムのう
ち少なくとも1種以上から成る特許請求の範囲第
1項記載の放射性廃棄物の焼却固化方法。 3 放射性廃棄物とともにSiO2を含む補助添加
剤を供給する特許請求の範囲第1項または第2項
記載の放射性廃棄物の焼却固化方法。 4 昇降駆動される底蓋によつて底部を開放可能
に閉鎖した密封容器状の炉本体と、上記炉本体の
側壁の外周部に設けた誘導加熱コイルと、上記炉
本体の内部において上記誘導加熱コイルに対応す
る位設に配置された金属製の筒状加熱体と、上記
底蓋に固設した支台上に取付けられ上記底蓋によ
る上記炉本体底部閉鎖時に上記筒状加熱体の下端
部をほぼ閉鎖する底板と、上記底板上に載置され
上記筒状加熱体内に下方から挿脱自在である容器
と、上記炉本体の上部に設けた排ガス口と、上記
炉本体に取付けられ上記容器内へ焼却処理前の放
射性廃棄物および該放射性廃棄物の焼却灰と共融
物を形成する融剤を供給する供給口と、上記炉本
体に取付けられ上記容器内へ上記放射性廃棄物燃
焼用の酸素含有ガスを供給する酸素供給管と、上
記炉本体に取付けられ上記容器内の溶融状態を検
知する検知装置とをそなえて成る放射性廃棄物の
焼却固化装置。 5 酸素供給管が燃焼用空気供給管である特許請
求の範囲第4項記載の放射性廃棄物の焼却固化装
置。
[Claims] 1. A container is installed in a metal cylindrical heating body provided in a furnace equipped with an induction heating coil, and a flux that forms a eutectic with the incinerated ash of radioactive waste is poured into the container. The radioactive waste before incineration is fed little by little onto the flux that is melted into a liquid state in the container by the induction heating coil, and an oxygen-containing gas is introduced above the liquid surface of the flux. The radioactive waste is supplied to burn the radioactive waste before the incineration treatment, and the incineration ash produced by the combustion is dissolved in the flux, cooled, and fixed in the container. Waste incineration solidification method. 2. The method of incineration and solidification of radioactive waste according to claim 1, wherein the flux comprises at least one of boric acid, borax, and sodium carbonate. 3. A method for incinerating and solidifying radioactive waste according to claim 1 or 2, wherein an auxiliary additive containing SiO 2 is supplied together with the radioactive waste. 4. A furnace body in the form of a sealed container whose bottom part is releasably closed by a bottom lid that is driven up and down, an induction heating coil provided on the outer periphery of a side wall of the furnace body, and an induction heating coil provided inside the furnace body. A metal cylindrical heating body is arranged at a position corresponding to the coil, and a lower end of the cylindrical heating body is attached to a support fixed to the bottom cover when the bottom of the furnace body is closed by the bottom cover. a bottom plate substantially closing the bottom plate; a container placed on the bottom plate and capable of being inserted into and removed from the cylindrical heating body from below; an exhaust gas port provided at the top of the furnace body; and a container attached to the furnace body. a supply port for supplying radioactive waste before incineration and a flux to form a eutectic with the incinerated ash of the radioactive waste; An apparatus for incinerating and solidifying radioactive waste, comprising an oxygen supply pipe that supplies oxygen-containing gas, and a detection device that is attached to the furnace body and detects a molten state within the container. 5. The radioactive waste incineration solidification apparatus according to claim 4, wherein the oxygen supply pipe is a combustion air supply pipe.
JP4245484A 1984-03-06 1984-03-06 Method and device for incinerating and solidifying radioactive waste Granted JPS60186800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4245484A JPS60186800A (en) 1984-03-06 1984-03-06 Method and device for incinerating and solidifying radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4245484A JPS60186800A (en) 1984-03-06 1984-03-06 Method and device for incinerating and solidifying radioactive waste

Publications (2)

Publication Number Publication Date
JPS60186800A JPS60186800A (en) 1985-09-24
JPH0458598B2 true JPH0458598B2 (en) 1992-09-17

Family

ID=12636508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4245484A Granted JPS60186800A (en) 1984-03-06 1984-03-06 Method and device for incinerating and solidifying radioactive waste

Country Status (1)

Country Link
JP (1) JPS60186800A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148896A (en) * 1985-12-24 1987-07-02 三機工業株式会社 Method and device for melting radioactive waste
JP4005770B2 (en) * 1998-09-22 2007-11-14 株式会社キンセイ産業 Waste incineration method
JP4655443B2 (en) * 2001-09-28 2011-03-23 株式会社Ihi Radioactive waste treatment method
JP5004564B2 (en) * 2006-11-21 2012-08-22 大同特殊鋼株式会社 Burner protection method
JP5850252B2 (en) * 2012-06-04 2016-02-03 Jfeエンジニアリング株式会社 Incineration of combustible materials containing radioactive cesium
JP6268514B2 (en) * 2013-10-03 2018-01-31 Jfeエンジニアリング株式会社 Incineration method for combustible materials containing radioactive materials
CN114824055A (en) 2017-09-29 2022-07-29 住友理工株式会社 Capacitance type sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109800A (en) * 1973-02-21 1974-10-18
JPS52115577A (en) * 1976-03-24 1977-09-28 Youichi Tamagawa Method of treating sludge containing toxic metallic compound
JPS56168025A (en) * 1980-05-29 1981-12-24 Power Reactor & Nuclear Fuel Dev Corp Burning method of abandoned radioactive ion exchange resin
JPS57118200A (en) * 1980-07-15 1982-07-22 Atomic Energy Of Australia Deposition for making to containing waste
JPS6038700A (en) * 1983-08-10 1985-02-28 東京電力株式会社 Method of melting and solidifying radioactive waste incinerated ash
JPS6038698A (en) * 1983-08-10 1985-02-28 東京電力株式会社 Device for melting and solidifying radioactive waste incinerated ash

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109800A (en) * 1973-02-21 1974-10-18
JPS52115577A (en) * 1976-03-24 1977-09-28 Youichi Tamagawa Method of treating sludge containing toxic metallic compound
JPS56168025A (en) * 1980-05-29 1981-12-24 Power Reactor & Nuclear Fuel Dev Corp Burning method of abandoned radioactive ion exchange resin
JPS57118200A (en) * 1980-07-15 1982-07-22 Atomic Energy Of Australia Deposition for making to containing waste
JPS6038700A (en) * 1983-08-10 1985-02-28 東京電力株式会社 Method of melting and solidifying radioactive waste incinerated ash
JPS6038698A (en) * 1983-08-10 1985-02-28 東京電力株式会社 Device for melting and solidifying radioactive waste incinerated ash

Also Published As

Publication number Publication date
JPS60186800A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
US6355904B1 (en) Method and system for high-temperature waste treatment
JPH03215632A (en) Method and equipment for melting scrap material containing contaminated metal
JPS6216399B2 (en)
US4816228A (en) Apparatus for melting waste
US5443618A (en) Earth melter
JPH0458598B2 (en)
WO2002014743A1 (en) Method for incineration disposal of waste
KR900000326B1 (en) Method and device melting and solidifying radioactive waste
JP2001227714A (en) Method for incinerating disposal of waste
CA2124211C (en) Earth melter
JPH0231840B2 (en) HOSHASEIHAIKIBUTSUSHOKYAKUBAINOYOJUKOKASOCHI
JPH0990095A (en) Volume reduction processing method for low level radioactive miscellaneous solid waste and its system
JP3073852B2 (en) Radioactive waste melting equipment
JPH0450558B2 (en)
JP3236885B2 (en) Waste treatment equipment
JP3073851B2 (en) Waste incineration melting treatment device and incineration melting treatment method
KR900007748B1 (en) Apparatus for melting waste
JP2908584B2 (en) Radioactive waste melting equipment
JP3280265B2 (en) Apparatus and method for melting incineration residue and fly ash
JPS6247356B2 (en)
US5743937A (en) Earth melter with rubble walls and method of use
JP2889558B1 (en) Incineration melting method and incineration melting apparatus
JPS59200999A (en) Method of melting and solidifying incineration ash of radioactive waste
RU1810391C (en) Plasma shaft furnace for processing radioactive wastes of low and middle level activity
RU2070307C1 (en) Plasma shaft furnace for processing the radioactive wastes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term