JPS61145429A - Measuring element for high speed ionization vacuum gauge - Google Patents

Measuring element for high speed ionization vacuum gauge

Info

Publication number
JPS61145429A
JPS61145429A JP26619484A JP26619484A JPS61145429A JP S61145429 A JPS61145429 A JP S61145429A JP 26619484 A JP26619484 A JP 26619484A JP 26619484 A JP26619484 A JP 26619484A JP S61145429 A JPS61145429 A JP S61145429A
Authority
JP
Japan
Prior art keywords
anode
grid
filament
concentric
measuring element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26619484A
Other languages
Japanese (ja)
Inventor
Michio Otsuka
大塚 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26619484A priority Critical patent/JPS61145429A/en
Publication of JPS61145429A publication Critical patent/JPS61145429A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/30Vacuum gauges by making use of ionisation effects
    • G01L21/32Vacuum gauges by making use of ionisation effects using electric discharge tubes with thermionic cathodes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain a measuring element normally operated under the ferromagnetic field of a nuclear fusion reactor, receiving the reduced effect of a secondary electron and capable of measuring the rapid change in gas pressure, by arranging the electrodes of the measuring element in a concentric circular form. CONSTITUTION:A needle electrode 3 is attached to the center of concentric electrodes and a reticulated filament 1 is attached outside a grid 2 in a concentric form. Positive potential is applied to the grid 2 and negative potential to the anode 3. The thermoelectron emitted from the filament 1 is accelerated by the positive potential of the grid 2 and ionizes a gaseous molecule in the space between the filament 1 and the grid 2. The ionized ion passes through the mesh of the grid 2 and is accelerated by the negative potential of the anode 3 and collected by the anode 3 to be converted to an ion current. By this mechanism, the area of the anode 3' can be reduced to a large extent and concentric electrode arrangement can be held and, therefore, a measuring element can be normally operated even under a ferromagnetic field of which the direction changes timewise.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高速電離真空計にかかわシ、特に核融合装置な
どの強磁場下で使用する電離真空計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a high-speed ionization vacuum gauge, and particularly to an ionization vacuum gauge used under a strong magnetic field in a nuclear fusion device or the like.

〔発明の背景〕[Background of the invention]

核融合装置ではプラズマを生成させるために、放電に先
立ち、一定圧力のガスを注入する、ガスの注入、放電、
プラズマの生成は数ms〜数士msの短時間で行なわれ
るので、その時の注入ガス圧力も短時間で大きく変化す
る。また放電中にプラズマの不安定性が生じ、プラズマ
がリミッタや壁に接触し、それらから大量のガスを脱離
させることがしばしば生じる。この過程も数ms程度の
短時間で生じる。これらの短時間でのガス圧力変化を正
確に測定することは、プラズマの挙動を解明する上で、
またプラズマを安定に保持するための制御を行なう上で
重要である。このため高速でガス圧力変化を測定できる
真空計が必要となる。
In order to generate plasma in a nuclear fusion device, gas is injected at a constant pressure prior to discharge.
Since plasma is generated in a short time of several milliseconds to several milliseconds, the injection gas pressure at that time also changes greatly in a short time. Plasma instability also occurs during the discharge, often resulting in the plasma contacting limiters and walls and desorbing large amounts of gas from them. This process also occurs in a short time of about several milliseconds. Accurately measuring these changes in gas pressure over a short period of time will help elucidate plasma behavior.
It is also important in performing control to maintain plasma stably. For this reason, a vacuum gauge that can measure gas pressure changes at high speed is required.

測定すべきガス圧力はlXl0−”P、 〜lXl0−
”Plの範囲なので、真空計としては電離真空計が最も
適している。電離真空計は、真空容器内のガスを電離し
、そのイオン電流から真空度を測定するものである。電
離真空計の測定子自体の測定時間はガスのイオン化時間
で決まシ、それは1μs以下なので高速真空計に適して
いるが、実際の測定時間は、真空容器と測定子との間の
コンダクタンスで決定される。このため真空容器内のガ
ス圧変化を高速で測定するためには、測定子を真空容器
のできるだけ近くに取り付けねばならない。一方核融合
装置では強磁場が使用され、プラズマ自体もその中を流
れるプラズマ電流による磁場を発生させるので、磁場の
大きさ、方向は一定でなく時間とともに変化する。電離
真空計の測定子はプラズマの近傍に取り付けられねばな
らないので、大きさ、方向特に方向が時間的に変化する
強磁場下で正常に動作しなければならない。強磁場下で
はガスを電離する電子や、電離の結果生成したイオンの
軌道が磁場が存在しない場合と異なる。このため大きさ
、方向が変化する強磁場下でも正常に動作するように、
従来はJAERI−M6712(1976年)で前針ら
が″JFT−2プラズマ周囲の中性分子密度測定用高速
電離真空計”と題して論じているように、測定子の陽極
、グリッド。
The gas pressure to be measured is lXl0-”P, ~lXl0-
"Since the Pl range, an ionization vacuum gauge is most suitable as a vacuum gauge. An ionization vacuum gauge ionizes the gas in a vacuum container and measures the degree of vacuum from the ion current. The measurement time of the probe itself is determined by the gas ionization time, which is less than 1 μs, making it suitable for high-speed vacuum gauges, but the actual measurement time is determined by the conductance between the vacuum vessel and the probe. Therefore, in order to measure gas pressure changes in a vacuum vessel at high speed, the probe must be attached as close to the vacuum vessel as possible.On the other hand, fusion devices use a strong magnetic field, and the plasma itself is affected by the plasma current flowing within it. generates a magnetic field, so the magnitude and direction of the magnetic field are not constant and change over time.Since the probe of the ionization vacuum gauge must be installed near the plasma, the magnitude and direction, especially the direction, change over time. It must operate normally under a strong magnetic field.Under a strong magnetic field, the orbits of the electrons that ionize the gas and the ions generated as a result of ionization are different from those in the absence of a magnetic field.As a result, the size and direction change. To operate normally even under strong magnetic fields,
Conventionally, as discussed by Maehashi et al. in JAERI-M6712 (1976) entitled "JFT-2 High-speed ionization vacuum gauge for measuring the density of neutral molecules around plasma," the anode and grid of the probe.

フィラメントなどの電極を同心状に配置している。Electrodes such as filaments are arranged concentrically.

ls2図に測定子の構造を示す。第2図において測定子
の各電極は7ランジ4にセラミックなどのがい子5を介
して取シ付けられている。フィラメント1は接地電位に
あシ、通電加熱される。グリッド2には正の電位が印加
され、フイラメン)1から放出された熱電子を加速する
。加速された熱電子は真空容器中のガス分子と衝突し、
電離する。
Figure ls2 shows the structure of the probe. In FIG. 2, each electrode of the probe is attached to seven flanges 4 via insulators 5 made of ceramic or the like. The filament 1 is placed at ground potential and heated by electricity. A positive potential is applied to the grid 2, accelerating the hot electrons emitted from the filament 1. Accelerated thermionic electrons collide with gas molecules in the vacuum container,
ionize.

陽極3には負の電位が印加されるので、電離されたイオ
ンは陽極に集ま9、イオン電流となる。フィラメント1
から放出され、グリッド2で加速された電子は、陽極3
の負電位で減速されるため、陽極には到達しない。生成
されるイオンの数はガス圧力と熱電子数に比例するので
、フィラメントからの熱電子電流を一定にしておけば、
イオン電流の値からガス圧力を測定することができる。
Since a negative potential is applied to the anode 3, the ionized ions gather at the anode 9 and form an ionic current. filament 1
The electrons emitted from the grid 2 and accelerated by the anode 3
Because it is decelerated by the negative potential of , it does not reach the anode. The number of ions generated is proportional to the gas pressure and the number of thermionic electrons, so if the thermionic current from the filament is kept constant,
Gas pressure can be measured from the value of ion current.

グリッド2はイオンが通過できるように網目状の形をし
ている。高速電離真空計では、ガス圧力変化を高速で測
定しなければならないので、ガス分子の電離領域である
フィラメント1とグリッド2の間までの;ンダクタンス
ができるたけ大きくなるように通常網目状の形にする。
The grid 2 has a mesh shape to allow ions to pass through. In high-speed ionization vacuum gauges, gas pressure changes must be measured at high speed, so the gauge is usually shaped like a mesh to maximize the inductance between filament 1 and grid 2, which is the ionization region of gas molecules. do.

このように各電極を同心状に配置すれば、その方向が時
間的に変化する強磁場下でも、ガス圧力を測定すること
ができる。一方プラズマからは各種の可視光線、紫外線
、X線などが放射される。これらの紫外線やX線が測定
子の各電極に衝突すると、二次電子を発生させる。電離
真空計では電子電流は1ff)A〜10mAと大きいが
、イオン電流は1μA〜10μAの程度で小さい値であ
る。このため陽極3から二次電子が放出されると、見か
け上イオン電流が多く流れることになり、ガス圧力を正
確に測定できなくなる。二次電子の発生量は陽極30面
積に比例しているが、イオン電流そのものは面積にあま
り関係していない。このため、陽極3を超高真空測定用
の測定子である、いわゆるB−Aゲージと同じように針
状にすればよいが、そうすると同心状の電極構造になら
ないため、強磁場下で正常に動作しなくなる。このため
二次電子の影響をさけるため、従来は第2図に示した構
造のままで、測定子のまわシを遮蔽物で囲い、紫外線や
X線が陽極に到達しないようにしている。しかしこの場
合は、遮蔽物で囲うのでガス分子自体も測定子に到達し
にくくなるため、コンダクタンスが小さくなり、ガス圧
力の速い変化を測定することが困難になるという問題点
が生じる。
By arranging the electrodes concentrically in this manner, gas pressure can be measured even under a strong magnetic field whose direction changes over time. On the other hand, plasma emits various kinds of visible light, ultraviolet rays, and X-rays. When these ultraviolet rays and X-rays collide with each electrode of the probe, secondary electrons are generated. In an ionization vacuum gauge, the electron current is large at 1ff)A to 10mA, but the ion current is small at about 1μA to 10μA. Therefore, when secondary electrons are emitted from the anode 3, an apparently large amount of ion current flows, making it impossible to accurately measure the gas pressure. Although the amount of secondary electrons generated is proportional to the area of the anode 30, the ionic current itself is not significantly related to the area. For this reason, it is possible to make the anode 3 needle-shaped like the so-called B-A gauge, which is a measuring point for ultra-high vacuum measurements, but then it will not have a concentric electrode structure, so it will not work normally under a strong magnetic field. It stops working. Therefore, in order to avoid the influence of secondary electrons, the structure shown in Figure 2 has conventionally been used, and the sensor head is surrounded by a shield to prevent ultraviolet rays and X-rays from reaching the anode. However, in this case, since it is surrounded by a shield, it becomes difficult for the gas molecules themselves to reach the probe, resulting in a problem that the conductance becomes small and it becomes difficult to measure rapid changes in gas pressure.

以上述べたように従来の測定子では、強磁場下で正常に
動作するように、フィラメンl中心にした同心状に電極
を配置し、その結果陽極の面積が大きくなることから生
じる二次電子による、見かけ上のイオン電流の増大をさ
けるため、遮蔽物で測定子を囲うため、コンダクタンス
が小さくなり、ガス圧力の速い変化を測定できなくなる
という欠点がある。
As mentioned above, in conventional probes, in order to operate normally under strong magnetic fields, the electrodes are arranged concentrically around the filament l, and as a result, the area of the anode increases, resulting in In order to avoid an apparent increase in ion current, the probe is surrounded by a shield, which reduces conductance and makes it impossible to measure rapid changes in gas pressure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、強磁場下で正常に動作し、二次電子の
影響が少なくかつガス圧力の速い変化を測定できる高速
電離真空計用測定子を提供するにある。
An object of the present invention is to provide a measuring head for a high-speed ionization vacuum gauge that operates normally under a strong magnetic field, is less affected by secondary electrons, and can measure rapid changes in gas pressure.

〔発明の概要〕[Summary of the invention]

本発明は、測定子の電極を同心円状に配置する構造で、
同心円の中心に針状の陽極を取り付け、二次電子の影響
を少なくシ、同心構造を保つためにグリッドの外側和円
筒網目状のフィラメントを取り付けるようにしたもので
ある。
The present invention has a structure in which the electrodes of the probe are arranged concentrically,
A needle-shaped anode is attached to the center of the concentric circles, and a cylindrical mesh-like filament is attached to the outside of the grid to reduce the influence of secondary electrons and maintain a concentric structure.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の一実施例を示す。第1図において針状
の陽極3は同心状の電極の中心に取り付けられ、網目状
のフィラメント1はグリッド2の外側に同心状に取り付
けられる。フィラメント1は接番電位で通電加熱され、
グリッド2には正の電位、陽極3には負の電位が印加さ
れる。フィラメント1から放出された熱電子は、グリッ
ド2の正電位で加速され、フィラメント1とグリッド2
の間の空間でガス分子を電離する。電離されたイオンは
グリッド2の網目の間を通シ抜け、陽極3の負の電位で
加速され、陽極に集められてイオン電流となる。このよ
うに電極を配置すると、陽極3の面積を大巾に小さくす
ることができ、かつ同心状の電極配置金保つことができ
る。したがって方向が時間的に変化する強磁場下でも正
常に動作し、かつプラズマから放射される紫外線やX線
により陽極から放出される二次電子の量を大巾に低減で
きるので、イオン電流の測定誤差を無視できるほど小さ
くすることができる。このため、紫外線やX線ヲ遮蔽す
るために、測定子を囲む必要がないので、測定子のコン
ダクタンスが大きく−なシ、ガス圧力の速い変化を測定
できる。
FIG. 1 shows an embodiment of the present invention. In FIG. 1, a needle-shaped anode 3 is attached to the center of the concentric electrodes, and a mesh-like filament 1 is attached concentrically to the outside of the grid 2. The filament 1 is heated with electricity at a contact potential,
A positive potential is applied to the grid 2 and a negative potential is applied to the anode 3. Thermionic electrons emitted from filament 1 are accelerated by the positive potential of grid 2, and
ionizes gas molecules in the space between. The ionized ions pass through the mesh of the grid 2, are accelerated by the negative potential of the anode 3, and are collected at the anode to form an ionic current. By arranging the electrodes in this manner, the area of the anode 3 can be greatly reduced, and a concentric arrangement of the electrodes can be maintained. Therefore, it can operate normally even under strong magnetic fields whose direction changes over time, and can greatly reduce the amount of secondary electrons emitted from the anode due to ultraviolet rays and X-rays emitted from the plasma, making it possible to measure ion currents. The error can be made so small that it can be ignored. Therefore, there is no need to surround the probe to shield it from ultraviolet rays and X-rays, so it is possible to measure rapid changes in gas pressure even though the probe has a large conductance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電極構造を同心状に保つたままで、陽
極の面積を小さくできるので、方向が変化する強磁場下
でも正常に動作し、かつ陽極から放出される二次電子の
量が少なく、イオン電流の測定誤差を小さくできるとと
もに1測定子のコンダクタンスが大きくなるので、ガス
圧力の速い変化を測定できるという効果がある。
According to the present invention, the area of the anode can be reduced while keeping the electrode structure concentric, so it can operate normally even under a strong magnetic field whose direction changes, and the amount of secondary electrons emitted from the anode is small. Since the measurement error of the ion current can be reduced and the conductance of one probe increases, there is an effect that rapid changes in gas pressure can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は従来使用
されている測定子の構造図である。 1・・・フィラメント、2°・・・グリッド、3・・・
陽極、4第1図 (す (aン
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a structural diagram of a conventionally used probe. 1...Filament, 2°...Grid, 3...
Anode, 4Fig.

Claims (1)

【特許請求の範囲】[Claims] 1、同軸状の電極を持つ電離真空計用測定子において、
フイラメントが同軸円筒網目状になつていることを特徴
とする高速電離真空計用測定子。
1. In an ionization vacuum gauge probe with coaxial electrodes,
A measuring head for a high-speed ionization vacuum gauge characterized by a filament in the form of a coaxial cylindrical mesh.
JP26619484A 1984-12-19 1984-12-19 Measuring element for high speed ionization vacuum gauge Pending JPS61145429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26619484A JPS61145429A (en) 1984-12-19 1984-12-19 Measuring element for high speed ionization vacuum gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26619484A JPS61145429A (en) 1984-12-19 1984-12-19 Measuring element for high speed ionization vacuum gauge

Publications (1)

Publication Number Publication Date
JPS61145429A true JPS61145429A (en) 1986-07-03

Family

ID=17427560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26619484A Pending JPS61145429A (en) 1984-12-19 1984-12-19 Measuring element for high speed ionization vacuum gauge

Country Status (1)

Country Link
JP (1) JPS61145429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508211A (en) * 2007-12-19 2011-03-10 ブルックス オートメーション インコーポレイテッド An ionization gauge with a cold electron multiplier emission source
CN109900421A (en) * 2019-03-13 2019-06-18 中国人民解放军国防科技大学 Ionization gauge and system for measuring transient pressure of high-speed neutral air mass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508211A (en) * 2007-12-19 2011-03-10 ブルックス オートメーション インコーポレイテッド An ionization gauge with a cold electron multiplier emission source
US8686733B2 (en) 2007-12-19 2014-04-01 Brooks Automation, Inc. Ionization gauge having electron multiplier cold emission source
CN109900421A (en) * 2019-03-13 2019-06-18 中国人民解放军国防科技大学 Ionization gauge and system for measuring transient pressure of high-speed neutral air mass

Similar Documents

Publication Publication Date Title
Hobson et al. Operation of an inverted-magnetron gauge in the pressure range 10− 3 to 10− 12 mm. Hg
US7332714B2 (en) Quadrupole mass spectrometer and vacuum device using the same
Lineberger et al. Absolute cross sections for single ionization of alkali ions by electron impact. I. Description of apparatus and Li+ results
US5296817A (en) Ionization gauge and method of using and calibrating same
US5422573A (en) Ionization gauge and method of using and calibrating same
Dutton et al. Formative time lags in the electrical breakdown of gases
Dylla Pressure measurements in magnetic fusion devices
US3001128A (en) Measuring
JPH04505828A (en) Partial pressure gauge using cold cathode ion source for leak detection in vacuum equipment
JPS61145429A (en) Measuring element for high speed ionization vacuum gauge
US3353048A (en) Ionization gauge for monitoring the flow of evaporant material
Conn et al. Cold cathode ionisation gauges for the measurement of low pressures
JPH0968473A (en) Thermal cathode type vacuum gage
US3387175A (en) Vacuum gauge having separate electron collecting and electron accelerating electrodes
US2852694A (en) Ionization chamber
US2874304A (en) Ionization chamber
US3341770A (en) Ionization vacuum gauge
US3320455A (en) Ionization vacuum gauge having x-ray shielding means
JPH046431A (en) Vacuum gage
US3009096A (en) Method and apparatus for testing gases
US3514655A (en) Ion gauge for monitoring vapor flow
JPS5963584A (en) Radioactive rays detector
Biddle et al. Integrated development facility for the calibration of low‐energy charged particle flight instrumentation
Stevens et al. Ratio Recording in Isotopic Analysis
JPH02218933A (en) Vacuum gage