JPS6114429B2 - - Google Patents

Info

Publication number
JPS6114429B2
JPS6114429B2 JP57086611A JP8661182A JPS6114429B2 JP S6114429 B2 JPS6114429 B2 JP S6114429B2 JP 57086611 A JP57086611 A JP 57086611A JP 8661182 A JP8661182 A JP 8661182A JP S6114429 B2 JPS6114429 B2 JP S6114429B2
Authority
JP
Japan
Prior art keywords
temperature regenerator
solution
refrigerant
vessel
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57086611A
Other languages
Japanese (ja)
Other versions
JPS57198972A (en
Inventor
Tomihisa Oochi
Michihiko Aizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8661182A priority Critical patent/JPS57198972A/en
Publication of JPS57198972A publication Critical patent/JPS57198972A/en
Publication of JPS6114429B2 publication Critical patent/JPS6114429B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は吸収式の冷暖房機に使用され高温再生
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high temperature regenerator used in an absorption type air conditioner/heater.

従来の吸収式冷暖房機は、特開昭49−10445号
公報に開示されており、第1図に示したように、
蒸発器1、吸収器2、凝縮器3、低温再生器4、
高温再生器、低温熱交換器6、高温熱交換器7、
溶液循環ポンプ8、溶液スプレポンプ9、冷媒
(水)スプレポンプ10および燃焼室11からな
り、冷房運転時には燃焼室11により高温再生器
5内の溶液を加熱し蒸発した冷媒は蒸発器12を
経て低温再生器4に導入され、その凝縮潜熱によ
り低温再生器4内の溶液を加熱した後に弁23を
経て凝縮器3に導入される。
A conventional absorption type air conditioner is disclosed in Japanese Patent Application Laid-open No. 10445/1983, and as shown in Figure 1,
Evaporator 1, absorber 2, condenser 3, low temperature regenerator 4,
high temperature regenerator, low temperature heat exchanger 6, high temperature heat exchanger 7,
Consists of a solution circulation pump 8, a solution spray pump 9, a refrigerant (water) spray pump 10, and a combustion chamber 11. During cooling operation, the combustion chamber 11 heats the solution in the high-temperature regenerator 5, and the evaporated refrigerant passes through the evaporator 12 for low-temperature regeneration. After heating the solution in the low temperature regenerator 4 by its latent heat of condensation, it is introduced into the condenser 3 via the valve 23.

上記低温再生器4で蒸発した冷媒は凝縮器3に
導入され、伝熱管15を流通する冷却水により冷
却されて凝縮液化し、冷媒導管35および弁25
を経て冷媒タンク32に導入される。この導入さ
れた液冷媒は冷媒スプレポンプ10により冷媒ス
プレノズル36を経て蒸発器1内にスプレされて
蒸発し気化する。この際に発生する蒸発潜熱によ
り伝熱管14を流通する冷水を冷却して冷凍能力
を発揮する。
The refrigerant evaporated in the low-temperature regenerator 4 is introduced into the condenser 3, where it is cooled by the cooling water flowing through the heat transfer tubes 15, condenses and liquefies, and is passed through the refrigerant conduit 35 and the valve 25.
The refrigerant is then introduced into the refrigerant tank 32. The introduced liquid refrigerant is sprayed into the evaporator 1 through the refrigerant spray nozzle 36 by the refrigerant spray pump 10, and is vaporized. The latent heat of evaporation generated at this time cools the cold water flowing through the heat transfer tubes 14 and exerts its refrigerating ability.

一方、高温再生器5内の溶液は冷媒蒸気を放出
し濃縮されて濃溶液となり、この濃溶液はフロー
ト室16、高温熱交換器7および弁22を経て低
温熱交換器6に導入される。低温再生器4内の溶
液も同様に冷媒蒸気を放出し濃縮されて濃溶液と
なり、この濃溶液は弁20を経て低温熱交換器6
に導入されて高温再生器5からの濃縮液と合流す
る。この合流濃溶液は圧力差とヘツド差による濃
液タンク33に導入された後、溶液スプレポンプ
9により吸収器2内に散夫され、蒸発器1から送
られる冷媒蒸気を吸収し稀釈されて稀溶液とな
る。
On the other hand, the solution in the high-temperature regenerator 5 releases refrigerant vapor and is concentrated to become a concentrated solution, which is introduced into the low-temperature heat exchanger 6 via the float chamber 16, the high-temperature heat exchanger 7, and the valve 22. Similarly, the solution in the low temperature regenerator 4 releases refrigerant vapor and is concentrated to become a concentrated solution, and this concentrated solution passes through the valve 20 to the low temperature heat exchanger 6.
The concentrated liquid from the high temperature regenerator 5 joins with the concentrated liquid. This combined concentrated solution is introduced into the concentrated liquid tank 33 due to the pressure difference and the head difference, and is then dispersed into the absorber 2 by the solution spray pump 9, absorbs the refrigerant vapor sent from the evaporator 1, and is diluted to form a diluted solution. becomes.

上記吸収器2は伝熱管15を流通する冷却水に
より冷却されて低圧に保持されているため、蒸発
器1内の冷媒(水)の蒸発温度は低温である。こ
の低温の稀溶液は稀液タンク34にたまり、さら
に溶液循環ポンプ8により弁19を経て低温熱交
換器6に送られ、温度の高い濃溶液と熱交換され
る。この溶液の一部は弁21を経て低温再生器4
に導入され、高温再生器5からの高温の濃溶液と
熱交換器された後、弁18および稀液導管27を
経て高温再生器5の気相部に導入される。こよう
にして冷房運転が行われる。
Since the absorber 2 is cooled by the cooling water flowing through the heat transfer tubes 15 and maintained at a low pressure, the evaporation temperature of the refrigerant (water) in the evaporator 1 is low. This low-temperature dilute solution accumulates in the dilute solution tank 34, and is further sent to the low-temperature heat exchanger 6 via the valve 19 by the solution circulation pump 8, where it is heat exchanged with the high-temperature concentrated solution. A portion of this solution passes through the valve 21 to the low temperature regenerator 4
After passing through a heat exchanger with the high temperature concentrated solution from the high temperature regenerator 5, the liquid is introduced into the gas phase of the high temperature regenerator 5 through the valve 18 and the diluted liquid conduit 27. Cooling operation is performed in this way.

前記高温再生器5内の溶液量はフロート室16
のフロート17の上下動により開閉される弁18
を介して注入量を制御することにより一定に保持
される。また稀液導管27の先端は高温再生器5
の気相部に開口しているので、循環ポンプ8が突
然停止した場合には、高温再生器5の蒸気は稀液
導管27を逆流する。一方、高温再生器5内の溶
液はせき37の部分まで保持されるので、溶液が
低圧側の吸収器2へ逆流しても吸収器から冷媒タ
ンク32にオーバフロする不都合はない。
The amount of solution in the high temperature regenerator 5 is the same as that in the float chamber 16.
A valve 18 is opened and closed by the vertical movement of the float 17.
The injection volume is kept constant by controlling the injection volume via . Also, the tip of the diluted liquid conduit 27 is connected to the high temperature regenerator 5.
, so that if the circulation pump 8 suddenly stops, the steam from the high-temperature regenerator 5 will flow back through the diluted liquid conduit 27 . On the other hand, since the solution in the high temperature regenerator 5 is retained up to the weir 37, even if the solution flows back to the absorber 2 on the low pressure side, there is no problem of overflowing from the absorber to the refrigerant tank 32.

次に暖房運転時には、まず弁19〜23,25
を閉じると同時に弁24を開き、冷媒ポンプ10
を駆動して冷媒タンク32内の冷媒を凝縮器3に
送り、凝縮器3から低温再生器4に溢流させた後
に弁24を閉じる。前記低温再生器4の底部と濃
液流出管37は小径の配管38を介して連通され
ているため、冷房運転の停止後に低温再生器4内
の溶液は数時間で流出する。
Next, during heating operation, first valves 19 to 23, 25
At the same time, the valve 24 is opened and the refrigerant pump 10 is closed.
is driven to send the refrigerant in the refrigerant tank 32 to the condenser 3, and after causing the refrigerant to overflow from the condenser 3 to the low temperature regenerator 4, the valve 24 is closed. Since the bottom of the low-temperature regenerator 4 and the concentrated solution outflow pipe 37 are communicated via a small-diameter pipe 38, the solution in the low-temperature regenerator 4 flows out within several hours after the cooling operation is stopped.

ついで燃焼器11を稼動させると、高温再生器
5内の溶液は沸騰し、この沸騰により生じた冷媒
蒸気はミストセパレータ30およびスリツト31
を経て低温再生器4内の蒸発管12に流入し液化
された後に、U字シール13を経てヘツド室によ
り高温再生器5へ戻される。
Next, when the combustor 11 is operated, the solution in the high temperature regenerator 5 boils, and the refrigerant vapor generated by this boiling flows through the mist separator 30 and the slit 31.
After flowing into the evaporation tube 12 in the low-temperature regenerator 4 and being liquefied, it passes through the U-shaped seal 13 and is returned to the high-temperature regenerator 5 through the head chamber.

この場合、低温再生器4内の液冷媒は高温再生
器5からの冷媒蒸気で加熱されて、沸騰、蒸発
し、凝縮器3の伝熱管15を流通する冷却水によ
り凝縮器して液化させた後に低温再生器4に溢流
する。この伝熱管15内を流通する温水を暖房に
利用する。
In this case, the liquid refrigerant in the low-temperature regenerator 4 is heated by refrigerant vapor from the high-temperature regenerator 5, boils and evaporates, and is condensed and liquefied by the cooling water flowing through the heat transfer tube 15 of the condenser 3. It later overflows into the low temperature regenerator 4. The hot water flowing through the heat transfer tubes 15 is used for heating.

上述した冷房運転から暖房運転に切換える際、
低温再生器4内に冷媒を十分に保持させるために
は、冷媒タンク32からの冷媒量だけでは不足す
る。このため暖房開始時に弁23を開き凝縮器3
を経て低温再生器4へ冷媒を補給する必要があ
る。
When switching from cooling operation to heating operation as described above,
In order to maintain a sufficient amount of refrigerant in the low-temperature regenerator 4, the amount of refrigerant from the refrigerant tank 32 alone is insufficient. Therefore, when heating starts, the valve 23 is opened and the condenser 3
It is necessary to supply refrigerant to the low-temperature regenerator 4 through .

この冷媒補給により高温再生器5内の溶液はや
はり高濃度となるが、この溶液のリチウム塩濃度
を十分に均一にする必要がある。
Although the solution in the high temperature regenerator 5 becomes highly concentrated due to this refrigerant replenishment, it is necessary to make the lithium salt concentration of this solution sufficiently uniform.

冷房運転後に高温再生器5内の溶液を稀釈する
場合には、燃焼器11の加熱を停止して稀釈する
のであるが、高温再生器5の底部および水管部2
9にはリチウム塩濃度の濃くかつ密度の大きい溶
液が滞留し、流入した密度の小さい稀溶液は液面
近傍を流れてほとんど稀釈されない恐れがある。
When diluting the solution in the high temperature regenerator 5 after cooling operation, the heating of the combustor 11 is stopped and the solution is diluted.
A solution with a high concentration of lithium salt and a high density stays in the tank 9, and the dilute solution with a low density that flows in flows near the liquid surface and may hardly be diluted.

また冷房運転時に高温再生器5に導入された低
温でかつ密度の大きい稀溶液は水管部29上に散
布されると共に、水管部29側から激しい沸騰に
より気液混合流が上昇し、両者の衝突により高温
再生器5内における溶液の対流が妨げられる恐れ
がある。
In addition, the low temperature and high density dilute solution introduced into the high temperature regenerator 5 during cooling operation is scattered onto the water pipe section 29, and a gas-liquid mixed flow rises from the water pipe section 29 side due to intense boiling, and the two collide. This may impede the convection of the solution within the high temperature regenerator 5.

本発明の目的は、高温再生器内に供給される溶
液と器内の溶液との混合を良好にできる吸収式冷
温水機の高温再生器を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-temperature regenerator for an absorption type water chiller-heater that can improve the mixing of the solution supplied into the high-temperature regenerator and the solution inside the vessel.

本発明の特徴は、高温再生器に溶液を供給する
導管の器内への開口部を2箇所とし、これらの開
口部一方を気相部に、他方を液相部にそれぞれ開
口させたことにある。
A feature of the present invention is that the conduit that supplies the solution to the high-temperature regenerator has two openings into the vessel, one of which opens into the gas phase and the other into the liquid phase. be.

上記の構成であるから、高温再生器に供給され
る溶液は、器内における溶液の対流中に流れ込む
ので、器内の溶液と導管から供給された溶液との
混合が円滑となり溶液濃度の均一化が促進され
る。
With the above configuration, the solution supplied to the high-temperature regenerator flows into the convection of the solution in the vessel, so the solution in the vessel and the solution supplied from the conduit are smoothly mixed, and the solution concentration is made uniform. is promoted.

導管の他方の開口部の位置が底部に近ずくほど
効果が大きい。
The closer the position of the other opening of the conduit is to the bottom, the greater the effect.

以下本発明の一実施例を図面を参照して説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第2図において、5は高温再生器、11は高温
再生器5の底部に設けられた水管部29を加熱す
る燃焼室、12は高温再生器5に接続され、かつ
低温再生器(図示せず)内を貫通する導管、16
は高温再生器5と一体に形成されたフロート室、
17はフロート室16内に浮遊するフロート、1
8はフロート17に連結され、かつ高温再生器5
内に挿入された稀液導管27の途中に設けられた
バルブで、その稀液導管27の先端は二股27
a,27bに分岐されている。その一方の分岐管
27aは高温再生器5内の気相部5aに、他方の
分岐管27bは高温再生器5内の底部5bにそれ
ぞれ開口されており、かつ前記分岐管27aの先
端開口部には絞り28が設けられている。30,
31は高温再生器5内の中間部および上部にそれ
ぞれ設けられたミストセパレータおよびスリツト
である。
In FIG. 2, 5 is a high-temperature regenerator, 11 is a combustion chamber that heats a water pipe section 29 provided at the bottom of the high-temperature regenerator 5, and 12 is a low-temperature regenerator (not shown) connected to the high-temperature regenerator 5. ), 16
is a float chamber formed integrally with the high temperature regenerator 5,
17 is a float floating in the float chamber 16;
8 is connected to the float 17 and the high temperature regenerator 5
This is a valve installed in the middle of the diluted liquid conduit 27 inserted into the interior, and the tip of the diluted liquid conduit 27 is bifurcated 27.
It is branched into a and 27b. One of the branch pipes 27a is opened to the gas phase part 5a in the high temperature regenerator 5, and the other branch pipe 27b is opened to the bottom part 5b of the high temperature regenerator 5. A diaphragm 28 is provided. 30,
Reference numerals 31 denote a mist separator and a slit provided in the middle and upper parts of the high temperature regenerator 5, respectively.

本実施例は上記のように構成したので、稀液は
稀液導管27の先端の分岐管27bを経て高温再
生器5の底部5bに導入されるから、高温再生器
5内における溶液の対流はより一層に強化され
る。また燃焼器11の停止時にも高温再生器5内
は底部よりかくはんされるので、溶液の濃度は均
一化される。
Since this embodiment is configured as described above, the diluted liquid is introduced into the bottom part 5b of the high temperature regenerator 5 through the branch pipe 27b at the tip of the diluted liquid conduit 27, so that the convection of the solution in the high temperature regenerator 5 is prevented. It will be further strengthened. Further, even when the combustor 11 is stopped, the inside of the high-temperature regenerator 5 is stirred from the bottom, so that the concentration of the solution is made uniform.

さらに稀液導入管先端の分岐管27aを高温再
生器5の気相部5aに開口させ、かつこの開口部
に絞り28を設けたので、冷房循環ポンプ8が突
然に停止した場合でも、高温再生器5内の溶液が
吸収器2に溢流するのを防止することができる。
Furthermore, the branch pipe 27a at the tip of the diluted liquid introduction pipe is opened to the gas phase part 5a of the high temperature regenerator 5, and a throttle 28 is provided in this opening, so even if the cooling circulation pump 8 suddenly stops, high temperature regeneration can be carried out. It is possible to prevent the solution in the container 5 from overflowing into the absorber 2.

なお、高温再生器5内の溶液が結晶した場合で
も稀液導管27の分岐管27bを介して高温再生
器5の底部5bへ稀液を圧送することにより、前
記結晶を迅速に解晶することができる。
Note that even if the solution in the high-temperature regenerator 5 crystallizes, the crystals can be quickly decomposed by force-feeding the diluted liquid to the bottom 5b of the high-temperature regenerator 5 via the branch pipe 27b of the diluted liquid conduit 27. I can do it.

以上のように本発明によれば、高温再生器内に
供給する溶液と器内の溶液との混合を良好にし高
温再生器の溶液濃度の均一化を促進することがで
きる。
As described above, according to the present invention, it is possible to improve the mixing of the solution supplied into the high-temperature regenerator and the solution inside the vessel, and to promote uniformity of the solution concentration in the high-temperature regenerator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の吸収式冷凍機の断面図、第2図
は本発明の高温再生器の一実施例を示す断面図で
ある。 5…高温再生器、5a…気相部、5b…底部、
27…稀液導管、27a,27b…分岐管。
FIG. 1 is a sectional view of a conventional absorption refrigerating machine, and FIG. 2 is a sectional view showing an embodiment of the high temperature regenerator of the present invention. 5... High temperature regenerator, 5a... Gas phase part, 5b... Bottom part,
27... Dilute liquid conduit, 27a, 27b... Branch pipe.

Claims (1)

【特許請求の範囲】 1 加熱部を備え、器内に溶液を供給する導管お
よび器内から溶液を排出する排出口を有するもの
において、器内に溶液を供給する導管の器内への
開口部を2箇所とし、これらの開口部の一方を器
内の気相部に、他方を器内の液相部にそれぞれ開
口させたことを特徴とする吸収式冷暖房機におけ
る高温再生器。 2 特許請求の範囲第1項において、導管の他方
の開口部は、器内の底部に開口されている吸収式
冷暖房機における高温再生器。 3 特許請求の範囲第1項または第2項におい
て、導管の一方の開口部は絞りを有する吸収式冷
暖房機における高温再生器。
[Claims] 1. In a device that is equipped with a heating section and has a conduit for supplying a solution into the vessel and a discharge port for discharging the solution from the inside of the vessel, the opening of the conduit for supplying the solution into the vessel into the vessel. 1. A high-temperature regenerator for an absorption type air-conditioning/heating machine, characterized in that there are two openings, one of which opens into a gas phase within the vessel, and the other opens into a liquid phase within the vessel. 2. The high-temperature regenerator in an absorption type air-conditioning/heating machine according to claim 1, wherein the other opening of the conduit is opened at the bottom of the vessel. 3. The high-temperature regenerator in an absorption type air-conditioning/heating machine according to claim 1 or 2, wherein one opening of the conduit has a restriction.
JP8661182A 1982-05-24 1982-05-24 High-temperature regenerator Granted JPS57198972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8661182A JPS57198972A (en) 1982-05-24 1982-05-24 High-temperature regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8661182A JPS57198972A (en) 1982-05-24 1982-05-24 High-temperature regenerator

Publications (2)

Publication Number Publication Date
JPS57198972A JPS57198972A (en) 1982-12-06
JPS6114429B2 true JPS6114429B2 (en) 1986-04-18

Family

ID=13891808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8661182A Granted JPS57198972A (en) 1982-05-24 1982-05-24 High-temperature regenerator

Country Status (1)

Country Link
JP (1) JPS57198972A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548031Y2 (en) * 1987-12-07 1993-12-20
JP2755605B2 (en) * 1988-08-18 1998-05-20 三洋電機株式会社 Direct-fired high-temperature regenerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452551A (en) * 1967-11-28 1969-07-01 Harrworth Inc Multiple stage direct fired absorption refrigeration system
JPS5226617A (en) * 1975-08-25 1977-02-28 Astilleros Talleres Noroeste Improvements in diaphragm tanks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746530Y2 (en) * 1977-01-19 1982-10-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452551A (en) * 1967-11-28 1969-07-01 Harrworth Inc Multiple stage direct fired absorption refrigeration system
JPS5226617A (en) * 1975-08-25 1977-02-28 Astilleros Talleres Noroeste Improvements in diaphragm tanks

Also Published As

Publication number Publication date
JPS57198972A (en) 1982-12-06

Similar Documents

Publication Publication Date Title
JPH11264623A (en) Absorptive refrigerator
US5271246A (en) Method and apparatus for producing high temperature water in absorption chiller-heater
JPH0886530A (en) Absorption type water cooling and heating machine
JPS6114429B2 (en)
JP6820050B2 (en) Absorption chiller, control program and control method of absorption chiller
JPH074769A (en) Single and double effect absorption refrigerating device
JP3603006B2 (en) Absorption refrigerator and control method of absorption refrigerator
JP3077977B1 (en) Absorption refrigerator
JP3806522B2 (en) Absorption heat pump device
JP3879286B2 (en) Absorption refrigerator
JP3715157B2 (en) 2-stage double-effect absorption refrigerator
JPH0692856B2 (en) Absorption refrigerator
JPH07104065B2 (en) Absorption heat pump device
JP3085603B2 (en) Double-effect absorption chiller / heater
KR20220129367A (en) Absorption refrigerating regenerator
JP4145001B2 (en) Absorption refrigerator
KR100321585B1 (en) Device for preventing solution crystallization of absorption water cooler and heater
JPH0355743B2 (en)
JPS60599Y2 (en) low temperature generator
JP3790360B2 (en) Absorption refrigeration system
JPS6148064B2 (en)
KR100199249B1 (en) Absorption type air conditioner
JPH0692855B2 (en) Absorption refrigerator
KR100250064B1 (en) Absorptive refrigerator
KR960005669B1 (en) Double effective absorption type refrigerator