JPS61144283A - Production of clad material - Google Patents

Production of clad material

Info

Publication number
JPS61144283A
JPS61144283A JP26596984A JP26596984A JPS61144283A JP S61144283 A JPS61144283 A JP S61144283A JP 26596984 A JP26596984 A JP 26596984A JP 26596984 A JP26596984 A JP 26596984A JP S61144283 A JPS61144283 A JP S61144283A
Authority
JP
Japan
Prior art keywords
temperature
austenitic
steel
cladding
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26596984A
Other languages
Japanese (ja)
Inventor
Terutaka Tsumura
津村 輝隆
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26596984A priority Critical patent/JPS61144283A/en
Publication of JPS61144283A publication Critical patent/JPS61144283A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure the corrosion resistance of the austenitic material in clad materials without spoiling the performance of the steel of base materials by treating with rapid cooling the austenitic material of the specified composition after re-heating at the specified temp. again after its rapid cooling treatment. CONSTITUTION:A hot working is performed with heating to the temp. of more than 1,000 deg.C the preparatory clad material consisting of the base material of the carbon steel of less than 0.3% C or low alloy steel and the austenitic material containing Ni, Cr, Mo and further more than one kind of Ti and Nb. It is treated with rapid cooling from the temp. of more than 800 deg.C with the state as it is after the hot work. It is then treated with rapid cooling after reheating to the temp. of 880-960 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、クラッド材の製造方法、特に耐食性の良好な
Ni、 Cr、 Moを含んで、さらにTiとNbの1
種以上をも含むオーステナイト系材料のクラッド材の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a cladding material, which includes Ni, Cr, and Mo, which have good corrosion resistance, and further includes one of Ti and Nb.
The present invention relates to a method for manufacturing a cladding material of an austenitic material containing more than one species.

(従来の技術) 近年、エネルギー事情の逼迫にともない、油井およびガ
ス井は深井戸化し、その環境は益々苛酷なものとなりつ
つあり、かつては開発されなかったような、硫化水素(
H2S)や炭酸ガス(C02)、塩素イオン<CI−)
等腐食性の強い物質を含む原油や天然ガスの掘削、輸送
、貯蔵も一般に行われるようになり、それに応じてかか
る環境下での使用に適した高強度でかつ耐食性にすくれ
た金属材料が要求されている。
(Prior art) In recent years, as the energy situation has become tighter, oil and gas wells have become deeper and the environment has become increasingly harsh.
H2S), carbon dioxide gas (C02), chlorine ions <CI-)
Drilling, transportation, and storage of crude oil and natural gas containing highly corrosive substances have become commonplace, and accordingly, metal materials with high strength and corrosion resistance suitable for use in such environments are being developed. requested.

従来の低合金鋼では耐食性の点でそのような苛酷な環境
での使用に耐えられないのでこの要求に応えるため、最
近では、より高級な耐食性祠料が用いられる傾向にあり
、オーステナイト系ステンレス鋼やインコロイやハステ
ロイ (いずれも商品名)といった高合金材料が採用さ
れ始めている。
Conventional low-alloy steels cannot withstand use in such harsh environments due to their corrosion resistance, so in order to meet this demand, there has been a recent trend toward using higher grade corrosion-resistant abrasives, such as austenitic stainless steels. High-alloy materials such as Incoloy, Incoloy, and Hastelloy (all trade names) are beginning to be adopted.

ところでそのような材料の高合金化は必ずコストの上昇
を伴うため、経済面での不利は避けられないものである
。さらに、これらの材料はオーステナイト系のステンレ
ス鋼または合金であるため、耐食性確保を目的に行う通
常の製造方法である溶体化処理のままでは強度が低く、
従って必要強度の確保のために、溶体化処理後さらに冷
間加工を施すのが通例であった。
By the way, since high alloying of such materials always involves an increase in cost, economic disadvantages are unavoidable. Furthermore, since these materials are austenitic stainless steels or alloys, their strength is low if they are solution-treated, which is the usual manufacturing method to ensure corrosion resistance.
Therefore, in order to ensure the required strength, it was customary to further cold-work the steel after solution treatment.

(発明が解決しようとする問題点) しかしながら、本発明者らの実験、研究によれば、H2
S−Co2−Cl−環境下での腐食の主たるものは、所
謂応力腐食割れ(以下、”scc”と略称する)である
が、この場合のSCCは一般のそれとは腐食挙動を全く
異にしている。すなわち、一般のSCCがCl−の存在
と深く係わるものであるのに対し、H2S−C02−C
l−環境下におけるものではCl−もさることながら、
むしろそれ以上にH2Sの影響が大きく、さらに上記し
た冷間加工がこのH2S−C02−Cl−環境下での腐
食に対する抵抗性を著しく劣化させるという重要な事実
が明らかになった。
(Problems to be solved by the invention) However, according to the experiments and research of the present inventors, H2
The main type of corrosion in the S-Co2-Cl- environment is so-called stress corrosion cracking (hereinafter abbreviated as "scc"), but the corrosion behavior of SCC in this case is completely different from that of general corrosion. There is. In other words, while general SCC is deeply related to the presence of Cl-, H2S-C02-C
In the l- environment, Cl- as well as
In fact, the important fact has become clear that the influence of H2S is even greater than that, and that the above-mentioned cold working significantly deteriorates the resistance to corrosion in this H2S-C02-Cl- environment.

(問題を解決するための手段) そこで本発明者らはオーステナイト系材料を冷間加工す
ることなく、しかも強度と耐食性にすぐれた廉価な材料
を開発すべく、一般の耐食性が腐食環境にさらされる表
面のみの性質に依存する点に着目し、種々実験、研究を
重ねた結果、オーステナイト系材料のクラッド化により
所期の目的が達せられるとの知見を得た。
(Means for Solving the Problem) Therefore, the present inventors aimed to develop an inexpensive material with excellent strength and corrosion resistance without cold working the austenitic material. Focusing on the fact that it depends only on the properties of the surface, and after conducting various experiments and research, we found that the desired purpose could be achieved by cladding with austenitic material.

このクラッド材は、オーステナイト系材料を合わせ材と
し、一方、゛所望の強度と靭性を有する炭素鋼や低合金
鋼といった鋼を母材として、両者を熱間で加工して圧着
することにより、成形されて製品となるものである。し
かしながら、すでに述べたように、成形後に溶体化処理
を施さなければ、オーステナイト系材料には所望の耐食
性が得られない。したがって、耐食性確保には成形され
たクラッド材に対して溶体化処理を施せばよいのである
が、一般にオーステナイト系材料を十分に溶体化するた
めには1ooo℃以上での処理が必要であり、こうした
高温度に加熱された場合、今度は母材である炭素鋼およ
び低合金鋼のオーステナイト粒が粗大化する結果、靭性
が極端に劣化するという問題があった。
This cladding material is formed by using an austenitic material as a composite material, and on the other hand, using a steel such as carbon steel or low-alloy steel that has the desired strength and toughness as a base material, and hot processing and crimping the two. It is then processed into a product. However, as already mentioned, austenitic materials do not have the desired corrosion resistance unless they are subjected to solution treatment after forming. Therefore, to ensure corrosion resistance, it is sufficient to perform solution treatment on the formed cladding material, but in general, treatment at temperatures of 100°C or higher is required to sufficiently solutionize austenitic materials. When heated to a high temperature, the austenite grains of the base metals of carbon steel and low alloy steel become coarser, resulting in a problem of extremely poor toughness.

一方、母材の靭性確保のために圧延のままあるいは圧延
後常温まで冷却したものを1000℃を下まわる低温域
に再加熱して焼入れたままで用いられることもあるが、
その場合にはオーステナイト系材料の耐食性の劣化は免
れない。
On the other hand, in order to ensure the toughness of the base metal, it is sometimes used as rolled or after being cooled to room temperature after rolling and then reheated to a low temperature range below 1000°C and quenched.
In that case, deterioration of the corrosion resistance of the austenitic material is inevitable.

本発明者らは上記の如き現状に対し、母材である鋼の性
能を損なうことなく、しかも合わせ材であるオーステナ
イト系材料の耐食性を確保することができるクランド材
の製造方法を提供することを目的としてさらに検討を行
った結果、以下に示される知見を得た。
In response to the above-mentioned current situation, the inventors of the present invention set out to provide a method for manufacturing a crund material that can ensure the corrosion resistance of the austenitic material that is the laminated material without impairing the performance of the steel that is the base material. As a result of further investigation, the following findings were obtained.

(alオーステナイト系材料は、高温で熱間加工した後
、800℃以上の温度から直接に急冷する処理を行なえ
ば、炭化物や析出物がオーステナイト基地中に固溶した
良好な組織が得られること。
(Al austenitic materials can be hot worked at high temperatures and then rapidly cooled directly from a temperature of 800°C or higher to obtain a good structure in which carbides and precipitates are dissolved in the austenite matrix.

(bl T iとNbの1種以上を含むオーステナイト
系材料を上記の急冷処理後さらに880〜960℃の温
度に再加熱後急冷処理すれば、オーステナイト中に固溶
し“ていたCはTiやNbの炭化物として析出し、所謂
安定化処理がなされるため耐食性が安定すること。
(bl) If an austenitic material containing one or more of Ti and Nb is further heated to a temperature of 880 to 960°C and then rapidly cooled, the C dissolved in solid solution in the austenite becomes Ti and Corrosion resistance is stable because it precipitates as Nb carbide and undergoes so-called stabilization treatment.

fc)上記[blの、880〜960℃の温度に再加熱
した後の急冷処理は、母材である鋼に対しては焼入れ処
理となり、しかもこの温度は所謂結晶粒粗大化開始温度
以下であるため細粒組織を呈し、この細粒鋼については
、特にC量が0.06重量%程度以下の低CJgでは、
焼入れままでも良好な強度と靭性が得られること。
fc) The quenching treatment after reheating to a temperature of 880 to 960°C in the above [bl] is a quenching treatment for the steel that is the base material, and this temperature is below the so-called crystal grain coarsening starting temperature. Therefore, this fine-grained steel exhibits a fine-grained structure, especially at low CJg where the C content is about 0.06% by weight or less.
Good strength and toughness can be obtained even after quenching.

(d)母材はC量が0.06重量%程度以上の鋼の場合
、880〜960℃の温度から急冷したままの状態、す
なわち焼入れのままでは靭性が劣化しているが、これを
そのAc1点以下の温度で焼戻し処理すれば、靭性が回
復すること。
(d) If the base material is steel with a C content of about 0.06% by weight or more, the toughness will deteriorate if it is left quenched from a temperature of 880 to 960°C, that is, if it is quenched. Toughness can be recovered by tempering at a temperature below Ac1 point.

iel C量が0.06重量%程度以下の低C鋼につい
ても、上記の焼戻し処理は有効であること。
The above tempering treatment is also effective for low C steel with an IEL C content of about 0.06% by weight or less.

(flさらに上記の、母材である鋼に対する焼戻し処理
を行っても、合わせ材であるオーステナイト系材料は安
定化処理がなされているため、その耐食性は劣化しない
こと。
(fl Furthermore, even if the above-mentioned tempering treatment is performed on the steel that is the base material, the austenitic material that is the bonding material has been stabilized, so its corrosion resistance will not deteriorate.

かくして、本発明者らは上記知見に基いて本発明を完成
したものであって、C:Q、3%以下の炭素鋼または低
合金鋼である母材と、Ni、 Cr、 Moを含みさら
にTiとNbの1種以上をも含むオーステナイト系材料
の合わせ材とから成る予備クラッド材を、1000℃以
上の温度に加熱して熱間加工を行い、熱間加工後そのま
まの状態で800℃以上の温度から急冷処理し、次いで
880〜960℃の温度に再加熱後急冷処理するか、あ
るいはその後さらに前記母材のAc4点以下の温度で焼
戻し処理を施して、母材の靭性や強度を損なうことなし
に、合わせ材部分の優れた耐食性を確保することをその
要旨とするものである。
Thus, the present inventors have completed the present invention based on the above findings, and the present invention includes a base material that is carbon steel or low alloy steel with C:Q of 3% or less, and further contains Ni, Cr, and Mo. A preliminary cladding material consisting of a composite material of austenitic materials containing at least one type of Ti and Nb is heated to a temperature of 1000°C or higher and hot worked, and after hot working it is heated to a temperature of 800°C or higher as it is. The toughness and strength of the base material are impaired by quenching from a temperature of The gist of this is to ensure excellent corrosion resistance of the laminated material portion.

ここで、合わせ材であるオーステナイト系材料はNi、
 Cr、 Moを含みさらにTiとNbの1種以上をも
含むものを用いる必要があるが、H2SC02−CI!
−環境下において優れた耐SCC性を得るためには、重
量%で、Niを30%以上、Crを20%以上、Moを
2.5%以上含んでいることが好ましい。一方、Tiと
NbはTiC,NbCとして固溶Cを安定化するために
添加するものであり、その添加量は少なくとも次式 %式%() を満足することが望ましいが、TiとNbの多量添加は
熱間加工性を劣化させるのでその上限はTiで3%、N
bで5%程度とするのがよい。Cの安定化に対してはT
iよりもNbの効果が大きい。
Here, the austenitic material that is the laminating material is Ni,
It is necessary to use a material containing Cr, Mo, and at least one of Ti and Nb, but H2SC02-CI!
- In order to obtain excellent SCC resistance in the environment, it is preferable to contain Ni at 30% or more, Cr at 20% or more, and Mo at 2.5% or more by weight. On the other hand, Ti and Nb are added to stabilize solid solution C as TiC and NbC, and it is desirable that the amount of addition satisfies at least the following formula % (%). Since addition deteriorates hot workability, the upper limit is 3% for Ti and 3% for N.
It is best to set b to about 5%. For the stabilization of C, T
The effect of Nb is greater than that of i.

また、C:O,a%以下の炭素鋼または低合金鋼は好ま
しくはC: 0.06%以下であるが、C: 0.06
%を超える場合、焼入れによる靭性劣化を阻止するには
Ac4点以下での焼戻しを行うのが好ましい。
Further, carbon steel or low alloy steel with C: O, a% or less preferably has C: 0.06% or less, but C: 0.06
%, in order to prevent deterioration of toughness due to quenching, it is preferable to perform tempering at an Ac point of 4 or less.

ここに、「低合金鋼」とは、広義には、5%以下の成分
元素と残部Feから成る焔である。
Here, in a broad sense, "low alloy steel" is a flame consisting of 5% or less of constituent elements and the remainder Fe.

なお、熱間加工に先立って組立てられる予備クランド材
は、適宜位置において溶接止め等の手段により母材と合
わせ材とを貼着して構成される。
Note that the preliminary clamp material assembled prior to hot working is constructed by pasting the base material and the mating material together at appropriate positions by means such as welding.

この予備クラッド材は次いで熱間加工により圧着され、
一体的に構成されたクラッド材となるのである。
This preliminary cladding material is then crimped by hot working,
This results in an integrally constructed cladding material.

゛ このクラッド材は鋼板であってもよいし、また鋼管
であってもよいことは勿論であり、さらに母材と合わせ
材の界面にニッケル層を有するものであってもよい。
゛Of course, this cladding material may be a steel plate or a steel pipe, and may also have a nickel layer at the interface between the base material and the composite material.

′″′″ゝ゛1j′″*O’fff(lJsFlc“=
la1mIu−El     。
′″′″ゝ゛1j′″*O'fff(lJsFlc"=
la1mIu-El.

常温まで大気中冷却したものを高温に再加熱して急冷す
るところの、再加熱溶体化処理のあとに行われていたが
、本発明によれば熱間加工に引き続いて溶体化処理を行
うことができ、したがって、この溶体化温度への加熱と
保持の熱エネルギーを簡約できるという副次的効果をも
生ずる。
Previously, it was performed after reheating and solution treatment, in which the material was cooled in the atmosphere to room temperature and then reheated to a high temperature and rapidly cooled, but according to the present invention, solution treatment can be performed subsequent to hot working. Therefore, the secondary effect is that the thermal energy for heating to and holding the solution temperature can be reduced.

(作用) さて、本発明において、クラッド材を熱間加工するため
の加熱下限温度を1000℃としたのは、この温度を下
まわる低温域での加熱では材料の変形抵抗が大きくなっ
て熱間加工が困難となるほか、合わせ材において、炭化
物や析出物等のオーステナイト基地中への固溶が不十分
となって熱間加工性が劣化し、加えて、本発明方法のよ
うに、熱間加工後に直接に急冷する方法では、上記加熱
温度が1000℃未満では所望のミクロ組織が得られず
、耐SCC性の劣化を招(こととなるからである。
(Function) In the present invention, the lower limit heating temperature for hot working the cladding material is set at 1000°C, because heating in a low temperature range below this temperature increases the deformation resistance of the material. In addition to making machining difficult, hot workability deteriorates due to insufficient solid solution of carbides and precipitates into the austenite matrix in the laminated material. In the method of directly quenching after processing, if the heating temperature is less than 1000° C., the desired microstructure cannot be obtained, leading to deterioration of SCC resistance.

しかし、この熱間加工に先立つ加熱の上限温度は特定さ
れるものではなく、材料加工時に熱間での脆性の生じな
い温度とすればよく、特に合わせ材について、グリ−プ
ル試験機を用いた高温引張り試験での絞り値が50%以
上となるような温度(例えば1200〜1250”C)
を選べば、母材に対しても問題はない。
However, the upper limit temperature for heating prior to hot working is not specified, and it is sufficient to set the temperature at which hot brittleness does not occur during material processing. Temperature at which the aperture value in a high temperature tensile test is 50% or more (e.g. 1200 to 1250"C)
If you choose , there will be no problem with the base material.

一方、熱間加工後の急冷開始の下限温度を800℃とし
たのは、急冷開始温度をこの温度より低い側に設定すれ
ば、その温度まで徐冷されることになり、そのように8
00℃未満にまで徐冷されると、合わせ祠であるオース
テナイト系材料に粒界炭化物の析出が生じ耐SCC性が
劣化する場合があるからである。
On the other hand, the reason why the lower limit temperature for starting rapid cooling after hot working is set to 800°C is that if the starting temperature for rapid cooling is set lower than this temperature, slow cooling will be carried out to that temperature.
This is because if the material is slowly cooled to less than 00° C., grain boundary carbides may precipitate in the austenitic material that is the mating grain, resulting in deterioration of SCC resistance.

また再加熱急冷処理に際して、加熱温度の上下限をそれ
ぞれ960℃、880℃としたのは、880℃未満の温
度では合わせ材であるオーステナイト系材料において、
Ti’PtJbによる固溶Cの固定即ち安定化処理が十
分行なわれず耐SCC性が劣化する場合があるからであ
り、一方、960°Cを超えた温度では母材である鋼が
粗粒化して、靭性が劣化する場合があるためである。
Furthermore, during the reheating and rapid cooling process, the upper and lower limits of the heating temperature were set to 960°C and 880°C, respectively, because at temperatures below 880°C, the austenitic material that is the laminated material
This is because the fixation or stabilization treatment of solid solution C by Ti'PtJb may not be performed sufficiently, resulting in deterioration of SCC resistance.On the other hand, at temperatures exceeding 960°C, the base material steel becomes coarse grained. This is because the toughness may deteriorate.

さらに炭素鋼もしくは低合金鋼である母材の靭性をより
良好なものとするためにAc1点以下の温度で焼戻しを
行ってもよいが、この際焼戻し温度がAc1点を超える
と強度、靭性のバラツキが大きくなるため焼戻しの上限
温度をAc工点とする。
Furthermore, in order to improve the toughness of the base metal, which is carbon steel or low alloy steel, it may be tempered at a temperature below Ac1 point, but if the tempering temperature exceeds Ac1 point, the strength and toughness will deteriorate. Since the variation becomes large, the upper limit temperature for tempering is set as the Ac work point.

なお、本発明において合わせ材として利用するオーステ
ナイト系・材料が成分元素としてさらにCuを含む場合
には一層良好な耐SCC性を有するが、Cuの多量添加
は熱間加工性を劣化させるのでその上限は3%程度にす
ることが好ましい。
In addition, if the austenitic material used as the laminating material in the present invention further contains Cu as a component element, it has better SCC resistance, but since adding a large amount of Cu deteriorates hot workability, its upper limit is preferably about 3%.

母材の鋼について炭素鋼または低合金鋼を選んだのはす
でに述べたようにクラッド材としての強度および靭性を
確保するためであり、またその炭素含有量を0.3%以
下としたのは良好な靭性を得るためである。
As mentioned above, we chose carbon steel or low-alloy steel for the base material in order to ensure strength and toughness as a cladding material, and we also made the carbon content 0.3% or less. This is to obtain good toughness.

以下、本発明を実施例によってさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

爽施皿 第1表に示す成分組成を有する厚さ70mmの低合金鋼
および炭素鋼の母材と、第2表に示す成分組成を有する
厚さ6.5mmのオーステナイト系材料の合わせ材との
接合面を清浄化してから画材を貼合わせ、スポット溶接
して予備クラッド材とし、これを第3表に示す条件で熱
間圧延し、厚さ12mmのクラッド材とし、同じく同表
に示す条件で熱処理を行い、クラッド材を型造した。
A base material of low alloy steel and carbon steel with a thickness of 70 mm having the composition shown in Table 1, and a composite material of austenitic material with a thickness of 6.5 mm having the composition shown in Table 2. After cleaning the joint surfaces, the art materials were bonded together and spot welded to obtain a preliminary cladding material, which was then hot rolled under the conditions shown in Table 3 to form a cladding material with a thickness of 12 mm, also under the conditions shown in the same table. Heat treatment was performed and the cladding material was molded.

このようにして得られたクラッド材の強度と母材部の靭
性も第3表に併せて示した。
The strength of the clad material thus obtained and the toughness of the base material are also shown in Table 3.

第3表に示す結果から、本発明にかかる処理によって母
材部靭性の良好なりラッド材が得られることが明らかで
ある。
From the results shown in Table 3, it is clear that the treatment according to the present invention provides a rad material with good base material toughness.

次に、第2表に示した合わせ行番号B−1〜B−3の合
金について、第4表に示した条件で板を作製し、得られ
た板材から圧延方向と直角に2mm厚さ、10mm幅、
751長さの試験片を採取してSCC試験を実施した。
Next, for the alloys with mating row numbers B-1 to B-3 shown in Table 2, plates were produced under the conditions shown in Table 4, and from the obtained plate material, a thickness of 2 mm was formed perpendicular to the rolling direction. 10mm width,
A 751-length specimen was taken and subjected to the SCC test.

ここでSCC試験は添付図面に模式的に示す3点支持ビ
ーム治具lOを用いて、各支点1、12.13を介して
上記の試験片(S)に0.2%耐力に相当する引張応力
を付加し、5気圧H2S、15気圧CO2を含む10%
NaC1溶液(温度200℃)中に20日間浸漬して行
い、耐SCC性は、試験後に試験片表面での割れ発生の
有無を観察する方法によって評価した。同じく第4表に
板材の製造条件とともに、0.2%耐力、SCC試験結
果をまとめて示す。
Here, the SCC test was conducted using a three-point support beam jig 1O schematically shown in the attached drawing, and applied a tensile force equivalent to 0.2% proof stress to the above test piece (S) via each fulcrum 1 and 12.13. 10% with added stress, 5 atm H2S, 15 atm CO2
The test piece was immersed in a NaCl solution (temperature 200°C) for 20 days, and the SCC resistance was evaluated by observing the presence or absence of cracks on the test piece surface after the test. Similarly, Table 4 summarizes the manufacturing conditions of the plate materials, as well as the 0.2% yield strength and SCC test results.

第4表に示す結果によれば本発明にかかる処理を行って
も、合わせ材であるオーステナイト系材料の耐食性は良
好であることが明らかである。そして、第3表と第4表
とに示す結果から本発明にかかる処理によるクラッド材
は強度、靭性さらには耐食性がすくれ、且つ低度である
ことが容易に分かる。
According to the results shown in Table 4, it is clear that even if the treatment according to the present invention is performed, the corrosion resistance of the austenitic material used as the laminated material is good. From the results shown in Tables 3 and 4, it can be easily seen that the cladding materials treated according to the present invention have poor strength, toughness, and corrosion resistance.

(効果) 以上説明した如く、本発明の効果は非常に大きく、その
工業的価値は高いものである。
(Effects) As explained above, the effects of the present invention are very large, and its industrial value is high.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は板状試験片用SCC試験3点支持ビーム治具
を示す略式説明図である。 S:試験片 10;3点支持ビーム治具 11:支点 12:〃 13:〃 出願人  住友金属工業株式会社 代理人  弁理士 広 瀬 童 −(化1名)S:1に
球音 1o:  a7!、更下今ヒーム泥臭 11:  支セ、 12:  ヶ 13:。
The attached drawing is a schematic explanatory diagram showing a three-point support beam jig for SCC test for plate-shaped test pieces. S: Test piece 10; 3-point support beam jig 11: Fulcrum 12:〃 13:〃 Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Do Hirose - (1 person) S: 1 ball sound 1o: a7 ! , Sarashita now heem mud smell 11: support, 12: ga 13:.

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.3%以下の炭素鋼または低合金鋼の母材
と、Ni、Cr、Moを含みさらにTiとNbの1種以
上をも含むオーステナイト系材料の合わせ材とから成る
クラッド材の製造方法において、前記母材と合わせ材と
を合わせて成る予備クラッド材を1000℃以上の温度
に加熱して熱間加工を行ってクラッド化し、熱間加工後
そのままの状態で800℃以上の温度から急冷処理し、
次いで880〜960℃の温度に再加熱後急冷処理する
ことを特徴とするクラッド材の製造方法。
(1) Cladding consisting of a base material of carbon steel or low alloy steel with C: 0.3% or less and a composite material of an austenitic material containing Ni, Cr, Mo and also one or more of Ti and Nb. In the method for manufacturing the material, a pre-clad material made by combining the base material and the composite material is heated to a temperature of 1000°C or higher, hot worked to form a cladding, and after hot working, the material is heated to a temperature of 800°C or higher in that state. Rapidly cooled from a temperature of
A method for producing a cladding material, which is then reheated to a temperature of 880 to 960°C and then rapidly cooled.
(2)C:0.3%以下の炭素鋼または低合金鋼の母材
と、Ni、Cr、Moを含みさらにTiとNbの1種以
上をも含むオーステナイト系材料の合わせ材とから成る
クラッド材の製造方法において、前記母材と合わせ材と
を合わせて成る予備クラッド材を1000℃以上の温度
に加熱して熱間加工を行ってクラッド化し、熱間加工後
そのままの状態で800℃以上の温度から急冷処理し、
次いで880〜960℃の温度に再加熱後急冷処理して
から、さらに前記母材のAc_1点以下の温度で焼戻し
処理することを特徴とするクラッド材の製造方法。
(2) A cladding made of a base material of carbon steel or low alloy steel with C: 0.3% or less and a composite material of an austenitic material containing Ni, Cr, Mo, and also one or more of Ti and Nb. In the method for manufacturing the material, a pre-clad material made by combining the base material and the composite material is heated to a temperature of 1000°C or higher, hot worked to form a cladding, and after hot working, the material is heated to a temperature of 800°C or higher in that state. Rapidly cooled from a temperature of
A method for producing a cladding material, characterized in that the material is then reheated to a temperature of 880 to 960°C, rapidly cooled, and further tempered at a temperature below the Ac_1 point of the base material.
JP26596984A 1984-12-17 1984-12-17 Production of clad material Pending JPS61144283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26596984A JPS61144283A (en) 1984-12-17 1984-12-17 Production of clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26596984A JPS61144283A (en) 1984-12-17 1984-12-17 Production of clad material

Publications (1)

Publication Number Publication Date
JPS61144283A true JPS61144283A (en) 1986-07-01

Family

ID=17424557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26596984A Pending JPS61144283A (en) 1984-12-17 1984-12-17 Production of clad material

Country Status (1)

Country Link
JP (1) JPS61144283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245991A (en) * 2012-04-25 2014-12-24 杰富意钢铁株式会社 Cladding material for stainless-steel-clad steel plate and stainless-steel-clad steel plate obtained using same, and process for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245991A (en) * 2012-04-25 2014-12-24 杰富意钢铁株式会社 Cladding material for stainless-steel-clad steel plate and stainless-steel-clad steel plate obtained using same, and process for producing same
EP2843076A4 (en) * 2012-04-25 2015-03-04 Jfe Steel Corp Cladding material for stainless-steel-clad steel plate and stainless-steel-clad steel plate obtained using same, and process for producing same
EP2843076A1 (en) * 2012-04-25 2015-03-04 JFE Steel Corporation Cladding material for stainless-steel-clad steel plate and stainless-steel-clad steel plate obtained using same, and process for producing same
US10207477B2 (en) 2012-04-25 2019-02-19 Jfe Steel Corporation Stainless steel clad steel plate including cladding material for stainless steel clad steel plate and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP0488222B1 (en) Method of producing clad steel plate having good low-temperature toughness
JP3996824B2 (en) Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance
EP0666332A1 (en) High tensile strength steel having superior fatigue strength and weldability at welds and method for manufacturing the same
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
CN105671424A (en) Nickel base alloy clad steel plates for pipeline and manufacturing method thereof
JPS58151425A (en) Manufacture of high corrosion-resistant clad steel pipe superior in low-temperature toughness
US4736884A (en) Method for manufacturing high-strength clad steel plate excellent in corrosion resistance
US3556776A (en) Stainless steel
JP6555435B2 (en) Clad steel sheet and manufacturing method thereof
JP6705569B1 (en) Clad steel plate and method of manufacturing the same
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
US20110036469A1 (en) Steel plate that exhibits excellent low-temperature toughness in base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof
JPH0636993B2 (en) Method for producing stainless clad steel sheet with excellent corrosion resistance and toughness
JP6750572B2 (en) Clad steel plate having high strength and excellent low temperature toughness as base material and method for producing the same
JP6648736B2 (en) Cladded steel sheet excellent in base material low-temperature toughness and HAZ toughness and method for producing the same
JP2013142197A (en) Ni-ADDED STEEL PLATE HAVING EXCELLENT TOUGHNESS SUCH THAT CHARPY TEST VALUES OF BOTH OF BASE MATERIAL AND WELDING JOINT AT -196°C ARE EACH 100 J OR MORE AND EXCELLENT PRODUCTIVITY, AND METHOD FOR MANUFACTURING THE SAME
JPH07292445A (en) Duplex stainless clad steel, its production and welding method therefor
JP2001335884A (en) High strength thick steel plate excellent in ctod(crack tip opening displacement) characteristic, and its manufacturing method
JPS61144284A (en) Production of clad material
JP3374688B2 (en) Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness
JP4710423B2 (en) Method for producing high-tensile steel plate with excellent SSC resistance
JPS61144283A (en) Production of clad material
JPH0716792B2 (en) Clad steel plate manufacturing method
JP3336877B2 (en) Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability
JPS61104054A (en) High-strength and high-toughness welded clad steel pipe for line pipe