JPS61143941A - Manufacture of nickel positive electrode for battery - Google Patents

Manufacture of nickel positive electrode for battery

Info

Publication number
JPS61143941A
JPS61143941A JP59266610A JP26661084A JPS61143941A JP S61143941 A JPS61143941 A JP S61143941A JP 59266610 A JP59266610 A JP 59266610A JP 26661084 A JP26661084 A JP 26661084A JP S61143941 A JPS61143941 A JP S61143941A
Authority
JP
Japan
Prior art keywords
paste
nickel
electrode
battery
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59266610A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Akiyoshi Shintani
新谷 明美
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59266610A priority Critical patent/JPS61143941A/en
Publication of JPS61143941A publication Critical patent/JPS61143941A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase life and reliability by applying paste whose binder concentration is larger than that of base paste on both sides of an electrode, drying it, and pressing it with a flat plate to form the surface layer whose porosity is larger than that of filled material. CONSTITUTION:500g of 0.5wt% polyvinyl alcohol aqueous solution is added to a mixture of nickel hydroxide, nickel powder and cobalt powder, and they are kneaded to obtain paste. The paste is filled in a spongy nickel porous body having a porosity of 95% and a mean pore diameter of 200mum and dried, then compressed so as to form an irregular surface. 50g of 3wt% polyvinyl alcohol aqueous solution is added to 100g of the mixture having the same mixing ratio as the above mixture to prepare paste. The paste is sprayed on the surface of the substrate and dried, then they are compressed with a flat plate. Thereby, since the surface of the substrate is porous and the large amount of hydrophilic binder exists thereon, electrolyte retention ability on the surface of the substrate is increased. The movement of electrolyte inside the electrode is suppressed and decrease in discharge capacity is retarded. By smoothing the surface of the electrode, short-circuit is decreased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、カドミウム極、亜鉛極、水素極などのアルカ
リ電池用負極と組みあわせ構成するアルカリ蓄電池のニ
ッケル正極の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a nickel positive electrode for an alkaline storage battery, which is constructed in combination with a negative electrode for an alkaline battery such as a cadmium electrode, a zinc electrode, or a hydrogen electrode.

従来の技術 従来、焼結式ニッケル極に対して、高容量で製造工程の
簡略化を目的に、高多孔度の発泡状ニアケル多孔体に活
物質である水酸化ニッケルを直接光てんする方法が提案
されてきた。この方法は発泡状ニッケル多孔体に活物質
を充てんしたあとで、加圧プレスを行ない電極強度の向
上と活物質の充てん密度を高めている。加圧プレス法と
しては、量産性を考慮して平板プレスよりローラプレス
を採用してきたが、支持体である発泡状二ソケルの強度
が弱いため加圧時に変形、湾曲が発生した。
Conventional technology Conventionally, for the purpose of achieving high capacity and simplifying the manufacturing process for sintered nickel electrodes, there was a method in which nickel hydroxide, an active material, was directly injected into a highly porous foamed nickel porous material. It has been proposed. In this method, a foamed nickel porous body is filled with an active material and then pressurized to improve electrode strength and increase the packing density of the active material. As for the pressure pressing method, a roller press has been used rather than a flat plate press in consideration of mass production, but due to the weak strength of the foamed Nisokel support, deformation and curvature occurred during pressurization.

この問題を解決するためにローラ表面に凹凸を設けたロ
ーラプレスで加圧する方法が提案された。
In order to solve this problem, a method has been proposed in which pressure is applied using a roller press with an uneven surface.

発明が解決しようとする問題点 上記のように凹凸を設けたローラで加圧プレスすること
により、変形、湾曲することなく、活物質が高密度に充
てんされたニッケル極が得られる。
Problems to be Solved by the Invention As described above, by pressurizing the electrode with a roller having projections and depressions, a nickel electrode filled with active material at a high density can be obtained without being deformed or curved.

このニッケル極を用いて密閉形ニッケルーカドミウム蓄
電池を構成し、実際に作動させると、汎用の電池に比べ
、放電電気量は1.3〜1.4倍となるが、充放電サイ
クルを繰りかえすことにより、放電容量の低下が大きく
なることがわかった。この原因を追求するために容量低
下した電池を分解した結果、ニアケル正極の厚さが初期
の1.4倍にもなっていた。これは発泡状ニッケル多孔
体のように比較的強度の弱い支持体に高密度に活物質を
充てんした極板において、充放電の繰シかえし、すなわ
ち、活物質の酸化・還元により体積変化を繰りかえすこ
とにより極板自身がふくれたことによる。このように極
板のふくれが生じた電極は初期より活物質層てん密度が
低下しているので、電解液の吸収性が上昇し、従っても
っとも電解液が必要なセパレータ内部の電解液が枯渇す
る。これが容量の低下を招いた原因と考えられる。さら
に、別な問題点として、極板表面に凹凸が設けられてい
る結果、電池の短絡の原因になることが多かった。
When a sealed nickel-cadmium storage battery is constructed using these nickel electrodes and actually operated, the amount of electricity discharged is 1.3 to 1.4 times that of a general-purpose battery, but the charge/discharge cycle is repeated. It was found that the decrease in discharge capacity becomes large. In order to investigate the cause of this problem, they disassembled the battery whose capacity had decreased, and found that the thickness of the Niackel positive electrode was 1.4 times that of the initial thickness. This is due to the fact that in electrode plates, such as porous nickel foam, in which a relatively weak support is filled with active material at a high density, the volume changes repeatedly due to repeated charging and discharging, that is, due to oxidation and reduction of the active material. This is due to the fact that the electrode plate itself has swelled. Since the active material layer density of electrodes with bulging in this way has decreased from the initial stage, the absorption of electrolyte increases, and therefore the electrolyte inside the separator, where electrolyte is most needed, is depleted. . This is considered to be the cause of the decrease in capacity. Furthermore, another problem is that the irregularities provided on the surface of the electrode plate often cause short circuits in the battery.

本発明は、活物質を高密度に充てんしたニッケル極の以
上のような不都合をなくし、高容量であることはもちろ
ん、長寿命で信頼性の高いニッケル極を提供するもので
ある。
The present invention eliminates the above-mentioned disadvantages of nickel electrodes that are densely filled with active materials, and provides a nickel electrode that not only has a high capacity but also has a long life and high reliability.

問題点を解決するための手段 本発明は、ニッケル極表面、すなわちニッケル極とセパ
レータの界面に電解液を長期間保持させるようにするも
ので、従来どおり発泡状ニッケル多孔体に水酸化ニッケ
ルを主体とする活物質を結着剤水溶液よりペースト状に
して充てん、乾燥後、凹凸ローラで加圧プレスし、その
後、前記ペーストに比べ結着剤濃度の大きいペーストを
電極の両面に塗着し、乾燥後、平板プレスを行う。この
時の塗着物は最低でも、極板表面の凹凸が認められなく
なる程度の量で、発泡メタル内部に充てんした充てん物
より多孔度は大きくする。このようにして得られたニッ
ケル極の断面図を第1図に示す。
Means for Solving the Problems The present invention allows electrolyte to be retained on the surface of the nickel electrode, that is, on the interface between the nickel electrode and the separator, for a long period of time. Fill the active material in the form of a paste from an aqueous binder solution, dry it, press it with an uneven roller, then apply a paste with a higher binder concentration than the above paste to both sides of the electrode and dry it. Afterwards, perform flat plate pressing. At this time, the amount of the coating should be at least such that unevenness on the surface of the electrode plate is not recognized, and the porosity should be larger than that of the filling material filled inside the foam metal. A cross-sectional view of the nickel electrode thus obtained is shown in FIG.

1は多孔体内へ充てんされた活物質層、2はその表面に
塗着された活物質層である。
1 is an active material layer filled into the porous body, and 2 is an active material layer coated on the surface thereof.

作  用 前述した極板構成において、極板表面は内部に比べ、高
多孔度で親水性の大きな結着剤が多量に存在する。した
がって、極板表面の電解液保持力は大きくなる。この結
果、電極内部への電解液の移動が抑制され、放電容量の
低下が少なくなる。
Function: In the above-mentioned electrode plate configuration, the surface of the electrode plate has a higher porosity and a larger amount of hydrophilic binder than the inside. Therefore, the electrolyte retention force on the surface of the electrode plate increases. As a result, movement of the electrolytic solution into the electrode is suppressed, and a decrease in discharge capacity is reduced.

また、極板表面は平滑化されることにより、短絡現象が
少なくなる。
Furthermore, since the surface of the electrode plate is smoothed, short-circuit phenomena are reduced.

実施例 水酸化ニッケル粉末8807.ニッケル粉末80ノ、及
びコバルト粉末40yの混合物にポリビニルアルコール
の0.5重量%水溶液6ooyを混練して得られたペー
ストを十分攪拌し、多孔度95チ、平均孔径200μm
1厚さ1.4m、大きさ300 X 200 rmの発
泡状ニッケル多孔体に充てんした。その後、110℃で
30分間乾燥し、ついで、−辺が0.3 mm 、高さ
が0.1+l1m1の立方形の凸部を0.8閣間隔で有
する面を持つ径300Bのローラ2個の間を間隔を調整
しながら3回通過させ厚さ0.68mになるまで加圧圧
縮した。
Example nickel hydroxide powder 8807. A paste obtained by kneading 60 y of a 0.5 wt% aqueous solution of polyvinyl alcohol into a mixture of 80 y of nickel powder and 40 y of cobalt powder was sufficiently stirred to form a paste with a porosity of 95 cm and an average pore diameter of 200 μm.
1 A foamed nickel porous body with a thickness of 1.4 m and a size of 300 x 200 rm was filled. After that, it was dried at 110°C for 30 minutes, and then two rollers with a diameter of 300B each having a surface having cubic convex parts with a negative side of 0.3 mm and a height of 0.1 + l1 m1 at intervals of 0.8 cm were used. The material was passed through the film three times while adjusting the interval, and compressed under pressure to a thickness of 0.68 m.

つぎに、水酸化ニッケル、ニッケル粉末、コバルト粉末
の前記と同じ配合比の混合粉末1ooyに対して、ポリ
ビニルアルコールの3重量%水溶液50ノを加えてペー
スト状にし、前記の凹凸加工した極板表面にスプレーで
塗着し、乾燥後、平板プレスで300 Kg / cM
の圧力で加圧圧縮した。
Next, to 1 ooy of mixed powder of nickel hydroxide, nickel powder, and cobalt powder in the same blending ratio as above, 50 ml of a 3% by weight aqueous solution of polyvinyl alcohol was added to form a paste, and the unevenly processed electrode plate surface was Spray it on and after drying, press it to 300 Kg/cM with a flat plate press.
It was compressed at a pressure of .

この時の塗着層の平均多孔度は46チ前後で、ニッケル
多孔体内へ充てんし凹凸加工した状態での平均多孔度3
6%より大きくなっていた。
The average porosity of the coating layer at this time was around 46 inches, and the average porosity of the nickel porous body filled with roughness was 3.
It was higher than 6%.

この塗着層を設けない電極をa1各種の割合で塗着層を
設けた電極をb−d、塗着層の代わりにポリビニールア
ルコールの3重量%水溶液だけで被膜を形成した電極を
eとする。これらの極板を単2形相当の幅38扁、長さ
216IIIImに裁断した。
Electrodes without this coating layer are called a1, electrodes with coating layers in various proportions are called b-d, and electrodes with a coating formed only with a 3% by weight aqueous solution of polyvinyl alcohol instead of the coating layer are called e. do. These electrode plates were cut to a width of 38 m and a length of 216 m, equivalent to a size AA size.

この時の電極の製造条件、理論電気量、表面層の塗着量
、厚さなどを第1表に示す。
Table 1 shows the electrode manufacturing conditions, theoretical amount of electricity, amount of surface layer coating, thickness, etc. at this time.

次に、これらの電極a−eと、公知のペースト式カドミ
ウム負極、ポリアミドの不織布からなるセパレータ、水
酸化カリ°ウムの30重量%水溶液に水酸化リチウムを
飽和させた電解液を1セル当り7.5cc用いて、公称
容量2.8Ahの単2サイズの密閉形蓄電池A−Eを構
成した。各電池蝕。
Next, these electrodes a to e, a known paste-type cadmium negative electrode, a separator made of a polyamide nonwoven fabric, and an electrolyte solution containing lithium hydroxide saturated in a 30% by weight aqueous solution of potassium hydroxide were added to each cell. .5cc was used to construct AA size sealed storage batteries A-E with a nominal capacity of 2.8Ah. Each battery erodes.

℃で、充電は0.I CmAの電流で16時間、放電は
0.20mA の電流で終止電圧0.9vまで行なう充
放電を1サイクルとして、充放電を繰りかえした。
℃, the charge is 0. Charging and discharging were repeated, with each cycle consisting of charging and discharging at a current of I CmA for 16 hours and discharging at a current of 0.20 mA to a final voltage of 0.9 V.

このサイクル数と放電容量の変化を第2図に示す0まだ
、11〜13サイクル目の放電電流をそれぞれ0.5 
、1 、2 CmA  で放電を行ないその時の放電容
量、容量比率(0,2CmA  の放電電流での放電容
量を100%とした時の比率)を第2表に示す。
Figure 2 shows the changes in the number of cycles and discharge capacity.
, 1, 2 CmA, and the discharge capacity and capacity ratio (ratio when the discharge capacity at a discharge current of 0, 2 CmA is taken as 100%) are shown in Table 2.

第2図に示すように表面に塗着層を設けなかった正極a
を用いた電池Aは、160サイクル程から容量低下が認
められ、20oサイクル程度で初期の容量の約60%に
低下した。表面の塗着量を変化させた正極1)、c、d
を用いた電池B、C,Dは、大差は認められなかったが
、放電容量の変化はC,B、Dの順に大きくなった。し
たがって、Cの電池が最適であると考えられる。また、
Eの電池においても放電容量の変化は比較的少なかった
が、第2表に示すように大電流放電時での電圧および容
量の低下が大きかった。これは表面層が内部抵抗の増大
、イオンの拡散速度の減少などの原因になっているもの
と考えられる。
As shown in Figure 2, positive electrode a without a coating layer on the surface
In battery A using the above, a decrease in capacity was observed after about 160 cycles, and the capacity decreased to about 60% of the initial capacity after about 20 cycles. Positive electrodes with varying amounts of coating on the surface 1), c, d
No significant difference was observed between batteries B, C, and D using the same battery, but the change in discharge capacity increased in the order of C, B, and D. Therefore, battery C is considered to be optimal. Also,
Battery E also showed relatively little change in discharge capacity, but as shown in Table 2, the voltage and capacity decreased significantly during large current discharge. This is considered to be because the surface layer increases the internal resistance and decreases the diffusion rate of ions.

以下余白 発明の効果 以上のように本発明は、比較的強度の弱い発泡状ニッケ
ル多孔体に高密度に活物質を充てんしたニッケル極を長
期間安定に作動させる電極の製造法を提供するもので、
高容量電池を構成する上で有用である。
Effects of the Invention As described above, the present invention provides a method for producing an electrode that can stably operate a nickel electrode for a long period of time, in which a foamed nickel porous material with relatively low strength is filled with an active material at a high density. ,
It is useful in constructing high capacity batteries.

また、実施例の中では密閉電池について示したが、通″
常の開放形電池においても同様な効果が得られる。さら
に、ニッケルーカドミウム蓄電池だけでなく、ニッケル
正極を用いる電池系、たとえばニッケルー水X、ニッケ
ルー鉄、ニッケルー亜鉛電池系にも応用できる。
In addition, although a sealed battery was shown in the examples,
Similar effects can be obtained with ordinary open batteries. Furthermore, it can be applied not only to nickel-cadmium storage batteries but also to battery systems using nickel positive electrodes, such as nickel-water X, nickel-iron, and nickel-zinc battery systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるニッケル正極の構成例を示す要部
の縦断面図、第2図は各種ニッケル極を用いた電池の充
放電サイクルによる放電容量の変化を比較した図である
FIG. 1 is a vertical cross-sectional view of a main part showing a configuration example of a nickel positive electrode according to the present invention, and FIG. 2 is a diagram comparing changes in discharge capacity due to charge/discharge cycles of batteries using various nickel electrodes.

Claims (1)

【特許請求の範囲】[Claims] 水酸化ニッケル粉末を主体とする活物質を結着剤水溶液
でペースト状として発泡状ニッケル多孔体へ充てんし、
表面に凹凸を設けたローラで十分加圧し、乾燥した後、
前記ペーストに比べ結着剤濃度の大きい活物質のペース
トを両面に塗着後、平板プレスにより加圧して先の充填
層より多孔度の大い表面層を形成することを特徴とする
電池用ニッケル正極の製造法。
An active material mainly composed of nickel hydroxide powder is made into a paste form with an aqueous binder solution and filled into a foamed nickel porous body.
After applying sufficient pressure with a roller with an uneven surface and drying,
A nickel for battery, characterized in that a paste of an active material having a higher binder concentration than the above paste is applied to both sides, and then pressure is applied with a flat plate press to form a surface layer with greater porosity than the previous filled layer. Manufacturing method of positive electrode.
JP59266610A 1984-12-18 1984-12-18 Manufacture of nickel positive electrode for battery Pending JPS61143941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59266610A JPS61143941A (en) 1984-12-18 1984-12-18 Manufacture of nickel positive electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59266610A JPS61143941A (en) 1984-12-18 1984-12-18 Manufacture of nickel positive electrode for battery

Publications (1)

Publication Number Publication Date
JPS61143941A true JPS61143941A (en) 1986-07-01

Family

ID=17433206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59266610A Pending JPS61143941A (en) 1984-12-18 1984-12-18 Manufacture of nickel positive electrode for battery

Country Status (1)

Country Link
JP (1) JPS61143941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184397A (en) * 2000-12-12 2002-06-28 Matsushita Electric Ind Co Ltd Positive electrode plate for alkaline battery, and manufacturing method of the same, and alkaline battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184397A (en) * 2000-12-12 2002-06-28 Matsushita Electric Ind Co Ltd Positive electrode plate for alkaline battery, and manufacturing method of the same, and alkaline battery using the same

Similar Documents

Publication Publication Date Title
EP1215741B1 (en) Method for manufacturing a positive electrode plate
JPH0578141B2 (en)
JPH03743B2 (en)
JPS61143941A (en) Manufacture of nickel positive electrode for battery
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JPH11144715A (en) Manufacture of electrode for secondary battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
KR100276634B1 (en) Alkali battery metal hydride electrode and its manufacturing method
JPH0429189B2 (en)
JP3182225B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JP4411388B2 (en) Manufacturing method of negative electrode for secondary battery
JPS6254235B2 (en)
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH0412455A (en) Electrode for alkaline storage battery
JP3145392B2 (en) Paste nickel positive electrode
JPS59196565A (en) Manufacture of nonsintered electrode
JPH0456066A (en) Electrode for sealed type nickel cadmium accumulator
JPS60138851A (en) Manufacture of anode plate of alkaline storage battery
JPH01239764A (en) Paste type positive plate for alkaline storage battery and manufacture thereof
JPS6269465A (en) Cathode plate for nickel-cadmium alkaline storage battery
JP2004179119A (en) Manufacturing method of positive electrode plate for alkaline storage battery
JPH07335210A (en) Electrode for alkaline battery
JPS60211770A (en) Positive electrode plate for alkaline battery
JPH076760A (en) Sintered cathode plate for alkaline storage battery and manufacture thereof
JPH0619990B2 (en) Nickel electrode manufacturing method for alkaline batteries