JPS61143587A - Prevention of marine life sticking to sea water piping - Google Patents

Prevention of marine life sticking to sea water piping

Info

Publication number
JPS61143587A
JPS61143587A JP59265262A JP26526284A JPS61143587A JP S61143587 A JPS61143587 A JP S61143587A JP 59265262 A JP59265262 A JP 59265262A JP 26526284 A JP26526284 A JP 26526284A JP S61143587 A JPS61143587 A JP S61143587A
Authority
JP
Japan
Prior art keywords
sea water
seawater
electrode body
electrodes
water piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59265262A
Other languages
Japanese (ja)
Inventor
Kunihiko Yokota
邦彦 横田
Ataru Wakabayashi
若林 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP59265262A priority Critical patent/JPS61143587A/en
Publication of JPS61143587A publication Critical patent/JPS61143587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prevent effectively sticking of the marine life to sea water piping by fixing one end of an electrode body to the inside wall of the sea water piping near an intake part and electrolyzing the sea water to form sodium hypochlorite. CONSTITUTION:One end of the electrode body 1 consisting of a pair of water permeable belt-like electrodes embedded into a water permeable spacer in an intake installation for the sea water is bolted between flanges 5 and 5' of the sea water piping 4 via insulating gaskets 2, 3. The body 1 is further spirally disposed along the inside wall of the sea water piping 4 and is properly adhered and fixed to the inside walls at optional points. Electricity is conducted to a pair of the electrodes of the body 1 to form the sodium hypochlorite by the electrolysis of the sea water in the sea water piping 4. The quantity of the electricity to be impressed to the electrodes is controlled in this stage to maintain the concn. of the sodium hypochloride near the inside wall 4 within the range necessary for preventing the sticking of marine life.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は海水配管中で海水の直接電解により次亜塩素酸
すI−IJウムを発生させて海水配管への海棲生物の付
着を防止する方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention prevents the adhesion of marine organisms to seawater piping by generating hypochlorite (I-IJ) by direct electrolysis of seawater in seawater piping. Regarding the method.

〔従来技術〕[Prior art]

従来、火力、原子力発電所や製鉄所、化学工場等の冷却
水や、LNG気化用熱媒として多量の海水が使用されて
おり、年々使用量が増大しつつある。
Conventionally, a large amount of seawater has been used as cooling water in thermal power plants, nuclear power plants, steel plants, chemical factories, etc., and as a heat medium for LNG vaporization, and the amount used is increasing year by year.

しかじから、海水を冷却水等に使用すると、良く知られ
ているように、貝類等の海棲生物が海水配管や熱交換器
等に付着して、熱効率の低下、圧力損失の増加等エネル
ギー消費の増大を招くのみならず、所謂デポジットアタ
ック、渦流発生による潰食、腐食による硫化物イオン(
S:)の発生に起因する各種腐食によるトラブルが発生
する。
However, when seawater is used as cooling water, it is well known that marine organisms such as shellfish can adhere to seawater piping and heat exchangers, resulting in decreased thermal efficiency, increased pressure loss, etc. Not only does this increase consumption, but it also causes so-called deposit attack, erosion caused by vortex generation, and sulfide ions (
Various types of corrosion problems occur due to the occurrence of S:).

そこで海棲生物の付着を防止するために、(])塩素ガ
スを海水に吹き込む方法、(2)次亜塩素酸ナトリウム
を海水に注入する方法、および(3)海水電解法が従来
から採用されていた。
Therefore, in order to prevent the adhesion of marine organisms, (]) a method of blowing chlorine gas into seawater, (2) a method of injecting sodium hypochlorite into seawater, and (3) a seawater electrolysis method have been adopted. was.

(1)の方法は、最も古くから使用された方法であり、
塩素ガスが水と反応して生成する次亜塩素酸が海棲生物
の特に稚魚の除去に有効とされている。
Method (1) is the oldest method used,
Hypochlorous acid, which is produced when chlorine gas reacts with water, is said to be effective in removing marine organisms, especially young fish.

しかしながら、塩素ガスは高圧ガスとしての規制を受け
る他、毒性が強いので貯蔵、運搬、注入操作のいずれの
段階でも常に漏洩に対して注意せねばならず、かつ塩素
ガスと水との反応によって副生ずる塩酸が海水を酸性に
する等の欠点があるので、現在ではほとんど採用されて
いない。
However, in addition to being regulated as a high-pressure gas, chlorine gas is highly toxic, so care must be taken to prevent leaks at all stages of storage, transportation, and injection operations. Currently, it is rarely used because the hydrochloric acid produced makes seawater acidic.

(1)の方法に代って出現したのが(2)の方法である
が、次亜塩素酸ナトリウムは通常10〜15%の水溶液
として取引されるために、有効塩素当りの輸送コストが
高く、更に自己分解を起すために長期貯蔵に通さないと
云う問題点があった。
Method (2) appeared in place of method (1), but since sodium hypochlorite is usually traded as a 10-15% aqueous solution, the transportation cost per unit of available chlorine is high. Furthermore, there was a problem in that it could not be stored for a long time because it self-decomposed.

そこで(2)の方法の改良法として開発されたのが(3
)の方法である。
Therefore, the method (3) was developed as an improvement to method (2).
) method.

この方法は、使用海水の一部を分流し、これを電解して
、陽極で生成した塩素ガスと陰極で生成した苛性ソーダ
とを反応させて次亜塩素酸ナトリウムを含有する海水を
形成させ、この海水を海水配管に注入して次亜塩素酸ナ
トリウム濃度を約1 ppmとする方法である。
In this method, a portion of the seawater used is diverted, electrolyzed, and chlorine gas generated at the anode reacts with caustic soda generated at the cathode to form seawater containing sodium hypochlorite. This method involves injecting seawater into seawater piping to bring the concentration of sodium hypochlorite to approximately 1 ppm.

この海水電解法は、(11および(2)の方法に比較し
て、安全性、経済性の点で優れており、現在世界的に広
く採用されている。
This seawater electrolysis method is superior in terms of safety and economy compared to methods (11 and (2)), and is currently widely adopted worldwide.

しかしながら、末端の排出管をへて海水中に排出される
時点でも、約0.1 ppm濃度の次亜塩素酸ナトリウ
ムが残存しており、このために排出管近傍の海域の魚介
類に悪影響を及ぼす欠点があった。
However, even when sodium hypochlorite is discharged into seawater through the terminal discharge pipe, a concentration of approximately 0.1 ppm of sodium hypochlorite remains, and this has an adverse effect on fish and shellfish in the sea area near the discharge pipe. There were some drawbacks.

またこの方法では、分流した海水を別途に電解するため
の電解設備を付設する必要があり、これに伴うポンプ動
力等のエネルギー消費量が無視できず、より一層の改善
が望まれていた。
In addition, this method requires the installation of separate electrolysis equipment to electrolyze the separated seawater, and the energy consumption associated with this, such as pump power, cannot be ignored, and further improvements have been desired.

〔発明の目的〕[Purpose of the invention]

本発明は、上記(3)の方法を更に改善し、海水配管内
で直接、海水を電解して次亜塩素酸ナトリウムを生成さ
せるので、電解設備を付設する必要がなく、エネルギー
消費量を極力低減することができる海水配管への海棲生
物付着防止方法を提供するものである。
The present invention further improves the method (3) above, and generates sodium hypochlorite by electrolyzing seawater directly in seawater piping, so there is no need to install electrolysis equipment, and energy consumption is minimized. The present invention provides a method for preventing marine organisms from adhering to seawater piping.

〔発明の構成〕[Structure of the invention]

上記目的を達成する本発明は、通水性スペーサー中に埋
設された一対の通水性帯状電極からなる電極体の一端を
、少なくとも取水部近傍の海水配管フランジ部にボルト
締めにより取り付け、該電極体を前記海水配管の内壁に
沿って渦巻き状に接着、固定し、該電極体の一対の電極
に通電して海水の電解により次亜塩素酸ナトリウムを生
成させることを特徴とするものである。
The present invention achieves the above object by attaching one end of an electrode body consisting of a pair of water-permeable strip electrodes embedded in a water-permeable spacer to a flange of a seawater pipe near the water intake part by tightening bolts. It is characterized in that it is adhered and fixed in a spiral shape along the inner wall of the seawater pipe, and electricity is supplied to the pair of electrodes of the electrode body to generate sodium hypochlorite by electrolysis of seawater.

本発明の、少なくとも海水取水部近傍の海水配管フラン
ジ部における電極体の取付は状況を第1図に示す。
FIG. 1 shows the installation of the electrode body at least at the flange portion of the seawater piping near the seawater intake portion according to the present invention.

即ち、電極体1はその一端が絶縁性バッキング2および
3を介して、海水配管4のフランジ部5.5“の間にボ
ルト締めにより取付けられている。
That is, one end of the electrode body 1 is bolted between the flange portions 5.5'' of the seawater pipe 4 via the insulating backings 2 and 3.

更に電極体1は海水配管4の内壁に沿って渦巻き状に配
置され、任意の点で内壁に適宜、接着、固定されている
Furthermore, the electrode body 1 is arranged in a spiral along the inner wall of the seawater pipe 4, and is appropriately bonded and fixed to the inner wall at arbitrary points.

電極体1の長さは任意に決定することができ、その他端
は遊離状でも良いが、次のフランジ部で同様にボルト締
めにより固定されるのが好ましい。
The length of the electrode body 1 can be arbitrarily determined, and the other end may be free, but it is preferable that it be similarly fixed by bolting at the next flange.

ここで電極材1は、第2図に示すように、スペーサー中
に埋設された対向する一対の帯状の電極6および7−か
らなる。
As shown in FIG. 2, the electrode material 1 consists of a pair of opposing band-shaped electrodes 6 and 7- embedded in a spacer.

・ 従って、電極6と電極7との距離は、これら電極間
のスペーサーの厚みに等巳い。
- Therefore, the distance between electrode 6 and electrode 7 is equal to the thickness of the spacer between these electrodes.

電極6および7は、網状または織布状物から形成されて
通水性があり、かつフレキシブルであり、電極材料は白
金でも良いが、経済性を加味すれば炭素繊維の使用が好
ましい。
The electrodes 6 and 7 are made of a net-like or woven material and are water-permeable and flexible, and the electrode material may be platinum, but carbon fiber is preferably used from an economic standpoint.

ただし、炭素繊維でも、黒鉛化度の低いものは電気抵抗
が高く、塩素ガス発生時に損傷を受は易いので、黒鉛化
度80%以上の炭素繊維がより好ましく、黒鉛化度90
%以上の炭素繊維の使用が最も好ましい。
However, carbon fibers with a low degree of graphitization have high electrical resistance and are easily damaged when chlorine gas is generated, so carbon fibers with a degree of graphitization of 80% or more are more preferable, and carbon fibers with a degree of graphitization of 90% or more are more preferable.
% or more of carbon fiber is most preferred.

かかる電極6および7は、陽極および陰極のいずれとし
ても使用することができるが、陰極は水素発生電位が低
いので、通常の金属材料は殆ど陰極として使用可能であ
る。
These electrodes 6 and 7 can be used as either an anode or a cathode, but since the cathode has a low hydrogen generation potential, most ordinary metal materials can be used as the cathode.

従って電極体1を構成する電極の一方を金属繊維からな
る網状または織布状物とすることができる。
Therefore, one of the electrodes constituting the electrode body 1 can be made of a net or woven fabric made of metal fibers.

なお、電極における電流密度は、電極面積あたりの電流
量(電流密度)が大きすぎると、電極面積は少なくてす
むが、各種の過電圧が増加するので極間電圧が高くなり
、電極の消耗が激しく、電解効率も低下する。
Regarding the current density at the electrode, if the amount of current per electrode area (current density) is too large, the area of the electrode will be small, but various overvoltages will increase, the voltage between the electrodes will increase, and the electrode will wear out rapidly. , the electrolytic efficiency also decreases.

一方、電流密度を小さくしすぎると、多大の電極面積が
必要になる。
On the other hand, if the current density is made too low, a large electrode area will be required.

本発明における電流密度は、通常では0.1〜30A/
do?であり、好ましくは1〜IOA/d耐の範囲であ
る。
The current density in the present invention is usually 0.1 to 30 A/
Do? It is preferably in the range of 1 to IOA/d resistance.

スペーサー8は絶縁性であり、通常ではポリエチレン、
ポリプロピレン、ポリ塩化ビニル、ポリテトラフルオル
エチレン等の塩素ガスや次亜塩素酸ナトリウムに耐える
合成繊維材料のものが用いられ、電極と同様に、網状ま
たは織布状で通水性を有する。
The spacer 8 is insulating and is usually made of polyethylene.
Synthetic fiber materials that can withstand chlorine gas and sodium hypochlorite, such as polypropylene, polyvinyl chloride, and polytetrafluoroethylene, are used, and like the electrodes, they are mesh-like or woven-fabric-like and have water permeability.

スペーサー8は、電極6と電極7の接触、短絡を防止す
る機能を有する。
The spacer 8 has the function of preventing contact and short circuit between the electrodes 6 and 7.

なお、絶縁性バッキング2および3は、絶縁性であれば
如何なる材料であっても良い。
Note that the insulating backings 2 and 3 may be made of any material as long as it is insulating.

フランジ部5.5“をボルト締めして配管のフランジ部
に電極を固定した後に、このフランジ部への海水の浸入
を防止するために、フランジ部近傍にシーリング材を塗
布して防水処理をするのが好ましい。
After bolting the 5.5" flange and fixing the electrode to the flange of the piping, apply sealant near the flange to prevent seawater from entering the flange for waterproofing. is preferable.

第3図は、電極体を海水配管内の複数の位置に固定した
場合を示し、海水の取水部を含めて任意の距離をおいた
複数のフランジ部にもそれぞれ、前記第1図に示した場
合と同様にして電極体1.1a、1bが固定されている
Figure 3 shows a case in which the electrode body is fixed at multiple positions in the seawater piping, and each of the electrode bodies shown in Figure 1 is also fixed at multiple flanges at arbitrary distances, including the seawater intake area. The electrode bodies 1.1a, 1b are fixed in the same manner as in the case.

この場合には、それぞれの電極において生成した次亜塩
素酸ナトリウムを海水配管の内壁近傍において適切な濃
度に保持することが可能であり、従って末端の排出管か
ら排出される海水中の次亜塩素酸ナトリウム濃度を低減
し、近傍海域の汚染を防止することができる。
In this case, it is possible to maintain the sodium hypochlorite produced at each electrode at an appropriate concentration near the inner wall of the seawater pipe, and therefore the hypochlorite in the seawater discharged from the terminal discharge pipe can be maintained at an appropriate concentration. It is possible to reduce the concentration of sodium chloride and prevent pollution of nearby sea areas.

かかる本発明において、電極体に含まれる一対の電極に
通電した場合の電解反応は、従来の海水電解法(3)と
同様である。
In the present invention, the electrolytic reaction when electricity is applied to the pair of electrodes included in the electrode body is similar to the conventional seawater electrolysis method (3).

即ち前記第1図にもとずき説明すれば、海水は矢印A方
向に導入され、電極6および7に通電すると、陰極では
下記(1)式に従って水素ガスが発生し、一方、陽極で
は(2)式に従って塩素ガスが発生する。
That is, to explain based on FIG. 1, seawater is introduced in the direction of arrow A, and when electricity is applied to electrodes 6 and 7, hydrogen gas is generated at the cathode according to the following equation (1), while at the anode, ( 2) Chlorine gas is generated according to the formula.

十 2 H+ 2 e−一−−→H2(t)2CIC12+
2e(2) 陽極で生成した塩素ガスは、陰極で副生ずる苛性ソーダ
と下記(3)式に従って反応し、次亜塩素酸ナトリウム
(NaC10)が生成する。
12 H+ 2 e-1--→H2(t)2CIC12+
2e(2) Chlorine gas generated at the anode reacts with caustic soda produced as a by-product at the cathode according to equation (3) below, and sodium hypochlorite (NaC10) is generated.

2NaOH+CI  −→ NaC10+NaC1(3
)なお、電極体1の陰極側は生成する苛性ソーダによっ
てアルカリ性となる傾向がある。
2NaOH+CI −→ NaC10+NaC1(3
) Note that the cathode side of the electrode body 1 tends to become alkaline due to the generated caustic soda.

この場合には、海水中に存在するカルシウムやマグネシ
ウムイオンによって、陰極の近傍に水酸化カルシウムや
水酸化マグネシウムが生成する可能性があるが、本発明
においては、陰極と陽極を適宜時間を置いて切り換える
ことによって陰極近傍の水酸化物を除去することができ
る。
In this case, calcium hydroxide and magnesium hydroxide may be generated near the cathode due to calcium and magnesium ions present in the seawater, but in the present invention, the cathode and anode are separated for an appropriate time. By switching, hydroxide near the cathode can be removed.

また、陰極に比較して陽極の消耗が通常では大きいが、
電流密度を小さくして陽極の消耗を防止するために、陰
極に比較して陽極の面積の大きい電極体や、複数枚の陽
極からなる電極体を使用すれば陽極の消耗を回避するこ
とができる。
In addition, although the anode normally consumes more than the cathode,
In order to reduce the current density and prevent anode wear, anode wear can be avoided by using an electrode body in which the anode has a larger area than the cathode, or an electrode body consisting of multiple anodes. .

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、海水配管内で海水の
電解によって次亜塩素酸ナトリウムを生成させるので、
従来のように次亜塩素酸すトリウム製造のための海水電
解設備を別途に必要とせず、エネルギー消費量を大巾に
削減することができる。
As described above, according to the present invention, sodium hypochlorite is generated by electrolysis of seawater in seawater piping.
Unlike conventional methods, separate seawater electrolysis equipment for producing thorium hypochlorite is not required, and energy consumption can be significantly reduced.

また、電極体として対向する通水性帯状電極1および2
からなり、これら電極の間には通水性のスペーサーが介
在しているので、陽極で発生する塩素ガスと陰極近傍で
副生ずる苛性ソーダとの、上記(3)式の反応は速やか
に進行し、電極付近における極端なpHの差異が防止さ
れると共に、常時、海水が生成した次亜塩素酸す) I
Jウムを海水の流れ方向に運び出すことができる。
In addition, water-permeable strip electrodes 1 and 2 facing each other as electrode bodies are provided.
Since a water-permeable spacer is interposed between these electrodes, the reaction of equation (3) above between the chlorine gas generated at the anode and the caustic soda produced as a by-product near the cathode proceeds quickly, and the electrode Extreme pH differences in the vicinity are prevented, and hypochlorous acid produced by seawater is constantly removed.
Jum can be carried out in the direction of seawater flow.

従って、海水配管内壁付近の次亜塩素酸ナトリウムの濃
度上昇が防止され、配管材料に対する腐食環境を温和に
し、かつ全体としての電力効率を高く保持することがで
きる。
Therefore, an increase in the concentration of sodium hypochlorite near the inner wall of the seawater pipe is prevented, the corrosive environment for the pipe material is made mild, and the overall power efficiency can be kept high.

また、電極間距離はスペーサーの厚みに保たれるので、
電解効率を大巾に上昇させることができる。
Also, since the distance between the electrodes is maintained at the thickness of the spacer,
Electrolysis efficiency can be greatly increased.

更に通常、配管への海棲生物の付着を防止するには、平
均濃度が約1 ppmとなるように、次亜塩素酸ナトリ
ウムが注入される。
Additionally, sodium hypochlorite is usually injected to an average concentration of about 1 ppm to prevent marine organisms from adhering to the pipes.

しかしながら本発明によれば、海水配管の内壁に沿って
電極体が配置され、内壁近傍で次亜塩素酸ナトリウムが
形成されるので、電極への印加電気量を制御することに
よって内壁近傍の次亜塩素酸ナトリウム濃度を海棲生物
の付着防止に必要な範囲に保持し、末端の排出海水内に
残存する次亜塩素酸ナトリウム濃度を極力減少させて排
出管近傍における海域の魚介類の生育阻害を防止するこ
とができる。
However, according to the present invention, the electrode body is arranged along the inner wall of the seawater pipe, and sodium hypochlorite is formed near the inner wall, so by controlling the amount of electricity applied to the electrode, the hypochlorite near the inner wall is The concentration of sodium chlorate is maintained within the range necessary to prevent the attachment of marine organisms, and the concentration of sodium hypochlorite remaining in the discharged seawater at the end is reduced as much as possible to inhibit the growth of fish and shellfish in the sea area near the discharge pipe. It can be prevented.

〔実施例〕〔Example〕

黒鉛化度99%のグラファイト繊維製クロスと厚さ0.
5mn+のポリエチレン製ネットを用い1.第2図に示
される構成のテープを製作し、末端処理をして電極対、
とじた。
Graphite fiber cloth with a degree of graphitization of 99% and a thickness of 0.
1. Using a 5mm+ polyethylene net. A tape with the configuration shown in Figure 2 was manufactured, and the ends were treated to form an electrode pair.
Closed.

テープの幅は約1co+、長さは30cmで有効電極面
積は3Mであった。
The width of the tape was approximately 1 co+, the length was 30 cm, and the effective electrode area was 3M.

これを内径5CI11%長さ30c+++の透明塩ビ製
パイプの内面に取付け(パイプ径が小さいのでスパイラ
ル状には巻かず、直線状にパイプ内壁に沿わせた)、両
端をフランジで固定した。
This was attached to the inner surface of a transparent PVC pipe with an inner diameter of 5 CI and 11% and a length of 30 cm (since the pipe diameter was small, it was not wound in a spiral shape, but rather linearly along the inner wall of the pipe), and both ends were fixed with flanges.

NaC1約3%を含む模擬海水1iを用意し、11/s
ecの流速で上記電極対を設置した配管系に循環した。
Prepare simulated seawater 1i containing about 3% NaC1, and
It was circulated through the piping system in which the above electrode pair was installed at a flow rate of EC.

種々の電流密度における端子電圧、1時間後のNaC1
0濃度を測定し、電流効率、NaC101Kg当りの消
費電力を推算し、下記の表にまとめた。
Terminal voltage at various current densities, NaCl after 1 hour
The current efficiency and power consumption per 101 kg of NaC were estimated and summarized in the table below.

この表から本発明の方法によれば、効率良くNaC10
の発生が行われることが明らかである。
This table shows that according to the method of the present invention, NaC10
It is clear that the occurrence of

(以下、本頁余白) 電流密度     20  10  5  1(A/d
 n?) 1時間後の NaC10濃度(ppm、)  375 204 10
8  24端子電圧     5.7 4.5 3.8
 3.2消費電力 (KWH/Kg、NaCl0)   9.12 6.6
2 5.28 4.03
(Hereinafter, this page margin) Current density 20 10 5 1 (A/d
n? ) NaC10 concentration after 1 hour (ppm, ) 375 204 10
8 24 terminal voltage 5.7 4.5 3.8
3.2 Power consumption (KWH/Kg, NaCl0) 9.12 6.6
2 5.28 4.03

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における電極体の配管フランジ部におけ
る固定状況を示す断面図、第2図は本発明における電極
体の構造を示す概要斜視図、第3図は電極体の他の固定
状況を示す断面概要図である。 1・−・電極体、6.7−電極、8.8′−・−スペー
サー。
Fig. 1 is a sectional view showing how the electrode body is fixed at the piping flange in the present invention, Fig. 2 is a schematic perspective view showing the structure of the electrode body according to the present invention, and Fig. 3 is a diagram showing another fixing situation of the electrode body. FIG. 1--electrode body, 6.7-electrode, 8.8'--spacer.

Claims (1)

【特許請求の範囲】[Claims] 通水性スペーサー中に埋設された一対の通水性帯状電極
からなる電極体の一端を、少なくとも取水部近傍の海水
配管フランジ部にボルト締めにより取り付け、該電極体
を前記海水配管の内壁に沿つて渦巻き状に接着、固定し
、該電極体の一対の電極に通電して海水の電解により次
亜塩素酸ナトリウムを生成させることを特徴とする海水
配管への海棲生物の付着防止方法。
One end of an electrode body consisting of a pair of water-permeable strip electrodes embedded in a water-permeable spacer is attached to at least the seawater pipe flange near the water intake section by bolting, and the electrode body is spirally wound along the inner wall of the seawater pipe. 1. A method for preventing the adhesion of marine organisms to seawater piping, comprising: adhering and fixing the electrode body in a shape, and applying electricity to a pair of electrodes of the electrode body to generate sodium hypochlorite by electrolysis of seawater.
JP59265262A 1984-12-18 1984-12-18 Prevention of marine life sticking to sea water piping Pending JPS61143587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59265262A JPS61143587A (en) 1984-12-18 1984-12-18 Prevention of marine life sticking to sea water piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59265262A JPS61143587A (en) 1984-12-18 1984-12-18 Prevention of marine life sticking to sea water piping

Publications (1)

Publication Number Publication Date
JPS61143587A true JPS61143587A (en) 1986-07-01

Family

ID=17414783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59265262A Pending JPS61143587A (en) 1984-12-18 1984-12-18 Prevention of marine life sticking to sea water piping

Country Status (1)

Country Link
JP (1) JPS61143587A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027009A1 (en) * 1994-03-31 1995-10-12 Stichting Scheikundig Onderzoek In Nederland Antifouling paint containing haloperoxidases and method to determine halide concentrations
US5673341A (en) * 1995-01-13 1997-09-30 Nec Corporation Intra-liquid optical measuring sensor and contamination preventing method
KR20190046540A (en) 2017-10-26 2019-05-07 한국해양과학기술원 Device for preventing attachment of marine life using sea water cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027009A1 (en) * 1994-03-31 1995-10-12 Stichting Scheikundig Onderzoek In Nederland Antifouling paint containing haloperoxidases and method to determine halide concentrations
US5673341A (en) * 1995-01-13 1997-09-30 Nec Corporation Intra-liquid optical measuring sensor and contamination preventing method
KR20190046540A (en) 2017-10-26 2019-05-07 한국해양과학기술원 Device for preventing attachment of marine life using sea water cells

Similar Documents

Publication Publication Date Title
US3793163A (en) Process using electrolyte additives for membrane cell operation
GB2047272A (en) Process and apparatus for producing alkali metal hypohalides
US4087337A (en) Rejuvenation of the efficiency of sea water electrolysis cells by periodic removal of anodic deposits
US4488945A (en) Process for producing hypochlorite
US4193858A (en) Stack pack electrolytic cell
JPS6039757B2 (en) Hydrochloric acid electrolysis method
EP0788446B1 (en) Method for inhibition of growth of organisms on faces of constructions submerged in a liquid
JPS61143587A (en) Prevention of marine life sticking to sea water piping
CA2429249C (en) Cathodic protection system utilizing a membrane
JPS61120687A (en) Method for preventing fouling of marine organisms to seawater piping
JPS61136485A (en) Method for preventing fouling by marine organism to seawater piping
US20120137882A1 (en) Method For Treating Hydrocarbon Fluids Using Pulsting Electromagnetic Wave in Combination With Induction Heating
US4512857A (en) Prevention of corrosion of electrolyte cell components
EP0267704A1 (en) Electrochemical removal of chromium from chlorate solutions
GB2113718A (en) Electrolytic cell
JPS59140822A (en) Formation of algae field
US4470890A (en) Method for preventing cathode corrosion
GB1162212A (en) An Electrolytic Method for the Purification of Sewage or like Effluents
KR890006975Y1 (en) Electrolytic bath for electrolyzing seawater
NO761395L (en)
KR20000000726A (en) Controlling method for galvanic corrosion of pipe for sea water
Shreir Platinum provides protection for steel structures
JP2997267B1 (en) Non-diaphragm electrolyzer
GB1588020A (en) Electrolytic cell
JPS5940361B2 (en) Method for preventing aquatic microorganisms from adhering to walls that are in constant contact with seawater or river water