JPS61142620A - Vacuum breaker - Google Patents

Vacuum breaker

Info

Publication number
JPS61142620A
JPS61142620A JP26473384A JP26473384A JPS61142620A JP S61142620 A JPS61142620 A JP S61142620A JP 26473384 A JP26473384 A JP 26473384A JP 26473384 A JP26473384 A JP 26473384A JP S61142620 A JPS61142620 A JP S61142620A
Authority
JP
Japan
Prior art keywords
current
electrode
layer
current path
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26473384A
Other languages
Japanese (ja)
Inventor
納谷 榮造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26473384A priority Critical patent/JPS61142620A/en
Publication of JPS61142620A publication Critical patent/JPS61142620A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は真空しゃ断器に係り、接離可能な一対の電極
部に対して、電極の軸方向に磁界を発生させる真空しゃ
断器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vacuum breaker, and more particularly, to a vacuum breaker that generates a magnetic field in the axial direction of the electrodes with respect to a pair of electrode parts that can be brought into and out of contact with each other. be.

〔従来の技術〕[Conventional technology]

第9図は例えば特公昭45−14607号公報に示され
た従来の電極部軸方向に磁界(以下、縦磁界と称する)
を発生させる真空しゃ断器を示す断面図であり1図にお
いて、0ηは固定接点部@は可動接点部、@は絶縁材よ
り成る容器、(至)は金属蒸気を蒸着させるためのアー
クシールド、0!9I/′i固定側電流端子、(至)は
駆動用コイル、(2)はベローズ、@は可動側電流端子
、(至)は固定劃端板、■は可動側端板、(ロ)は真空
室、に)はリード線を示し、固定及び可動側端板(至)
及び輪、容器(至)並びにベローズ匈により、真空が保
たれている。
FIG. 9 shows, for example, a magnetic field (hereinafter referred to as longitudinal magnetic field) in the axial direction of the electrode part shown in Japanese Patent Publication No. 45-14607.
In Figure 1, 0η is a fixed contact part, @ is a container made of an insulating material, (to) is an arc shield for depositing metal vapor, and 0 !9I/'i Fixed side current terminal, (To) is the drive coil, (2) is the bellows, @ is the movable side current terminal, (To) is the fixed end plate, ■ is the movable end plate, (B) indicates the vacuum chamber, 2) indicates the lead wire, and the fixed and movable end plates (to)
The vacuum is maintained by a ring, a container, and a bellows.

また第10図は例えば特公昭54−22818号公報に
示された従来の縦磁界型の真空しゃ断器の電極構造を示
す図であり、図において、−は導電棒、+52はコイル
電極、1−はコイル電極缶乃の下側に重ね合わせるよう
にして設けられる主を極である。
FIG. 10 is a diagram showing the electrode structure of a conventional vertical magnetic field type vacuum breaker disclosed, for example, in Japanese Patent Publication No. 54-22818. In the figure, - is a conductive rod, +52 is a coil electrode, and 1- The main pole is provided so as to overlap the lower side of the coil electrode canno.

一般に真空しゃ断器においては、そのしゃ断時発生する
アークに対し磁気駆動を行わせればしや能力が増し、接
点の消耗が少なくかつ均一なものになることが知られ、
既にいろいろな駆動方式が提案されている。上記従来例
は特にアークに対し平行に磁気を加える方式のものであ
り、例えば第9図に示す特公昭45−14607号公報
に示されたものは、駆動用コイル(至)がリード線−を
介し固定接点部6pに接続されており、回路′1流1は
端子(至)、コイル(至)、リード線−1固定液点部0
υ、可動接点部(2)、端子(至)を介し矢印の方向に
流れ、真空室(ロ)内の接点近傍には磁束Φが矢印の方
向に発生する。
It is generally known that in a vacuum breaker, if the arc generated when the circuit is broken is magnetically driven, the breaking capacity will increase, and the wear and tear of the contacts will be reduced and uniform.
Various driving methods have already been proposed. The above-mentioned conventional example is a method in which magnetism is applied in parallel to the arc. For example, in the one shown in Japanese Patent Publication No. 14607/1983 shown in Fig. 9, the drive coil (to) connects the lead wire to It is connected to the fixed contact part 6p through the circuit '1 flow 1 is connected to the terminal (to), the coil (to), the lead wire -1 fixed liquid point part 0
υ flows in the direction of the arrow through the movable contact portion (2) and the terminal (to), and magnetic flux Φ is generated near the contact in the vacuum chamber (b) in the direction of the arrow.

又、例えば第1θ図に示す持久vf322818号公報
に示されたものは、電流経路として導電棒■よりコイル
電極6匂の取付基部(58a)に入り、こかる後各円弧
部(51)の先端より突起部(5gd)を通して主電極
−樽に入る。したがって、コイル電極部を流れる電流は
各腕部(5Bb)t−通して円弧部(52c )に流れ
ることによシ総体的にはループ状の電流が1ターン流れ
たことと等価であシ1ターンの磁界が主電極面上に軸方
向磁界となって現われることになる。
Also, for example, in the one shown in Sukyu VF322818, shown in Figure 1θ, the current path enters the mounting base (58a) of the coil electrode 6 from the conductive rod (2), and then connects to the tip of each arcuate portion (51). Enter the main electrode-barrel through the protrusion (5gd). Therefore, the current flowing through the coil electrode section passes through each arm section (5Bb) and flows through the arc section (52c), which is generally equivalent to one turn of a loop current. The magnetic field of the turn appears as an axial magnetic field on the main electrode surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の縦磁界方式の真空しゃ断器において
は前者のものでは、真空しゃ断器の外部にコイル部を設
ける必要があるため、真空しゃ断器の形状が大きくなり
、かつコイル径が大きくなるため、必要な磁界を得るた
めにコイルの巻数を増やさなければならないという問題
があった。又後者のものでは、電極構造が複雑で部品点
数が増えロー付個所も増える。又空間部分が多いため機
械的強度が低いという問題があった。
In the former type of conventional vertical magnetic field type vacuum breaker as mentioned above, it is necessary to provide a coil part outside the vacuum breaker, so the shape of the vacuum breaker becomes large and the coil diameter becomes large. Therefore, there was a problem in that the number of turns of the coil had to be increased in order to obtain the necessary magnetic field. Moreover, in the latter case, the electrode structure is complicated, the number of parts increases, and the number of brazed parts increases. In addition, there was a problem that the mechanical strength was low because there were many spaces.

この発明は上記のような問題点を解消するためになされ
たもので、部品点数が少なく、強度も高い縦磁界電極を
もった真空しゃ断器を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a vacuum breaker having a small number of parts and having a vertical magnetic field electrode with high strength.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る真空しゃ断器は、その電極に於て、電路
開閉用の接触通電層と磁界発生のための電流経路層を何
し、電流経路層はその内部に絶縁物もしくは電気抵抗の
高い材料から成る電流制限部を埋設した電気良導体で形
成され、接触通電層と電流経路層とは上記電流制限部に
よって数カ所の電気導通部を除いて分離されており、粉
末冶金法もしくは溶解法で一体に成形されたことを特徴
としたものである。
The vacuum breaker according to the present invention has a contact current-carrying layer for switching circuits and a current path layer for generating a magnetic field in its electrodes, and the current path layer has an insulating material or a material with high electrical resistance inside. The contact current-carrying layer and the current path layer are separated by the current-limiting part except for several electrically conductive parts, and are integrated by powder metallurgy or melting. It is characterized by being molded.

〔作用〕[Effect]

この発明に:ffiける真空しゃ断器は、その電極部に
縦磁界を発生させるべく接触通電層、電流経路層、およ
び電流制限部を1体形成することにより、しゃ断時性が
向上するとともに安価かつ小型に製作され、高い機械的
強度?何する0〔発明の実施例〕 以下、この発明の実施例について説明する。
According to the present invention, a vacuum breaker that can be used in ffi improves the breaker performance, is inexpensive, and has a contact current-carrying layer, a current path layer, and a current limiting part formed in one body to generate a vertical magnetic field in its electrode part. Manufactured in a small size with high mechanical strength? What to do0 [Embodiments of the invention] Examples of the invention will be described below.

(実施例1) 第1図はこの発明の一実施例を示す断面図であり、図中
illはt路開閉の際に対向する電極と接離を行う接離
通電層、(2)は絶縁物もしくは電気抵抗の高い材料か
らなる高抵抗材料で、その(2a)部は電極に平行な磁
界を発生させるための電流経路を制限させる部分である
。そしてこの高抵抗材料(2)は接触通電層il+と電
流経路層(3)ヲその周辺に於て数カ所の切欠部分すな
わち層接続部(3c)’i5除き分離させている。磁界
発生用の電流経路層(3)は図示していない導電棒とそ
の中心部(4)でロー付された部分より電流収出部(3
a)を経て外円周部(8b)につながり、層接続部(3
C)を介して接触通電層と接続されている。
(Example 1) Fig. 1 is a cross-sectional view showing one embodiment of the present invention, in which ill is a contact/separation conductive layer that connects and separates from the opposing electrode when opening/closing the T-path, and (2) is an insulating layer. It is a high-resistance material made of a metal or a material with high electrical resistance, and the part (2a) thereof is a part that restricts the current path for generating a magnetic field parallel to the electrode. The high-resistance material (2) is separated from the contact current-carrying layer il+ and the current path layer (3) except for several cutout portions, that is, layer connection portions (3c)'i5 around the periphery. A current path layer (3) for generating a magnetic field is connected to a conductive rod (not shown) and a current collecting portion (3) from a soldered portion at its center (4).
a) to the outer circumferential part (8b), and the layer connection part (3
C) is connected to the contact current-carrying layer.

第2図は第1図に示した電極の製造工程を示したもので
る。9,151は接触通電層+11及び電流経路層(3
)を形成する材料である銅粉とクロム粉のq−糧、銅粉
とクロム粉の混合を示し銅粉とクロム粉の重量比75:
25yk!時間混合したものである。
FIG. 2 shows the manufacturing process of the electrode shown in FIG. 1. 9,151 is a contact conductive layer +11 and a current path layer (3
) indicates the mixture of copper powder and chromium powder, the weight ratio of copper powder and chromium powder is 75:
25yk! It is time mixed.

一方(7)は5US804等からなる抵抗の高い棒材、
(8)はこの棒材(7)全機械加工して得られる電流経
路制限用の高抵抗部品、(9)は電極の成形の様子を示
しており、先に準備した混合粉の約半分を成形プレスの
金型に充填した後部品(8)を金型に挿入し、最後に残
りの混合粉を金型に充填し、単位面積当りlOトンの圧
力で成形する。
On the other hand, (7) is a high resistance bar made of 5US804 etc.
(8) shows a high-resistance part for current path restriction obtained by completely machining this bar (7), and (9) shows how the electrode is formed. Approximately half of the mixed powder prepared earlier is After filling the mold of the forming press, the part (8) is inserted into the mold, and finally the remaining mixed powder is filled into the mold and molded at a pressure of 10 tons per unit area.

次にこのようにして得られた成形体を水素雰囲気中10
50℃で焼結(101シ、電極素板を得る。
Next, the molded body thus obtained was placed in a hydrogen atmosphere for 10
Sintering at 50°C (101°C) to obtain an electrode blank.

そしてこの素板を旋盤加工して、電極(川を得、これが
第1 図に示した電極となる。
Then, this blank plate was machined using a lathe to obtain an electrode, which became the electrode shown in Figure 1.

(実施例2) 第8図はこの発明の電極を得るためのその他の製造工程
を示したものであり、(5)は接触通電層fi+を形成
する材料である銅粉とクロム粉の存糧、(6)は銅粉と
クロム粉の混合を示し、銅粉とクロム粉を重量比75 
:25としたものをボールミルで2時間混合したもので
ある。一方0に示すように電流経路を制限する絶縁物と
してアルミナセラミックを焼成してセラミック絶縁物@
を用意する。父、電流経路層(3)全形成する素材とし
て銅粉a3ヲ用意しておく。成形ハ(9)に示すように
金型にまず銅粉(2)を充填し、セラミック絶縁物叩の
電流経路制限部を下にして挿入し単位面積当り8.8ト
ンで仮成形を行う。続いてプレスの上押パンチだけ取出
しく6)で用意した銅クロム混合粉を充填し単位面積当
りlOトンで成形を行う。
(Example 2) Figure 8 shows another manufacturing process for obtaining the electrode of the present invention, in which (5) shows the amount of copper powder and chromium powder that are the materials forming the contact conductive layer fi+; (6) shows a mixture of copper powder and chromium powder, and the weight ratio of copper powder and chromium powder is 75.
:25 and mixed in a ball mill for 2 hours. On the other hand, as shown in Figure 0, ceramic insulators are created by firing alumina ceramic as an insulator that limits the current path.
Prepare. First, prepare copper powder A3 as the material for forming the entire current path layer (3). As shown in Forming C (9), a mold is first filled with copper powder (2), inserted into the ceramic insulator with the current path restricting part facing down, and temporarily formed at 8.8 tons per unit area. Next, take out only the upper punch of the press, fill it with the copper chromium mixed powder prepared in step 6), and perform molding at 10 tons per unit area.

(実施例8〕 第4図はこの発明の電極を得るためのその他の製造工程
を示したものである。王な工程は前述へ実施例1)と同
じであり、相違点は電流経路制限用の絶縁物として、ま
ず厚み2HのS[Ta205の板041に用意し、これ
をプレス成形しCIFAに示す素板を得る、続いてこの
素板にHで示す様にアルミナを溶射したことである。
(Example 8) Figure 4 shows other manufacturing steps for obtaining the electrode of the present invention.The main steps are the same as those in Example 1), and the difference is that the current path is limited. As an insulator, we first prepared a S[Ta205 plate 041 with a thickness of 2H, press-molded this to obtain a blank plate shown in CIFA, and then thermally sprayed alumina on this blank plate as shown by H. .

(実施例4) 第5図はこの発明の電極を得るための製造工程を示した
ものであ夛、(6)は接触通電層11)と電流経路層(
3)全形成する材料である銅粉とタングステン粉の酔糧
、(6)は銅粉とタングステン粉の゛  混合を示し、
銅粉とタングステン粉を重量比10:9Gとしたものを
ボールミルで2時間混合したものである。一方、(6)
に示すように電流経路を制限する絶縁物として(実施例
2)で用いたものと同様のアルミナセラミックにモリブ
デン−マンガン系のメタライズを全面に行ったものを用
意する。成形#−j (91に示すように成形金型の中
にまず銅タングステン混合粉を1部充填し、つづいてメ
タライズしたセラミックを挿入し、残りの銅タングステ
ン粉を充填し単位面積当り1トンの圧力で成形する。次
に、このようにして得られた成形体を真空中1000℃
で仮焼結(lO)し、続いて仮焼納品に銅の塊をのせ、
水素雰囲気中1250℃で銅を溶浸させ電極素材とする
(Example 4) FIG. 5 shows the manufacturing process for obtaining the electrode of the present invention. (6) shows the contact conductive layer 11) and the current path layer (
3) Intoxication of copper powder and tungsten powder, which are the materials for total formation, (6) shows the mixture of copper powder and tungsten powder,
Copper powder and tungsten powder were mixed in a weight ratio of 10:9G in a ball mill for 2 hours. On the other hand, (6)
As shown in FIG. 1, an alumina ceramic similar to that used in Example 2, which was entirely coated with molybdenum-manganese metallization, was prepared as an insulator for restricting the current path. Molding #-j (As shown in 91, one part of the copper-tungsten mixed powder is filled into the molding die, then the metalized ceramic is inserted, and the remaining copper-tungsten powder is filled to form a mold of 1 ton per unit area. Molding is performed under pressure.Next, the molded product thus obtained is heated to 1000°C in a vacuum.
Temporarily sintered (lO), then placed a copper lump on the calcined product,
Copper is infiltrated at 1250°C in a hydrogen atmosphere to form an electrode material.

なお、この場合最終的に得られる銅−タングステン重量
比r/′i25ニア5である。
In this case, the final copper-tungsten weight ratio r/'i25 is 5.

(実施例5〕 第6図はこの発明の電極を得るためのその他の製造工程
を示したものであシ(実施例2)とほぼ同一工程である
。相違点は、アルミナセラミックで外周に電流経路部と
接触部用の切欠部分のみをもった部品QllK−加え、
1部の銅クロム混合粉をプレス金型に充填し、セラミッ
ク部品allを挿入し単位面積当り3.3トンで仮焼結
する1次成形翰する工程と、次いで上パンチ棒を取出し
残りの銅・クロム粉からさらに1部の混合粉を金型に充
填しセラミック部品a2を挿入しその上に残り混合粉を
充填し単位面積当りlOトンで成形する2次成形翰ヲ有
すことである。
(Example 5) Figure 6 shows another manufacturing process for obtaining the electrode of the present invention, which is almost the same process as Example 2.The difference is that the alumina ceramic is In addition, a part QllK with only cutouts for the path and the contact part,
One part of the copper chromium mixed powder is filled into a press mold, all the ceramic parts are inserted, and the first forming process is pre-sintered at 3.3 tons per unit area.Then, the upper punch rod is removed and the remaining copper is removed. - It has a secondary molding screen in which a part of the mixed powder from the chromium powder is filled into a mold, the ceramic part a2 is inserted, and the remaining mixed powder is filled thereon and molded at 10 tons per unit area.

(実施例6) 第7図は5US304の棒材から機械加工により削り出
した高抵抗材料部品を示してものであり、これを用いた
電極の製造法は第8図に示したものと同一である。(実
施例1)との相途点は電極として、接触通電層側+11
に縦磁界により発生するうず電流を分断するための壁(
2)1t−設けたことにある。
(Example 6) Figure 7 shows a high-resistance material part machined from a bar of 5US304, and the method of manufacturing an electrode using this is the same as that shown in Figure 8. be. The connection point with (Example 1) is +11 on the contact current-carrying layer side as an electrode.
A wall (
2) 1t- is provided.

上記のように構成された真空しゃ断器用電極においては
、第1図に示すように電流は導電棒にロー付される中心
部(4)ヲ経て電流取出部(3a)に分流し、外円周部
(3b攻矢印の方向に流れ、図に示す方向に磁界Φを発
生する。この外円周部(81))t−流れた電流は層液
触部(lc)ヲ経て接触通電層(1)に流れ、接触通電
層(1)と対向する電極部の接離により電路の開閉を行
う。
In the vacuum breaker electrode constructed as described above, as shown in Fig. 1, the current flows through the central part (4), which is brazed to the conductive rod, to the current extraction part (3a), and then to the outer circumference. (3b) The current flows in the direction of the arrow and generates a magnetic field Φ in the direction shown in the figure. ), and the electrical circuit is opened and closed by connecting and separating the electrode portion facing the contact current-carrying layer (1).

尚、第8図#−i(実施例1)で示したもの(第1図)
の斜視図であり、電極の構成を判りやすくするために分
解した図である。実際のものは図中(1)12+ ta
llが一体で製造されるため図のように分割することは
困難である。又導電棒−と電極は中心部(4)の部分で
ロー付されているだけであるごとも再度言及しておく。
In addition, what is shown in FIG. 8 #-i (Example 1) (FIG. 1)
FIG. 2 is a perspective view of the electrode, which is exploded to make the structure of the electrode easier to understand. The actual one is (1) 12+ ta in the diagram.
Since 11 is manufactured as one piece, it is difficult to divide it as shown in the figure. It should also be mentioned again that the conductive rod and the electrode are only brazed at the center (4).

なお、上記実施例では、接触禰電層111 t−形成す
る素材として銅粉、クロム粉、タングステン粉を用いて
いるが、焼結法や含浸法といったいわゆる粉末焼結法が
適用できる接点の材料は全て、本発明に適用することが
出来る。
In the above embodiment, copper powder, chromium powder, and tungsten powder are used as the materials for forming the contact electrode layer 111, but other contact materials to which so-called powder sintering methods such as sintering and impregnation methods can be applied may also be used. All can be applied to the present invention.

また、上記(実施例4)でFi電流経路部にも銅−タン
グステン混合粉を充填し成形したが、接触通電層+11
側にだけ充填し、成形したものを真空中で仮焼結を行い
、続いて水素雰囲気中で銅を溶浸させる際、鋼*を多く
して余った銅を電流経路層(3)に充満させる方法でも
、電極を作ることが出来る。
In addition, in the above (Example 4), the Fi current path part was also filled with copper-tungsten mixed powder and molded, but the contact current-carrying layer +11
Fill only the sides, and then pre-sinter the molded product in a vacuum. Then, when infiltrating copper in a hydrogen atmosphere, increase the amount of steel* and fill the excess copper into the current path layer (3). Electrodes can also be made using this method.

また、上記実施例では電流経路層(3)中の電流、経F
pItS分割した例であるが、笑用土は他の分割数も考
えられる。
In addition, in the above embodiment, the current in the current path layer (3),
Although this is an example of dividing pItS, other numbers of divisions can be considered for the soil.

また、上記実施例では主に粉末冶金法について説明した
が、電流制限部(2)を構成する絶縁物もしくは電気抵
抗の高い材料が溶解された接点材料と全く反応を起こさ
ないか、反F5を起こしてもごく僅かである場合には溶
解による鋳造方法も有効であり、上記実施例と同様の効
果を奏する。
In addition, although the above embodiment mainly explained the powder metallurgy method, it is also important to ensure that the insulating material or material with high electrical resistance that constitutes the current limiting part (2) does not react with the melted contact material at all, or that the anti-F5 If the amount of occurrence is very small, a casting method using melting is also effective, and produces the same effects as the above embodiments.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、電極が接触通電層側
ッ 経路を制限しかつ接触通電層と電流経路部の数カ所の切
欠部分を除いて分離させる絶縁物もしくは電気抵抗の高
い材料から成シ、いわゆる粉末焼結法により一体型に製
造された電極であるため安価に製造でき、また部品点数
が少なく、ロー付個所も少なく、複雑な製造工程を必要
としない。
As described above, according to the present invention, the electrode is made of an insulator or a material with high electrical resistance that limits the path through the contact current-carrying layer and separates the contact current-carrying layer from the current path except for a few notches. Second, since the electrode is manufactured in one piece by a so-called powder sintering method, it can be manufactured at low cost, has a small number of parts, has few brazed parts, and does not require a complicated manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による真空しゃ断器の電極
を示す構造図、第2〜7図はそれぞれこの発明に用いら
れる真空しゃ断器の電極の製造工程を示す流れ図、第8
図は第1図の電極構造全示す分解斜視図、第9図および
第1θ図はそれぞれ従来の真空しゃ断器および電極構造
を示す図である。 図中、(IIは接触通電層、(2)は高抵抗材料(電流
制限部)、(:11は電流経路層である。 なお、図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a structural diagram showing an electrode of a vacuum breaker according to an embodiment of the present invention, FIGS.
The figure is an exploded perspective view showing the entire electrode structure of FIG. 1, and FIG. 9 and FIG. 1θ are views showing a conventional vacuum breaker and electrode structure, respectively. In the figure, (II is a contact conductive layer, (2) is a high-resistance material (current limiting part), and (:11 is a current path layer. In the figure, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)真空容器内に収容され互いに接離自在で且つそれ
ぞれ導電棒に取付けられた一対の電極により電路を開閉
するものに於て、上記電極のうち少なくとも一方の対向
する電極面側に電路開閉用の接触通電層を有し、上記導
電棒との取付面側に電極軸と平行な磁界を発生させる電
流経路層を有しており、上記電流経路層はその内部に絶
縁物もしくは電気抵抗の高い材料から成る電流制限部を
埋設した電気良導体で形成され、上記接触通電層と電流
経路層とは上記電流制限部によって数カ所の電気導通部
を除いて分離され、且つ混合粉末焼結もしくは溶浸法か
ら成る粉末冶金法、または溶解合金の鋳造法からなる溶
解法で一体形成された電極であることを特徴とする真空
しゃ断器。
(1) In a device that opens and closes an electric circuit using a pair of electrodes that are housed in a vacuum container and can be freely moved toward and away from each other and each is attached to a conductive rod, the electric circuit is opened and closed on the opposite electrode surface side of at least one of the electrodes. It has a current path layer for generating a magnetic field parallel to the electrode axis on the mounting surface side with the conductive bar, and the current path layer has an insulating material or an electrically resistive material inside it. The contact current-carrying layer and the current path layer are separated by the current-limiting part except for several electrically conductive parts, and the contact current-carrying layer and the current path layer are separated by the current-limiting part except for a few electrically conductive parts, and are made of a mixed powder sintered or infiltrated. 1. A vacuum breaker characterized in that the electrode is integrally formed by a powder metallurgy method consisting of a molten alloy casting method, or a melting method consisting of a molten alloy casting method.
(2)電流制限部が接触通電層内部に埋設されたことを
特徴とする特許請求の範囲第1項に記載の真空しゃ断器
(2) The vacuum breaker according to claim 1, wherein the current limiting portion is embedded within the contact conductive layer.
(3)電流経路層が複数層とより成ることを特徴とする
特許請求の範囲第1項または第2項記載の真空しゃ断器
(3) The vacuum breaker according to claim 1 or 2, wherein the current path layer is composed of a plurality of layers.
JP26473384A 1984-12-14 1984-12-14 Vacuum breaker Pending JPS61142620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26473384A JPS61142620A (en) 1984-12-14 1984-12-14 Vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26473384A JPS61142620A (en) 1984-12-14 1984-12-14 Vacuum breaker

Publications (1)

Publication Number Publication Date
JPS61142620A true JPS61142620A (en) 1986-06-30

Family

ID=17407414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26473384A Pending JPS61142620A (en) 1984-12-14 1984-12-14 Vacuum breaker

Country Status (1)

Country Link
JP (1) JPS61142620A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561433A (en) * 1979-06-20 1981-01-09 Meidensha Electric Mfg Co Ltd Method of manufacturing coil electrode for vacuum breaker
JPS57172622A (en) * 1981-03-26 1982-10-23 Siemens Ag Contact structure for vacuum breaker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561433A (en) * 1979-06-20 1981-01-09 Meidensha Electric Mfg Co Ltd Method of manufacturing coil electrode for vacuum breaker
JPS57172622A (en) * 1981-03-26 1982-10-23 Siemens Ag Contact structure for vacuum breaker

Similar Documents

Publication Publication Date Title
KR100315732B1 (en) Vacuum circuit breaker and the vacuum valve and electrical contacts used therein
US7704449B2 (en) Electrode, electrical contact and method of manufacturing the same
US8869393B2 (en) Contact piece for a vacuum interrupter chamber
US3379846A (en) Electrodes for electric devices operable in a vacuum
JPS6362122A (en) Manufacture of electrode for vacuum breaker
CN100388403C (en) Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vacuum circuit breaker
EP3555898B1 (en) Improved electrical contact alloy for vacuum contactors
US4516004A (en) Vacuum switching tube with a helical current path
EP0042152B1 (en) Vacuum circuit breaker
US3828428A (en) Matrix-type electrodes having braze-penetration barrier
US4546222A (en) Vacuum switch and method of manufacturing the same
JPS61142620A (en) Vacuum breaker
JP2001135206A (en) Electrode, vacuum valve electrode, vacuum valve and vacuum switch
JP3106598B2 (en) Manufacturing method of electrode material
EP4254451A1 (en) Vacuum interrupter
JP2853308B2 (en) Manufacturing method of electrode material
JP3067317B2 (en) Manufacturing method of electrode material
JPS62217520A (en) Electrode material for vacuum interruptor
JPH05198231A (en) Manufacture of electrode material
JPH0877855A (en) Contact material for vacuum bulb
JPH02117031A (en) Electrode material of vacuum interrupter
JPH07111857B2 (en) Contact material for vacuum valve and manufacturing method thereof
JPH0528886A (en) Manufacture of material to electrode
JPH0528885A (en) Manufacture of material to electrode
JPH05120948A (en) Manufacture of electrode material