JPS61142442A - Liquid chromatography apparatus - Google Patents

Liquid chromatography apparatus

Info

Publication number
JPS61142442A
JPS61142442A JP27675085A JP27675085A JPS61142442A JP S61142442 A JPS61142442 A JP S61142442A JP 27675085 A JP27675085 A JP 27675085A JP 27675085 A JP27675085 A JP 27675085A JP S61142442 A JPS61142442 A JP S61142442A
Authority
JP
Japan
Prior art keywords
light source
liquid chromatography
detector
wavelength
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27675085A
Other languages
Japanese (ja)
Other versions
JPS6338658B2 (en
Inventor
Makoto Yasuda
誠 安田
Seiichi Murayama
村山 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27675085A priority Critical patent/JPS61142442A/en
Publication of JPS61142442A publication Critical patent/JPS61142442A/en
Publication of JPS6338658B2 publication Critical patent/JPS6338658B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a long-life liquid chromatography apparatus with a high sensitivity over a broad wavelength range, by employing a light source into which a Ta halide, Hg and a rare gas are sealed while a photo detector such as UV absorbing detector is provided. CONSTITUTION:A light source 1 in which TaI5, Hg and Ar as a rare gas are sealed into a light emitting tube made of quartz is used to hold a continuous spectrum at 190-450nm by molecular luminescence of the Ta halide and mercury and moreover, a greater luminous intensity is obtained at a specified wavelength where line spectrum overlaps due to atoms of Ta and Hg. Ultraviolet rays from the light source 1 enters a spectroscope 3 passing through a dual type flowcell 2 with a sample cell and reference cell integrated and dispersed with a diffraction grating to be converted into an electrical signal with UV absorbing detector 4 provided for each wavelength. This signal is converted into a linear signal with a LOG converter 5 in terms of absorbance and the difference between the sample beam and the reference beam is determined with a differential circuit 6 to be outputted to a recorder 7. This enables continuous analysis with a high sensitivity at a low power while producing a chromatography apparatus with a higher light source life.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、液体クロマトグラフィー装置の改良に係り、
特に光を用いる検出器を備えた高感度の液体クロマトグ
ラフィー装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to improvement of a liquid chromatography device,
In particular, it relates to a highly sensitive liquid chromatography device equipped with a detector that uses light.

〔発明の背景〕[Background of the invention]

液体クロマトグラフィー装置において、カラムで分離さ
れた試料をモニターする手段として、高感度のものには
吸収検出器、蛍光検出器等の光を用いるものがある。従
来の光を用いる検出器を備えた液体クロマトグラフィー
装置では、線スペクトル光源を用い特定物質の分析を高
感度に行うようにした装置と、連続スペクトル光源を用
いることにより測定波長を任意に選べるようにした汎用
類がある。
In liquid chromatography devices, there are highly sensitive devices that use light, such as absorption detectors and fluorescence detectors, as means for monitoring samples separated by columns. Liquid chromatography devices equipped with conventional detectors that use light include devices that use a line spectrum light source to analyze specific substances with high sensitivity, and devices that use a continuous spectrum light source that allows the measurement wavelength to be arbitrarily selected. There are general-purpose types.

スペクトル光源として、水銀ランプを用いた装置とが用
いられている0両者の比較は、前者は汎用性はあるが重
水素放電管の光強度が弱いため感度が低く、後者は感度
は高いが測定波長が254゜297.313,365,
405,436゜546.579nmなどの水銀の輝線
が存在する波長に限られる。
A device using a mercury lamp is used as a spectral light source.A comparison of the two shows that the former is versatile but has low sensitivity due to the weak light intensity of the deuterium discharge tube, while the latter has high sensitivity but is difficult to measure. The wavelength is 254°297.313,365,
It is limited to wavelengths where the emission line of mercury exists, such as 405,436°546.579 nm.

一方、蛍光法では、光強度の強いキセノン・ショートア
ーク・ランプを用いた装置が使われているが、ランプの
寿命が短いことや、ランプ電力が大きく、始動時に高電
圧が必要なためランプ点灯回路が高価になるなどの欠点
がある。
On the other hand, the fluorescence method uses a device that uses a xenon short arc lamp with high light intensity, but the lamp life is short, the lamp power is large, and a high voltage is required to start the lamp. There are drawbacks such as the circuit being expensive.

上記のように、従来技術にはそれぞれ欠点があり、これ
らの欠点を除去できる新しい光源が要求されている。
As mentioned above, each of the prior art techniques has its drawbacks, and new light sources are needed that can eliminate these drawbacks.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来技術の欠点を改善し、広い波長域に
わたって高感度で安価な検出器を備えた液体クロマトグ
ラフィーを提供することを目的としている。
The present invention aims to improve the drawbacks of the above-mentioned conventional techniques and to provide a liquid chromatography system equipped with a highly sensitive and inexpensive detector over a wide wavelength range.

〔発明の概要〕[Summary of the invention]

汎用性を考えると、輝線スペクトル光源を用いた装置よ
り連続スペクトル光源を用いた装置の方が良いことは当
然であるが、しかし、連続スペクトルであって、かつ、
高輝度の光源は、必然的に大電力を必要とし、ランプの
寿命を長くすることは極めて困難である。
Considering versatility, it is natural that a device using a continuous spectrum light source is better than a device using an emission line spectrum light source.
High-intensity light sources necessarily require large amounts of power, and it is extremely difficult to extend the lamp life.

液・体クロマトグラフィーで対象とする溶液は、その吸
収係数の波長依存性がゆるやかで、広い波長範囲で吸収
が観測されるので、光源は必ずしもピーク位置がほぼ等
しく、分離できない場合がある。このような場合、波長
の異なる光の吸光度を同時にモニターし、物質によって
吸収波長が異なることを利用して同定を行なう方法があ
る。この続スペクトル光源であることは必ずしも必要で
はない。
The solution targeted by liquid/body chromatography has a gentle wavelength dependence of its absorption coefficient, and absorption is observed in a wide wavelength range, so the light sources may not necessarily have approximately the same peak position and cannot be separated. In such cases, there is a method of simultaneously monitoring the absorbance of light of different wavelengths and making use of the fact that different substances have different absorption wavelengths for identification. This continuous spectrum light source is not necessarily required.

むしろ、強い輝線スペクトルが適当な波長間隔が で存在する光源の方が、低い電力が高輝度が実現できる
ので、長寿命にもなる。
On the contrary, a light source in which strong emission line spectra are present at appropriate wavelength intervals can achieve high brightness with low power and therefore have a longer life.

このため本発明では、タンタル(Ta)のハロゲン化物
、水銀(Hg)および希ガスを封入したメタルハライド
ランプを光源にした検出器を用いる。このメタルハライ
ドランプは190〜450nmにおいてTaのハロゲン
化物および水銀の分子発光により連続スペクトルを有す
る。さらにTa、Hgの原子による輝線スペクトルが重
なり特定の波長においてさらに強い光強度が得られ、上
記の目的を達することができる。なお、この種のメタル
ハライドランプに関するものとしては特開昭52−45
390号、特開昭52−2539銀ランプを用いた液体
クロマトグラフィーと同様に於て光強度の強い連続スペ
クトルが存在するため、汎用目的の検出器にも用いるこ
とができる。
For this reason, the present invention uses a detector whose light source is a metal halide lamp filled with tantalum (Ta) halide, mercury (Hg), and a rare gas. This metal halide lamp has a continuous spectrum in the range of 190 to 450 nm due to molecular emission of Ta halide and mercury. Furthermore, the emission line spectra of Ta and Hg atoms overlap, resulting in even stronger light intensity at a specific wavelength, thereby achieving the above objective. Regarding this type of metal halide lamp, Japanese Patent Application Laid-Open No. 52-45
No. 390, JP-A-52-2539 Similar to liquid chromatography using a silver lamp, there is a continuous spectrum with high light intensity, so it can also be used as a general-purpose detector.

つまり、従来の重水素放電管や水銀ランプを用いた装置
の長所を兼ね備え、かつ、キセノン・ショートアーク・
ランプを用いた装置と同等の感度で、測定可能な物質の
範・囲もほぼ等しく、かつ、ランプの寿命が長いため装
置の保守が容易になる。
In other words, it combines the advantages of devices using conventional deuterium discharge tubes and mercury lamps, and also
It has the same sensitivity as a device using a lamp, and the range of substances that can be measured is almost the same, and the lamp has a long life, making the device easy to maintain.

〔発明の実施例〕   □ 以下1本発明を図を用いて説明する。[Embodiments of the invention] □ The present invention will be explained below with reference to the drawings.

UV吸光光度計を液体クロクトグラフィーの検出器とし
た場合、この検出器の雑音は、光源のゆらぎ、検知器に
おけるシミツトノイズ、回路の雑音等が考えられる。光
源のゆらぎはサンプルビームとレファレンスビームとの
差をとることによす除かれる。回路の雑音も小さくする
ことができ、現状ではショットノイズが最終的な雑音の
最大の原因となっている。このショットノイズは、検知
器の電流値、すなわち光源の光強度の平方根に比例する
。−力信号は光強度に比例するので、S/N比は光源の
光強度の平方−根に比例する。
When a UV absorption photometer is used as a detector for liquid chromatography, noise in the detector may be caused by fluctuations in the light source, spot noise in the detector, circuit noise, and the like. Source fluctuations are removed by taking the difference between the sample and reference beams. Circuit noise can also be reduced, and currently shot noise is the biggest cause of final noise. This shot noise is proportional to the current value of the detector, ie, the square root of the light intensity of the light source. - Since the force signal is proportional to the light intensity, the signal-to-noise ratio is proportional to the square root of the light intensity of the light source.

第1図に本発明に用いた光源の光強度の一例を示した。FIG. 1 shows an example of the light intensity of the light source used in the present invention.

第11i!は、石英製発光管中にT−a I 52m 
g/al、Hg 6mg/aL  A r 25tor
r゛を封入したランプで管壁負荷46W/、atの光強
度を示している。この図は、Snmごとの積分値を相対
値で示したものである。UV吸収検出器は195〜35
0nmの波長域にわたってまんべんなく用いられる。第
1図より、この波長域全域で光強度が強く、広い波長域
にわたって高感度なUV吸収検出器を実現できる。特に
、糖や有機酸等では195〜210t+mの短波長域が
よく用いられる。
11th i! is a T-a I 52m in a quartz arc tube.
g/al, Hg 6mg/aL A r 25tor
The light intensity of the tube wall load of 46 W/at is shown for a lamp sealed with r. This figure shows the integral value for each Snm as a relative value. UV absorption detector is 195-35
It is used evenly over the wavelength range of 0 nm. From FIG. 1, it is possible to realize a UV absorption detector that has strong light intensity over the entire wavelength range and is highly sensitive over a wide wavelength range. In particular, a short wavelength range of 195 to 210 t+m is often used for sugars, organic acids, etc.

しかし従来の光源では、この波長域での光強度が弱く高
感度の測定ができなかった。特にこの点で本発明は、短
波長域まで光強度の強い光源を用いているため、高感度
な検出が可能となる。
However, with conventional light sources, the light intensity in this wavelength range is weak, making it impossible to perform highly sensitive measurements. Particularly in this respect, the present invention uses a light source with high light intensity even in the short wavelength range, so that highly sensitive detection is possible.

本発明に用いた光源ではタンタルのハロゲン化物の分子
発光による連続スペクトルに水銀の輝線スペクトルが重
なる波長においては、キセノン・ショートアーク・ラン
プと同等以上の輝度がある。
The light source used in the present invention has a brightness equal to or higher than that of a xenon short arc lamp at a wavelength where the emission line spectrum of mercury overlaps the continuous spectrum of tantalum halide molecular emission.

一方、キセノン・ショートアーク・ランプの寿命が15
0時間程度で゛あるのに対し、本発明に用いるTaメタ
ルハライドランプでは、寿命試験の結果3000時間以
上の長寿命が得られている。これらのことにより、長寿
命で信頼性の高いけい光光度計を検出器とする液体クロ
マトグラフィー装置を実現することができる。
On the other hand, the lifespan of a xenon short arc lamp is 15
On the other hand, the Ta metal halide lamp used in the present invention has a long life of 3000 hours or more as a result of a life test. With these features, it is possible to realize a liquid chromatography apparatus using a fluorescent photometer as a detector, which has a long life and is highly reliable.

次に、本発明の一実施例を第2図により説明する。第2
図は多波長光吸収モニターの一実施例のブロック図であ
る。光源1より放射された紫外光はサンプルセルとレフ
ァレンスセルとが一体となったデュアル形フローセル2
を通った後、分光器3に入り、回折格子にて分散され、
各波長毎に設けられた検知器4にて電気信号に変換され
る。この信号はLOG変換器5にて吸光度にリニアーな
信号に変換され、差動回路6にてサンプルビーム八 とレファレンズビームとの差をとった後レコーダ7へ出
力される。上記実施例において信号Sと雑音Nとの比S
/Nを大きくし、高感度な光吸収モニターとするため、
Taのヨウ化物、HgおよびArを封入したメタルハラ
イドランプを光源1としている。前述したようにこのラ
ンプは光強度が強く高感度な光吸収モニターを実現でき
る。
Next, one embodiment of the present invention will be described with reference to FIG. Second
The figure is a block diagram of an embodiment of a multi-wavelength optical absorption monitor. The ultraviolet light emitted from the light source 1 is transmitted to the dual type flow cell 2, which has a sample cell and a reference cell integrated.
After passing through the spectrometer 3, it is dispersed by a diffraction grating,
The signal is converted into an electrical signal by a detector 4 provided for each wavelength. This signal is converted into a signal linear in absorbance by the LOG converter 5, and after the difference between the sample beam 8 and the reference lens beam is calculated by the differential circuit 6, it is output to the recorder 7. In the above embodiment, the ratio S between the signal S and the noise N
In order to increase /N and make a highly sensitive light absorption monitor,
The light source 1 is a metal halide lamp filled with Ta iodide, Hg, and Ar. As mentioned above, this lamp has a strong light intensity and can realize a highly sensitive light absorption monitor.

また、重水素放電ランプの発光部はスポット状であるの
に対し、本発明で用いているメタルハライドランプは2
つの電極間のアーク放電であるため、発光部を軸方向に
長くとることができる。このため1分光器のスリットの
形状に合わせることができ光源からの発光を効率よく利
用できる。
In addition, the light emitting part of a deuterium discharge lamp is spot-like, whereas the metal halide lamp used in the present invention has a spot-like light emitting part.
Since the arc discharge occurs between two electrodes, the light emitting section can be made longer in the axial direction. Therefore, it can be matched to the shape of the slit of a spectrometer, and the light emitted from the light source can be used efficiently.

光吸収モニターに使われている分光器等は、室温の変化
等によりわずかに光学系がゆがむことがあり、それが雑
音の原因となり得る0本発明で用いているメタルハライ
ドランプは発光面積を大きくすることが容易であるので
、このことにより、光学系のゆがみを補償し雑音を小さ
くすることができる。
The optical system of spectrometers used in light absorption monitors may be slightly distorted due to changes in room temperature, etc., which can cause noise.The metal halide lamp used in the present invention has a large light emitting area. Since this is easy, it is possible to compensate for distortion in the optical system and reduce noise.

第3図に、本発明の他の一実施例として、蛍光検出器を
備えた液体クロマトグラフィー装置を示す。光源11か
らの光は、分光器または干渉フィルタ等で構成される波
長選択器12を通り、集光レンズ14を介して、液体ク
ロマトグラフィー装置における被検出試料の流路13の
一部を13′を照射する。ここに示された流路13は、
すてにカラムを通り分離された後の流路を示している。
FIG. 3 shows a liquid chromatography device equipped with a fluorescence detector as another embodiment of the present invention. The light from the light source 11 passes through a wavelength selector 12 composed of a spectrometer or an interference filter, and passes through a condensing lens 14 to a part of the flow path 13 for the sample to be detected in the liquid chromatography apparatus. irradiate. The flow path 13 shown here is
The flow path is shown after all the cells have passed through the column and been separated.

分析対象とする特定の物質が励起光により照射されてい
る流路の一部13′を通過すると、該物質より蛍光が発
せられる。該蛍光はレンズ15で集光され、波長選択器
16を過つそフォトマル等の光検出器17で電気信号に
変換される。増幅器18で増幅され、記録計19で記録
される。例えばポストラベル法によりアミノ酸(OPA
法)を検出する場合、最も感度が高くなる励起波長は3
60〜365nmであり水銀の輝線スペクトルと一致し
ている。このため高感度の液体クロマトグラフィーとな
る。また本発明では、Taの輝線スペクトルが存在する
ため、従来の高圧水銀灯を用いた場合には輝線スペクト
ルが存在しないため長は375nmであるが、Taの輝
線スペクトルが372.5nm、373.1nm、37
3.7nm。
When a specific substance to be analyzed passes through a portion 13' of the channel irradiated with excitation light, the substance emits fluorescence. The fluorescence is focused by a lens 15, passes through a wavelength selector 16, and is converted into an electrical signal by a photodetector 17 such as a photomultiplier. The signal is amplified by an amplifier 18 and recorded by a recorder 19. For example, amino acids (OPA) can be
When detecting
The wavelength is 60 to 365 nm, which matches the emission line spectrum of mercury. This results in highly sensitive liquid chromatography. In addition, in the present invention, since there is an emission line spectrum of Ta, when a conventional high-pressure mercury lamp is used, there is no emission line spectrum and the length is 375 nm, but the emission line spectrum of Ta is 372.5 nm, 373.1 nm, 37
3.7nm.

375.5nm、375.8nm、375.98nm。375.5nm, 375.8nm, 375.98nm.

376.0.2nm、376.2nm、377.0nm
376.0.2nm, 376.2nm, 377.0nm
.

377.7nmにそれぞれ存在するため、本発明の液体
クロマトグラフィーにより高感度で分析可能となる。T
a、Hgの輝線スペクトルが存在しない波長域において
も、連続スペクトルにより蛍光検出器の光源として有効
である。液体クロマトグラフィーでは1回の測定に数十
時間の連続測定がしばしば行われる。従来用いられてい
るXeショートアークランプは寿命が短く、このため数
十時間の連続測定では信頼性が乏しかった。本発明に用
いるTaのメタルハライドランプは寿命が長いため、信
頼性の高い液体クロマトグラフィーを実現することがで
きる。
Since they each exist at a wavelength of 377.7 nm, the liquid chromatography of the present invention enables analysis with high sensitivity. T
Even in the wavelength range where no Hg emission line spectrum exists, it is effective as a light source for a fluorescence detector due to its continuous spectrum. In liquid chromatography, one measurement often involves continuous measurement for several tens of hours. The conventionally used Xe short arc lamp has a short lifespan, and therefore has poor reliability in continuous measurement over several tens of hours. Since the Ta metal halide lamp used in the present invention has a long life, highly reliable liquid chromatography can be realized.

〔兇明の効果〕[Effect of light]

以上説明したように、本発明により、高感度で安価な液
体クロマトグラフィーを実現することができる。
As explained above, according to the present invention, highly sensitive and inexpensive liquid chromatography can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いたメタルハライドランプの光強度
の一例を示す図、第2図は本発明の液体クロマトグラフ
ィー装置の光吸収検出器の部分の一実施例を示す図、第
3図は同じく本発明による液体クロマトグラフィー装置
の蛍光検出器の部分の一実施例を示す図である。 1・・・光源、2・・・フローセル、3・・・分光器、
4・・・検出器、5・・・対数変換器、6・・・差動回
路、7・・・レコーダ、11・・・光源、12・・・波
長選択器、13・・・試料流路、14.15・・・集光
レンズ、16・・・波長選択器、17・・・光検出器、
18・・・増幅器、19・・・記録計 %1  図 第2 図
FIG. 1 is a diagram showing an example of the light intensity of the metal halide lamp used in the present invention, FIG. 2 is a diagram showing an example of the light absorption detector portion of the liquid chromatography apparatus of the present invention, and FIG. FIG. 2 is a diagram showing an embodiment of a fluorescence detector portion of a liquid chromatography device according to the present invention. 1... Light source, 2... Flow cell, 3... Spectrometer,
4... Detector, 5... Logarithmic converter, 6... Differential circuit, 7... Recorder, 11... Light source, 12... Wavelength selector, 13... Sample flow path , 14.15... Condenser lens, 16... Wavelength selector, 17... Photodetector,
18...Amplifier, 19...Recorder%1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、タンタルのハロゲン化物、水銀および希ガスを封入
したメタルハライドランプを光源とする検出器を具備し
たことを特徴とする液体クロマトグラフィー装置。
1. A liquid chromatography device comprising a detector whose light source is a metal halide lamp filled with tantalum halide, mercury, and a rare gas.
JP27675085A 1985-12-11 1985-12-11 Liquid chromatography apparatus Granted JPS61142442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27675085A JPS61142442A (en) 1985-12-11 1985-12-11 Liquid chromatography apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27675085A JPS61142442A (en) 1985-12-11 1985-12-11 Liquid chromatography apparatus

Publications (2)

Publication Number Publication Date
JPS61142442A true JPS61142442A (en) 1986-06-30
JPS6338658B2 JPS6338658B2 (en) 1988-08-01

Family

ID=17573819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27675085A Granted JPS61142442A (en) 1985-12-11 1985-12-11 Liquid chromatography apparatus

Country Status (1)

Country Link
JP (1) JPS61142442A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245390A (en) * 1975-10-08 1977-04-09 Hitachi Ltd Magneto-optic photometer
JPS5245391A (en) * 1975-10-08 1977-04-09 Hitachi Ltd Ultraviolet continous spectral source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245390A (en) * 1975-10-08 1977-04-09 Hitachi Ltd Magneto-optic photometer
JPS5245391A (en) * 1975-10-08 1977-04-09 Hitachi Ltd Ultraviolet continous spectral source

Also Published As

Publication number Publication date
JPS6338658B2 (en) 1988-08-01

Similar Documents

Publication Publication Date Title
US3810696A (en) Improved analytical apparatus for measuring light absorbance of fluids
JPS6116010B2 (en)
US7381973B2 (en) Analyzer system and method incorporating excimer UV fluorescence detection
JP2012508890A (en) Sample or sample component analysis system and methods for making and using the system
JPH09292281A (en) Method for measuring quantum efficiency of phosphor, and measuring device thereof
EP4317947A1 (en) Fluorescence measuring device
CA1261167A (en) Oxygen analysis employing absorption spectroscopy
US7755767B2 (en) Resonator-amplified absorption spectrometer
US4755675A (en) Gas analyzer and a source of IR radiation therefor
JPS631937A (en) Spectroscopic analyser
EP0185405A1 (en) Analytical photometer, in particular multi-channel, applied to a centrifugal system adapted to perform practically simultaneous determination of the presence of different substances in a certain number of samples
Schmidt et al. A combination of a pulsed continuum light source, a high resolution spectrometer, and a charge coupled device detector for multielement atomic absorption spectrometry
US4523096A (en) Liquid chromatography apparatus
JPS61142442A (en) Liquid chromatography apparatus
JPH0249645B2 (en)
US5903346A (en) Analysis system
JP3206870B2 (en) Method and apparatus for measuring nitrogen gas or water vapor in argon gas, method and apparatus for simultaneous measurement of nitrogen gas and water vapor
JP4436262B2 (en) Trace component measuring device
US4402606A (en) Optogalvanic intracavity quantitative detector and method for its use
Landa et al. Corrected and automated spectrophotofluorimeter employing a pyroelectric detector for correction
JPS62278436A (en) Fluorescence light measuring method and apparatus
JPH11508053A (en) Analysis system
US3503686A (en) Atomic absorption spectrophotometer
CN219957355U (en) Plasma emission spectrum detector based on full spectrum measurement
Human et al. Analysis of metals using a glow-discharge source with a fluorescent atomic vapour as spectral-line isolator