JPS61141683A - Heat insulating structure - Google Patents

Heat insulating structure

Info

Publication number
JPS61141683A
JPS61141683A JP26150084A JP26150084A JPS61141683A JP S61141683 A JPS61141683 A JP S61141683A JP 26150084 A JP26150084 A JP 26150084A JP 26150084 A JP26150084 A JP 26150084A JP S61141683 A JPS61141683 A JP S61141683A
Authority
JP
Japan
Prior art keywords
fibers
heat insulating
weight
parts
insulating structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26150084A
Other languages
Japanese (ja)
Other versions
JPH0247430B2 (en
Inventor
酒谷 芳秋
谷口 勲嗣
元康 田口
皆木 敏宏
研一 柴田
智彦 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nichias Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nichias Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26150084A priority Critical patent/JPH0247430B2/en
Publication of JPS61141683A publication Critical patent/JPS61141683A/en
Publication of JPH0247430B2 publication Critical patent/JPH0247430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、断熱性が改良された断熱構造体に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a heat insulating structure with improved heat insulation properties.

〔従来の技術〕[Conventional technology]

大気圏に再突入する有翼回収機を空力加熱から保護する
ために使用されるセラミック耐熱材は、軽量で耐熱性、
断熱性に優れることが要求される。
Ceramic refractory materials used to protect winged recovery vehicles from aerodynamic heating during atmospheric reentry are lightweight, heat resistant,
Excellent heat insulation properties are required.

ところで、従来、米国のNASAのスペースシャトルの
ような再使用宇宙船の表面保護は、シリカタイルと称さ
れる耐熱部材を用いて行われている。この耐熱部材は、
高純度のSiO2繊維をバインダを用いずに、或いはコ
ロイダルシリカをバインダとして使用し、これを約13
00℃で焼成した9  bs/ft又は22  bs/
ft3の多硬質の材料で形成されている。このため、強
度が弱く使用時の音響疲労等によって欠けたり、機体の
接着面から剥がれたりする問題がある。
Incidentally, conventionally, the surface of reused spacecraft such as the NASA Space Shuttle in the United States has been protected using a heat-resistant member called silica tile. This heat-resistant member is
High-purity SiO2 fibers are used without a binder or colloidal silica is used as a binder, and this
9 bs/ft or 22 bs/ft fired at 00°C
ft3 made of polyrigid material. For this reason, there is a problem that the strength is low and it may chip due to acoustic fatigue during use or peel off from the adhesive surface of the aircraft body.

上述した問題を解消するために、アルミノシリケート繊
維或いはアルミノボロンシリケート繊維を、シリカタイ
ルに重量比で19:1〜1:19の範囲で混合して強化
したものが開発されている。
In order to solve the above-mentioned problems, silica tiles have been reinforced by mixing aluminosilicate fibers or aluminoboron silicate fibers in a weight ratio of 19:1 to 1:19.

しかしながら、アルミノシリケート繊維を含有したもの
では、高温での収縮が大きい欠点がある。
However, those containing aluminosilicate fibers have the disadvantage of large shrinkage at high temperatures.

また、アルミノボロンシリケート繊維を含有したもので
は、アルミノボロンシリケート繊維のau+i径が大き
い(平均11μm)ため、熱伝導率が大きくなり、しか
もコストが高くなる欠点がある。
In addition, those containing aluminoboron silicate fibers have a drawback that the aluminoboron silicate fibers have a large au+i diameter (11 μm on average), resulting in high thermal conductivity and high cost.

一方、国内で実用化されている無機多硬質断熱材は、ロ
ックウール、グラスウール、アルミノシリケード繊維等
の無機繊維をコロイダルシリカ、アルミナゾル等の無機
バインダで接合したもの、またはフオームグラス、石綿
発泡材等の無機発泡材、パーライト、バーミキュライト
、シラス等の発泡質を主原料とする成型体、ケイ酸カル
シウム保瀧材、断熱レンガ等がある。
On the other hand, inorganic multi-rigid insulation materials that have been put into practical use in Japan are those made by bonding inorganic fibers such as rock wool, glass wool, and aluminosilicate fibers with inorganic binders such as colloidal silica and alumina sol, or foam glass and asbestos foam materials. There are inorganic foam materials such as Perlite, Vermiculite, Shirasu and other foam materials as main raw materials, calcium silicate retaining materials, heat insulating bricks, etc.

(発明が解決しようとする問題点) しかしながら、上述した断熱材は次のような欠点があっ
た。
(Problems to be Solved by the Invention) However, the above-described heat insulating material has the following drawbacks.

(1)1300℃の温度付近では、耐熱性が不十分であ
ると共に、熱劣化を起こすため実用できない。
(1) At temperatures around 1300° C., the heat resistance is insufficient and thermal deterioration occurs, making it impractical.

(2)低密度量(0,10〜0.40g/Cm3)は、
強度が小さく、脆い。
(2) The low density amount (0.10-0.40g/Cm3) is
Low strength and brittle.

(3)熱膨張率が大きく、耐熱衝撃性に劣る。(3) The coefficient of thermal expansion is large and the thermal shock resistance is poor.

(4)熱伝導率が比較的大きく、断熱性に劣る。(4) The thermal conductivity is relatively high and the heat insulation properties are poor.

本発明は、機械的強度が高く、高温での熱伝導を低減さ
せて断熱性能の向上を図った断熱構造体を提供しようと
するものである。
The present invention aims to provide a heat insulating structure that has high mechanical strength, reduces heat conduction at high temperatures, and improves heat insulation performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、平均繊維径が0.3〜3μmのシリカm維1
00重量部に対して、平均IIAM径が1〜5μmのア
ルミナ115〜100重量部、平均直径が0.5μm以
下の炭化珪素ウィスカ1〜20重量部及び酸化ホウ素0
.5〜10重量部を配合してなることを特徴とする断熱
構造体である。
The present invention uses silica fibers with an average fiber diameter of 0.3 to 3 μm.
00 parts by weight, 115 to 100 parts by weight of alumina with an average IIAM diameter of 1 to 5 μm, 1 to 20 parts by weight of silicon carbide whiskers with an average diameter of 0.5 μm or less, and 0 parts by weight of boron oxide.
.. This is a heat insulating structure characterized by containing 5 to 10 parts by weight.

以下、第1図及び第2図を参照して詳細に説明する。A detailed explanation will be given below with reference to FIGS. 1 and 2.

図中の1は、高耐熱性の無機材料から構成された断熱構
造体であるこの断熱構造体1は第2図に示すように、主
繊維2、補強繊維3及び輻射材4から構成されている。
1 in the figure is a heat insulating structure made of a highly heat-resistant inorganic material. As shown in FIG. There is.

前記主繊維2は、耐熱性、断熱性及び熱膨張率の小さい
平均繊維径が0.5〜3μmの高純度シリカ繊維から形
成されている。
The main fibers 2 are made of high-purity silica fibers having heat resistance, heat insulation properties, and a small coefficient of thermal expansion, and having an average fiber diameter of 0.5 to 3 μm.

前記補強繊維3は、断熱構造体1の耐熱性及び強度を向
上させるもので、耐熱性高強度のアルミナ繊維から形成
されている。この補強繊維3は前記主繊維2(100重
量部)に対して5〜100重量部配合されいる。前記輻
射剤4は、高温における輻射伝熱の透過を低減させるも
ので、輻射率の大きい炭化珪素ウィスカから形成されて
いる。この輻射材(炭化珪素ウィスカ)は、表面積を大
きくするために直径が0.5μm以下のものが使用され
、かつ前記1繊112(100重曇部)に対して1〜2
0重量部配合されている。なお、これら繊維及びウィス
カには酸化ホウ素が付着されている。この酸化ホウ素は
、後述する繊維間のバインダとしての作用をなす他、高
純度シリカ繊維の1000℃近辺での結晶化を抑制する
作用をなし、前記主繊維2(100重量部)に対して0
.5〜10重量部配合される。更に、図中の5は、1繊
II!2と及び補強繊維3等のmi同志或いは該繊維と
輻射材(炭化珪素ウィスカ)4との交差接点であり、こ
の交差接点5は繊維の表面に付着している酸化ホウ素に
よって高温焼結時に繊維が軟化し、接合することにより
形成されたものである。かかる交差接点5によって、1
繊M2、補強繊維3及び輻射材4が三次元網状化される
The reinforcing fibers 3 improve the heat resistance and strength of the heat insulating structure 1, and are made of heat resistant and high strength alumina fibers. The reinforcing fiber 3 is blended in an amount of 5 to 100 parts by weight with respect to the main fiber 2 (100 parts by weight). The radiation agent 4 reduces the transmission of radiant heat at high temperatures, and is made of silicon carbide whiskers having a high radiation rate. This radiant material (silicon carbide whisker) has a diameter of 0.5 μm or less in order to increase the surface area, and 1 to 2
0 parts by weight is blended. Note that boron oxide is attached to these fibers and whiskers. This boron oxide acts as a binder between fibers, which will be described later, and also acts to suppress crystallization of high-purity silica fibers at around 1000°C.
.. It is blended in an amount of 5 to 10 parts by weight. Furthermore, 5 in the diagram is 1 fiber II! 2 and reinforcing fibers 3 or the like, or the fibers and the radiation material (silicon carbide whiskers) 4. This cross contact point 5 is caused by the boron oxide attached to the surface of the fibers, which causes the fibers to sinter at high temperature. It is formed by softening and joining. By such cross contact 5, 1
The fibers M2, the reinforcing fibers 3, and the radiant material 4 are formed into a three-dimensional network.

上記主1!1li2(100重量部)に対する補強繊維
(アルミナ繊維)3の配合量を上記範囲に限定した理由
はその配合量を5重量部未満にすると、補強効果が発揮
されず、かといってその配合量が100重量部を越える
と、断熱構造の熱膨張率及び熱伝導率が大きくなる等耐
熱性能を低下させるものとなる。
The reason for limiting the blending amount of reinforcing fiber (alumina fiber) 3 to the above main 1!1li2 (100 parts by weight) to the above range is that if the blending amount is less than 5 parts by weight, the reinforcing effect will not be exhibited. If the blending amount exceeds 100 parts by weight, the thermal expansion coefficient and thermal conductivity of the heat insulating structure will increase, resulting in a decrease in heat resistance performance.

上記1繊N2(100重量部)に対する輻射材(炭化珪
素ウィスカ)4の配合量を上記範囲に限定したり゛理由
は、その量を1重量部未満にすると、輻射材としての効
果がほとんど認められなくなり、かといってその量が2
0重量部を越えると、断熱構造の熱膨張率及び熱伝導率
が大きくなる等耐熱性能を低下させるものとなる。
The reason is that the amount of the radiant material (silicon carbide whiskers) 4 added to the 1 fiber N2 (100 parts by weight) is limited to the above range. However, the amount is 2
If it exceeds 0 parts by weight, the thermal expansion coefficient and thermal conductivity of the heat insulating structure will increase, resulting in a decrease in heat resistance performance.

上記主繊維2(100重量部)に対する酸化ホウ素の配
合量を上記範囲に限定した理由は、その量を0.5重量
部未満にすると、繊維成分との融合度が低下するため、
断熱構造体の強度が小さくなり、かといってその量が1
0重量部を越えると、i1M成分との軟化、溶融が顕著
となり耐熱性の乏しい断熱構造体となる。
The reason why the amount of boron oxide added to the main fiber 2 (100 parts by weight) was limited to the above range is that if the amount is less than 0.5 parts by weight, the degree of fusion with the fiber component will decrease.
The strength of the heat insulating structure decreases, but the amount decreases by 1
If it exceeds 0 parts by weight, softening and melting with the i1M component will become significant, resulting in a heat insulating structure with poor heat resistance.

上述した断熱構造体を製造するには、例えば各繊維、ウ
ィスカ及び酸化ホウ素を蒸溜水中で撹拌分散した後、フ
ィルタプレスで脱水、乾燥して各11維等を均一に分散
する方法を採用し得る。
In order to manufacture the above-mentioned heat insulating structure, for example, a method may be adopted in which each fiber, whisker, and boron oxide are stirred and dispersed in distilled water, and then dehydrated and dried using a filter press to uniformly disperse each of the 11 fibers. .

〔作用〕[Effect]

しかして、本発明によれば、第1図及び第2図に示すよ
うに耐熱性、断熱性に優れかつ熱膨張率の小さい高純度
シリカから形成された主繊維2に、耐熱性高強度のアル
ミナ繊維から形成された補強繊維3及び輻射伝熱の透過
を低減させる炭化珪素ウィスカから形成された輻射材4
を夫々所定量配合し、かつ酸化ホウ素で繊維間及び繊維
とウィスカを融着して交差接点5を形成して三次元網状
構造とすることにより、耐熱性に優れ、軽量、高強度の
断熱構造体1を得ることができる。
According to the present invention, as shown in FIG. 1 and FIG. Reinforcing fibers 3 formed from alumina fibers and radiant material 4 formed from silicon carbide whiskers that reduce transmission of radiant heat transfer
By blending a predetermined amount of each and fusing inter-fibers and fibers with whiskers using boron oxide to form cross-contact points 5 to form a three-dimensional network structure, a heat-resistant, lightweight, and high-strength heat insulating structure is created. You can get body 1.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を詳細□に説明する。 Examples of the present invention will be described in detail below.

実施例 下記表に示す組成の断熱構造体原料を蒸溜水中で撹拌分
散した後、フィルタプレスで脱水、乾燥して各tlAM
等が均一に分散された断熱構造体を製造した。
Example After stirring and dispersing raw materials for heat insulating structures having the compositions shown in the table below in distilled water, dehydration and drying were carried out using a filter press to obtain each tlAM.
A heat insulating structure in which the following materials were uniformly dispersed was manufactured.

しかして、本実施例の断熱構造体について、密度、熱伝
導率、引張強度、引張弾性率及び耐熱性を調べた。その
結果を同表に併記した。なお、表中には、炭化珪素ウィ
スカが配合されない耐熱構造体及び繊維径の大きい炭化
珪素ウィスカを用いて製造された断熱構造体を夫々比較
例1.2として併記した。
Therefore, the density, thermal conductivity, tensile strength, tensile modulus, and heat resistance of the heat insulating structure of this example were investigated. The results are also listed in the same table. In addition, in the table, a heat-resistant structure containing no silicon carbide whiskers and a heat-insulating structure manufactured using silicon carbide whiskers having a large fiber diameter are also listed as Comparative Examples 1 and 2, respectively.

上表から明かなように本発明の断熱構造体は、炭化珪素
ウィスカを含まない断熱構造体(比較例1)や繊維径の
大きい炭化珪素ウィスカを用いた断熱構造体(比較例2
)に比べて高温における熱伝導率が小さく、強度、弾性
率が著しく大きくなっていること゛がわかる。こうした
特性から再使用回収型ロケットの外部断熱材として好適
である。
As is clear from the table above, the heat insulating structure of the present invention includes a heat insulating structure that does not contain silicon carbide whiskers (Comparative Example 1) and a heat insulating structure that uses silicon carbide whiskers with a large fiber diameter (Comparative Example 2).
), the thermal conductivity at high temperatures is lower, and the strength and elastic modulus are significantly higher. Due to these characteristics, it is suitable as an external heat insulating material for reusable and recoverable rockets.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればシリカ繊維、アルミ
ナ繊維及び酸化ホウ素と共に、小径の炭化珪素ウィスカ
を配合することによって、熱伝導率が低く、強度、耐熱
性が著しく向上された断熱構造体を提供できる。
As detailed above, according to the present invention, by blending small-diameter silicon carbide whiskers with silica fibers, alumina fibers, and boron oxide, a heat insulating structure with low thermal conductivity and significantly improved strength and heat resistance is obtained. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の断熱構造体を示す斜視図、第2図は
、第1図のA部の拡大説明図である。 1・・・断熱構造体、2・・・1繊1(高純度シリカ繊
維)、3・・・補強繊維(アルミナ繊維)、4・・・輻
射材(炭化珪素ウィスカ)、5・・・交差接点。 出願人復代理人 弁理士 鈴江武彦 第1図 第2図
FIG. 1 is a perspective view showing a heat insulating structure of the present invention, and FIG. 2 is an enlarged explanatory view of section A in FIG. 1. DESCRIPTION OF SYMBOLS 1... Heat insulation structure, 2... 1 fiber 1 (high purity silica fiber), 3... Reinforcement fiber (alumina fiber), 4... Radiant material (silicon carbide whisker), 5... Intersection contact. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 平均繊維径が0.3〜3μmのシリカ繊維100重量部
に対して、平均繊維径が1〜5μmのアルミナ繊維5〜
100重量部、平均直径が0.5μm以下の炭化珪素ウ
ィスカ1〜20重量部及び酸化ホウ素0.5〜10重量
部を配合してなることを特徴とする断熱構造体。
5 to 5 parts by weight of alumina fibers with an average fiber diameter of 1 to 5 μm per 100 parts by weight of silica fibers with an average fiber diameter of 0.3 to 3 μm
100 parts by weight of silicon carbide whiskers having an average diameter of 0.5 μm or less, 1 to 20 parts by weight, and 0.5 to 10 parts by weight of boron oxide.
JP26150084A 1984-12-11 1984-12-11 DANNETSUKOZOTAI Expired - Lifetime JPH0247430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26150084A JPH0247430B2 (en) 1984-12-11 1984-12-11 DANNETSUKOZOTAI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26150084A JPH0247430B2 (en) 1984-12-11 1984-12-11 DANNETSUKOZOTAI

Publications (2)

Publication Number Publication Date
JPS61141683A true JPS61141683A (en) 1986-06-28
JPH0247430B2 JPH0247430B2 (en) 1990-10-19

Family

ID=17362768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26150084A Expired - Lifetime JPH0247430B2 (en) 1984-12-11 1984-12-11 DANNETSUKOZOTAI

Country Status (1)

Country Link
JP (1) JPH0247430B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135835U (en) * 1988-03-11 1989-09-18
US5320791A (en) * 1991-04-30 1994-06-14 Mitsui Mining Company, Limited Method for preparing molded articles of high-purity alumina fibers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135835U (en) * 1988-03-11 1989-09-18
US5320791A (en) * 1991-04-30 1994-06-14 Mitsui Mining Company, Limited Method for preparing molded articles of high-purity alumina fibers

Also Published As

Publication number Publication date
JPH0247430B2 (en) 1990-10-19

Similar Documents

Publication Publication Date Title
US4650775A (en) Thermally bonded fibrous product
Hillig Melt infiltration approach to ceramic matrix composites
US3353975A (en) Low density insulation bonded with colloidal inorganic materials
US7504346B2 (en) Aerogel composite with fibrous batting
US4992321A (en) Heat resistant foamed glass
IE61849B1 (en) Method of manufacturing a composite material with vitro-ceramic or ceramic matrix using a sol-gel process and a composite material thus obtained
JPS61141683A (en) Heat insulating structure
JP3195266B2 (en) Multi-layer heat insulating material and its manufacturing method
JPH0428666B2 (en)
JP4728506B2 (en) Molding method of glass fiber molded product
US4751205A (en) Thermally bonded fibrous product
KR102145611B1 (en) Aerogel insulation composition for thin film and aerogel thin film sheet comprising the same
JP3302595B2 (en) Insulation method
JPH0362672B2 (en)
JP2819351B2 (en) Insulation structure
JPS6213302B2 (en)
Liu et al. Preparation and properties of SiO2/Al2O3-SiO2 fiber mat composite materials
JPH10246391A (en) Compressive resistant type flexible thermal insulation material
JP2754316B2 (en) Inorganic fiber-based lightweight refractory and method for producing the same
JP3186993B2 (en) Insulation
JP2990320B2 (en) Insulation material and its manufacturing method
JP2938309B2 (en) Fire-resistant insulation laminated furnace wall material
JPS6213303B2 (en)
JPS59107983A (en) Heat resistant formed body
JPS6036384A (en) Fiber reinforced foamed ceramic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term