JPS61141630A - Production of preform for constant polarization optical fiber - Google Patents

Production of preform for constant polarization optical fiber

Info

Publication number
JPS61141630A
JPS61141630A JP26424784A JP26424784A JPS61141630A JP S61141630 A JPS61141630 A JP S61141630A JP 26424784 A JP26424784 A JP 26424784A JP 26424784 A JP26424784 A JP 26424784A JP S61141630 A JPS61141630 A JP S61141630A
Authority
JP
Japan
Prior art keywords
glass rod
preform
optical fiber
burner
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26424784A
Other languages
Japanese (ja)
Inventor
Seiji Shibuya
渋谷 晟二
Yoshitaka Iida
飯田 義隆
Wataru Komatsu
亘 小松
Tsunehisa Takabayashi
高林 恒久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP26424784A priority Critical patent/JPS61141630A/en
Publication of JPS61141630A publication Critical patent/JPS61141630A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01257Heating devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • C03B2203/31Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres by use of stress-imparting rods, e.g. by insertion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:The parent material with a prescribed structure is heated with a sub-burner which moves in the direction of the axis of the material, as it is allowed to rotate, to effect diameter contraction and fushion, then heated with the main burner to effect colapse whereby a preform with a uniform cross section at the part to which a stress is loaded is obtained. CONSTITUTION:The parent material is composed of the core glass rod 3 containing stress-loading glass rod 2, core 10 and clad 20, the quartz rod 4 and the quartz jacket 7. The parent material is set to the support 11 in the colapser 10 and allowed to rotate in the direction of arrow B, as it is evacuated in the direction of arrow A. The parent material is heated at about 1,600 deg.C with the sub-burner 12, as it is allowed to move at a certain speed in the direction of the material axis C, to effect diameter contraction and fuse the contact points between individual parts 2, 3, 4, 7. Then, the main burner following the sub-burner is allowed to move at the same speed of the sub-burner 12 in the same direction D to heat the material at about 1,900 deg.C for complet colapse. Thus, a preform for constantly polarized optical fiber with highly uniform cross section in the lengthwise direction.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はマルチロンド型の定偏波光ファイバ用プリフォ
ームの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method of manufacturing a preform for a multi-rond type polarization constant optical fiber.

〔従来技術] 定偏波光ファイバにはコアに対する応力複屈折の付与の
仕方よって種々のタイプのものがある。
[Prior Art] There are various types of polarization-constant optical fibers depending on how stress birefringence is imparted to the core.

例えば、その代表的なものとして、応力付与型があるが
、この応力付与を応力付与用ガラス棒を使って与える方
法にもいくつか方法があり、その典型的なものとしてマ
ルチロンド型がある。この方法は、第2図の如く、ジャ
ケット石英管7内の中央部に配置されたコア部lOとク
ラッド部20とを有するコア用ガラス棒3と、該コア用
ガラス棒3に外接しコア用ガラス棒3を中心として対称
の位置に配置された応力付与用ガラス棒2.2と、前記
コア用ガラス棒3に外接する石英棒4.4.4.4とを
有する母材を直接線引(以下直接線引法という)するか
、または前記母材を予め加熱して前記ジャケット石英管
7内の空隙を溶融一体化せしめたプリフォームを得た後
、これを線引するもの(以下加熱溶融法という)である
For example, a stress-applying type is a typical example, and there are several methods for applying stress using a stress-applying glass rod, a typical example of which is the multi-rond type. As shown in FIG. 2, this method consists of a core glass rod 3 having a core portion lO and a cladding portion 20 disposed in the center of a jacketed quartz tube 7; A base material having stress applying glass rods 2.2 arranged at symmetrical positions with the glass rod 3 as the center and a quartz rod 4.4.4.4 circumscribing the core glass rod 3 is directly drawn. (hereinafter referred to as direct wire drawing method), or the base material is preheated to melt and integrate the voids in the jacket quartz tube 7 to obtain a preform, and then this is drawn (hereinafter referred to as heating method). (referred to as the melting method).

しかしながら、前者の直接線引法では、応力付与用ガラ
ス棒2.2の対称性がくずれ易い、さらに長手方向に断
面形状の不均一が発生し易いという問題がある。そこで
今日では後者の加熱溶融法に力が注がれているが、この
方法でも現在のところ前記応力付与用ガラス棒2.2の
対称性は多少改良されるものの、長手方向の断面形状の
不均一は改善し得ないでいる。
However, the former direct drawing method has problems in that the symmetry of the stress-applying glass rod 2.2 is likely to be lost, and furthermore, the cross-sectional shape is likely to be non-uniform in the longitudinal direction. Therefore, today, efforts are being focused on the latter heating and melting method, but even with this method, although the symmetry of the stress-applying glass rod 2.2 can be improved to some extent, there are no defects in the longitudinal cross-sectional shape. Uniformity cannot be improved.

ところで、通常異種ガラスの加工においては、熱膨張係
数および軟化点温度ができるだけ近いものを組み合わせ
た方が加工は容易である。ところが、応力付与型定偏波
光ファイバでは、応力付与用ガラス棒2の熱膨張係数が
大きい程、言い換えれば、軟化点温度の差が大きくなる
程、定偏波光ファイバとしての特性は良くなる。このよ
うに、加熱溶融法による定偏波光ファイバプリフォーム
の製造においては、加工性と定偏波光ファイバとしての
特性とが相反する関係にあり、前記長手方向の断面形状
の不均一が発生するのは、前述した軟化点温度差の大き
い異種ガラスを使用しているためと考えられている。
By the way, when processing different types of glasses, it is usually easier to process them by combining glasses whose thermal expansion coefficients and softening points are as close as possible. However, in the stress-applying type polarization-constant optical fiber, the larger the thermal expansion coefficient of the stress-applying glass rod 2, in other words, the larger the difference in softening point temperature, the better the characteristics as a polarization-constant optical fiber. In this way, in the production of polarization-controlled optical fiber preforms using the heat-melting method, processability and properties as polarization-controlled optical fibers are in a contradictory relationship, and non-uniformity in the cross-sectional shape in the longitudinal direction occurs. This is thought to be due to the use of different types of glasses with large differences in softening points as mentioned above.

さらに具体的に、長手方向の断面形状の不均一の原因を
探ると、応力付与用ガラス棒2の軟化点温度はコア用ガ
ラス棒3や石英棒4のそれより数百℃も低く、コラップ
ス温度である1900℃付近では粘性が大幅に下がり流
動状態になっている。そのため、流動状態の応力付与用
ガラス棒2がまだコラップスの進行していない上流側の
空隙、すなわち、コア用ガラス棒3、石英棒4、ジャケ
ット石英管7間の各空隙に流れ込み、断面形状の不均一
を誘発しているものと推定される。
More specifically, when we investigate the cause of the non-uniformity of the cross-sectional shape in the longitudinal direction, we find that the softening point temperature of the stress-applying glass rod 2 is several hundred degrees Celsius lower than that of the core glass rod 3 and the quartz rod 4, and the collapse temperature At around 1900°C, the viscosity decreases significantly and becomes a fluid state. Therefore, the stress applying glass rod 2 in a fluid state flows into the gaps on the upstream side where the collapse has not yet progressed, that is, the gaps between the core glass rod 3, the quartz rod 4, and the jacket quartz tube 7, and the cross-sectional shape It is presumed that this is causing non-uniformity.

以上の如く、従来のマルチロフト型における加熱溶融法
では長手方向の断面形状が不均一になり、それ故特性の
よい定偏波光ファイバプリフォームを得ることができな
かった。
As described above, in the conventional multi-loft type heating melting method, the cross-sectional shape in the longitudinal direction becomes non-uniform, and therefore it is not possible to obtain a constant polarization optical fiber preform with good characteristics.

〔発明の目的〕[Purpose of the invention]

以上の問題に鑑み本発明の目的は、応力付与用ガラス棒
のコア部に対する対称性と長手方向の断面形状の均一性
に優れた定偏波光ファイバ用プリフォームを得るための
製造方法を提供することにある。
In view of the above problems, an object of the present invention is to provide a manufacturing method for obtaining a preform for a constant polarization optical fiber that has excellent symmetry with respect to the core portion of a stress-applying glass rod and uniformity of longitudinal cross-sectional shape. There is a particular thing.

〔発明の構成〕[Structure of the invention]

前記目的を達成すべく本発明は、ジャケット石英管内の
中央部に配置されたコア部とクラッド部とを有するコア
用ガラス棒と、該コア用ガラス棒に外接しコア用ガラス
棒を中心として対称の位置に配置された応力付与用ガラ
ス棒と、前記コア用ガラス棒に外接する石英棒とを有す
る母材をコラップスして定偏波光ファイバ用プリフォー
ムを製造する定偏波光ファイバ用プリフォームの製造方
法において、回転されてなる前記母材の軸方向に移動す
る補助バーナにより前記母材を加熱して縮径せしめると
共に前記コア用ガラス棒、応力付与用ガラス棒および石
英棒の各外接点および前記ジャケット石英管と応力付与
用ガラス棒および石英棒との各接点とを融着せしめ、し
かる後前記母材の軸方向に移動し前記補助バーナより加
熱温度の高い主バーナで加熱して完全にコラップスする
ことを特徴とするものである。
In order to achieve the above object, the present invention provides a core glass rod having a core portion and a cladding portion disposed in the center of a jacketed quartz tube, and a core glass rod circumscribing the core glass rod and symmetrical about the core glass rod. A preform for a constant polarization optical fiber is manufactured by collapsing a base material having a stress applying glass rod placed at a position and a quartz rod circumscribing the core glass rod. In the manufacturing method, an auxiliary burner that moves in the axial direction of the rotated base material heats the base material to reduce its diameter, and each external contact point of the core glass rod, stress-applying glass rod, and quartz rod; The jacketed quartz tube, the stress-applying glass rod, and each contact point of the quartz rod are fused together, and then moved in the axial direction of the base material and heated completely with a main burner having a higher heating temperature than the auxiliary burner. It is characterized by collapsing.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図を参照して詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の定偏波光ファイバ用プリフォームの製
造方法の一実施例を示す概略図である0本図が示すよう
に、本発明の方法は、例えば、前記第2図の如く、ジャ
ケット石英管7内にコア用ガラス棒3、応力付与用ガラ
ス棒2.2および石英棒4.4.4.4を配置せしめて
なる母材をコラップス装置10の支持台11にセットし
、該母材内部を一方の端から、例えば、矢印A方向に真
空引きしながら、これを矢印B方向に回転しておく、こ
の状態で、例えば、第1図の右側から等速度で補助バー
ナ12を前記母材の軸方向、例えば、矢印C方向に移動
させながら約1600℃で前記母材を予備加熱し、これ
を縮径すると共に、前記コア用ガラス棒3、応力付与用
ガラス棒2.2および石英棒4.4.4.4の外接点と
、さらに前記ジャケット石英管7と応力付与用ガラス棒
2.2および石英棒4.4.4.4との各接点とを融着
させる。
FIG. 1 is a schematic diagram showing an embodiment of the method for manufacturing a preform for a polarization-controlled optical fiber according to the present invention. A base material in which the core glass rod 3, the stress-applying glass rod 2.2, and the quartz rod 4.4.4.4 are arranged in the jacket quartz tube 7 is set on the support stand 11 of the collapse device 10. While vacuuming the inside of the base material from one end, for example, in the direction of arrow A, rotate it in the direction of arrow B. In this state, for example, turn on the auxiliary burner 12 at a constant speed from the right side of FIG. The base material is preheated at about 1600° C. while being moved in the axial direction of the base material, for example, in the direction of arrow C, and the diameter of the base material is reduced, and the core glass rod 3 and the stress applying glass rod 2.2 are The outer contact points of the quartz rod 4.4.4.4 and the contact points between the jacketed quartz tube 7 and the stress-applying glass rod 2.2 and the quartz rod 4.4.4.4 are then fused.

続いて、この補助バーナ12に後続する主バーナ13を
前記補助バーナ12と等速度でかつ同方向りに移動させ
ながら、前記母材を約1900℃で加熱し、完全にコラ
ップスせしめる0図中の符号14は第2補助バーナで、
これは主バーナ13でコラップスせしめたプリフォーム
が冷え、クラックが入らないように補助加熱するための
ものである。
Next, while moving the main burner 13 following the auxiliary burner 12 at the same speed and in the same direction as the auxiliary burner 12, the base material is heated to about 1900°C and completely collapsed. Reference numeral 14 is a second auxiliary burner,
This is for supplementary heating to prevent the preform collapsed by the main burner 13 from cooling and cracking.

このようにしてなる本発明の定偏波光ファイバ用プリフ
ォームの製造方法においては、母材を予め補助バーナ1
2で約1600℃で加熱し、母材を縮径しながら、コア
用ガラス棒3、応力付与用ガラス棒2.2および石英棒
4.4.4.4の各外接点と、前記ジャケット石英管7
と応力付与用ガラス棒2.2および石英棒4.4.4.
4との各接点とを融着させ、この補助バーナ12に後続
する主バーす13の付近で完全に溶融状態になり、流動
状態にある応力付与用ガラス棒2.2がまだ加熱されて
いない上流の空隙部分へと流れ出すのを防止する。すな
わち、前記融着された各外接点および各接点が、前記流
動状態の応力付与用ガラス棒2.2が未加熱の上流側へ
と流れ出すのを防止する流出防止栓の役目を果たす、そ
の結果、ファイバ長手方向にねたりて、単位体積当たり
に占める応力付与用ガラス棒2.2の体積が不均一にな
ることがなく、もって長手方向にわたって、応力付与部
分の断面形状が不均一になることがない。
In the method for manufacturing a preform for a constant polarization optical fiber of the present invention, the base material is prepared in advance by the auxiliary burner 1.
2 at about 1600° C., and while reducing the diameter of the base material, each external contact point of the core glass rod 3, the stress-applying glass rod 2.2, and the quartz rod 4.4.4.4, and the jacket quartz tube 7
and stress-applying glass rod 2.2 and quartz rod 4.4.4.
The stress applying glass rod 2.2 is completely molten near the main bar 13 following this auxiliary burner 12 and is in a fluid state, but has not yet been heated. Prevents it from flowing into the upstream void. That is, each of the fused outer contacts and each contact serves as a leakage prevention stopper that prevents the stress-applying glass rod 2.2 in the flowing state from flowing out to the unheated upstream side. , the volume of the stress-applying glass rod 2.2 per unit volume does not become uneven due to bending in the longitudinal direction of the fiber, and the cross-sectional shape of the stress-applying portion becomes uneven in the longitudinal direction. There is no.

ここで、具体例を2つ示す。Here, two specific examples will be shown.

具体例−1 各々外径5.5諺のコア用ガラス棒3、応力付与用ガラ
ス棒2.2および石英棒4.4.4.4を、第2図の如
(外径26■、内径18鶴のジャケット石英管7内に収
納し、これを、補助バーナ12と、該補助バーナ12の
後ろ50mの位置に設けた主バーナ13にて加熱しコラ
ップスした。この時の前記補助バーナ12の火力はH1
−50j /sin、0x−171/sinで、主バー
ナ13の火力はH*−901/ale、Ox−301/
winで、かつ両者の移動速度は共に1m/winであ
る。
Specific Example-1 A core glass rod 3, a stress-applying glass rod 2.2, and a quartz rod 4.4, 4.4 each having an outer diameter of 5.5 mm are used as shown in Fig. 2 (outer diameter 26 cm, inner diameter It was housed in a jacketed quartz tube 7 of No. 18 Tsuru, and heated and collapsed using an auxiliary burner 12 and a main burner 13 installed 50 m behind the auxiliary burner 12. Firepower is H1
-50j/sin, 0x-171/sin, the thermal power of the main burner 13 is H*-901/ale, Ox-301/
win, and both moving speeds are 1 m/win.

このようにして得られた定偏波光ファイバ用プリフォー
ムを線引した定偏波光ファイバの断面を第3図に示す、
尚、該定偏波光ファイバを4−にわたってその断面を調
査したが、形状の不均一は見られなかった。第4図、第
5図は比較例で、補助バーナ12を使用しない従来法に
より得られたものである。尚、第4図はコラップス開始
部分を線引して得た定偏波光ファイバの横断面を示し、
第5図は終了部分から得たものを示す、特に、第5図の
場合、応力付与用ガラス棒2.2が未加熱の上流側空隙
に流れ出していることを示している。
A cross-section of a polarization-controlled optical fiber obtained by drawing the polarization-controlled optical fiber preform obtained in this way is shown in FIG.
Incidentally, the cross section of the constant polarization optical fiber was examined over four sections, but no non-uniformity in shape was observed. 4 and 5 are comparative examples, which were obtained by a conventional method without using the auxiliary burner 12. Incidentally, Fig. 4 shows a cross section of a polarization-constant optical fiber obtained by drawing the collapse starting part.
FIG. 5 shows what is obtained from the end section, in particular FIG. 5 shows that the stressing glass rod 2.2 flows out into the unheated upstream cavity.

具体例−2 外径3.6鶴のコア用ガラス棒3と、外径9.1鶴の応
力付与用ガラス棒2.2と、外径9.I Mの石英棒4
a、4aと外径3.6態の石英棒4b、4bとを外径3
5鶴、内径23■のジャケット石英管7内に第6図の如
く収納し、前記具体例−1より補助バーナ12、主バー
ナ13の火力を前記具体例−1とほぼ同一条件とし、か
つ両者の移動速度を0.6−/請inとした。このよう
にして得られたプリフォームを線引して得られた定偏波
光ファイバの横断面を第7図に示す、この場合も前記具
体例−1と同様ファイバ両端部の断面を比較しても断面
形状の不均一は見出せなかった。
Specific Example 2 A core glass rod 3 with an outer diameter of 3.6 mm, a stress applying glass rod 2.2 with an outer diameter of 9.1 mm, and a glass rod 2.2 with an outer diameter of 9.1 mm. IM quartz rod 4
a, 4a and quartz rods 4b, 4b with an outer diameter of 3.6
5, housed in a jacketed quartz tube 7 with an inner diameter of 23 cm as shown in FIG. The moving speed of is set to 0.6-/in. Figure 7 shows a cross section of a polarization-controlled optical fiber obtained by drawing the preform obtained in this way. No non-uniformity in cross-sectional shape was found.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように本発明の定偏波光ファイバ用プリフ
ォームの製造方法によれば、補助バーナを主バーナに先
行させ、予め、母材を構成する各部材の接点部を融着さ
せることにより、溶融状態にあって流動し易くなってい
る応力付与用ガラス棒の未加熱の上流部分への流出を防
止でき、もってファイバ長手方向に断面形状が均一な定
偏波光ファイバ用プリフォームを得ることができる。
As described above, according to the method for manufacturing a preform for a polarization-controlled optical fiber of the present invention, the auxiliary burner is placed before the main burner, and the contact portions of each member constituting the base material are fused in advance. To obtain a preform for a polarization optical fiber having a uniform cross-sectional shape in the longitudinal direction of the fiber by preventing a stress-applying glass rod that is in a molten state and easily flowing from flowing out to an unheated upstream portion. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の定偏波光ファイバ用プリフォームの製
造方法の一実施例を示す概略図、第2図は本発明に係わ
る母材の横断面図、第3図は、前記第2図の母材を、本
発明によりプリフォーム化し、これを線引してなる定偏
波光ファイバの横断面図、第4図、第5図は各々第2図
に示す母材を従来の方法でプリフォーム化し、これを線
引してなる定偏波光ファイバの横断面図、第6図は他の
構成の母材の横断面図、第7図は前記第6図の母材を本
発明の方法によりプリフォーム化し、これを線引して得
られた定偏波光ファイバの横断面図である。 2 ・・一応力付与用ガラス棒  3 ・・・−コア用
ガラス棒  4 ・−・−石英棒  7 ・−ジャケッ
ト石英管  12−・・−・補助バーナ  13−・・
・・主バーナ第10 第2図 第3図       第4図 第5図      第6図
FIG. 1 is a schematic diagram showing an embodiment of the method for manufacturing a preform for a constant polarization optical fiber according to the present invention, FIG. 2 is a cross-sectional view of a base material according to the present invention, and FIG. FIGS. 4 and 5 are cross-sectional views of polarization-controlled optical fibers obtained by preforming the base material of FIG. 2 according to the present invention and drawing the preform, respectively. A cross-sectional view of a constant polarization optical fiber obtained by refurbishing and drawing the same, FIG. 6 is a cross-sectional view of a base material of another configuration, and FIG. 7 is a cross-sectional view of the base material of FIG. 6 using the method of the present invention. FIG. 2 is a cross-sectional view of a polarization-constant optical fiber obtained by forming a preform and drawing the preform. 2...Glass rod for applying stress 3...Glass rod for core 4...Quartz rod 7...Jacket quartz tube 12-...Auxiliary burner 13-...
...Main burner No. 10 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6

Claims (2)

【特許請求の範囲】[Claims] (1)ジャケット石英管内の中央部に配置されたコア部
とクラッド部とを有するコア用ガラス棒と、該コア用ガ
ラス棒に外接しコア用ガラス棒を中心として対称の位置
に配置された応力付与用ガラス棒と、前記コア用ガラス
棒に外接する石英棒とを有する母材をコラップスして定
偏波光ファイバ用プリフォームを製造する定偏波光ファ
イバ用プリフォームの製造方法において、回転されてな
る前記母材の軸方向に移動する補助バーナにより前記母
材を加熱して縮径せしめると共に、前記コア用ガラス棒
、応力付与用ガラス棒および石英棒の各外接点および前
記ジャケット石英管と前記応力付与用ガラス棒および石
英棒との各接点とを融着せしめ、しかる後前記母材の軸
方向に移動し前記補助バーナより加熱温度の高い主バー
ナで加熱して完全にコラップスすることを特徴とする定
偏波光ファイバ用プリフォームの製造方法。
(1) A core glass rod having a core portion and a cladding portion placed in the center of the jacketed quartz tube, and stresses placed in circumscribed positions around the core glass rod and symmetrically around the core glass rod. In a method for manufacturing a preform for a polarization constant optical fiber, the preform for a polarization constant optical fiber is manufactured by collapsing a base material having a glass rod for imparting and a quartz rod circumscribing the glass rod for the core. The base material is heated by an auxiliary burner that moves in the axial direction of the base material to reduce its diameter, and the outer contact points of the core glass rod, the stress-applying glass rod, and the quartz rod, the jacket quartz tube, and the The stress-applying glass rod and each contact point with the quartz rod are fused and then moved in the axial direction of the base material and heated with a main burner having a higher heating temperature than the auxiliary burner to completely collapse. A method for manufacturing a preform for polarization-constant optical fiber.
(2)前記主バーナと前記補助バーナとを同方向に等速
度で移動させながら前記母材を加熱せしめることを特徴
とする特許請求の範囲第1項記載の定偏波光ファイバ用
プリフォームの製造方法。
(2) Manufacturing a preform for a constant polarization optical fiber according to claim 1, wherein the base material is heated while the main burner and the auxiliary burner are moved in the same direction at a constant speed. Method.
JP26424784A 1984-12-14 1984-12-14 Production of preform for constant polarization optical fiber Pending JPS61141630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26424784A JPS61141630A (en) 1984-12-14 1984-12-14 Production of preform for constant polarization optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26424784A JPS61141630A (en) 1984-12-14 1984-12-14 Production of preform for constant polarization optical fiber

Publications (1)

Publication Number Publication Date
JPS61141630A true JPS61141630A (en) 1986-06-28

Family

ID=17400524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26424784A Pending JPS61141630A (en) 1984-12-14 1984-12-14 Production of preform for constant polarization optical fiber

Country Status (1)

Country Link
JP (1) JPS61141630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935370A (en) * 2017-12-11 2018-04-20 中国电子科技集团公司第四十六研究所 A kind of preparation method of gain pump integrated fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935370A (en) * 2017-12-11 2018-04-20 中国电子科技集团公司第四十六研究所 A kind of preparation method of gain pump integrated fiber
CN107935370B (en) * 2017-12-11 2021-05-04 中国电子科技集团公司第四十六研究所 Preparation method of gain pumping integrated optical fiber

Similar Documents

Publication Publication Date Title
US4529426A (en) Method of fabricating high birefringence fibers
EP3180293B1 (en) Method for forming a quartz glass optical component and system
CN109143460B (en) A kind of negative cruvature hollow-core fiber and preparation method thereof
US4602926A (en) Optical fibre fabrication
US4199337A (en) Method of fabricating high strength optical preforms
US6089044A (en) Process for making preforms for multicore optical fibers
US20030150241A1 (en) Production method of polarization maintaining fiber
JPS61141630A (en) Production of preform for constant polarization optical fiber
JPS627130B2 (en)
JPS6212626A (en) Production of optical fiber of constant polarized electromagnetic radiation
JP6824233B2 (en) Method for forming quartz glass products and quartz glass optical members
JPH0548445B2 (en)
JPS6365615B2 (en)
JP6291892B2 (en) Multi-core optical fiber preform manufacturing method
JPH0723228B2 (en) Method of manufacturing constant polarization optical fiber
JPS60108334A (en) Manufacture of base material for optical fiber having retained plane of polarization
JPS61251536A (en) Production of optical fiber
JP2000128558A (en) Production of quartz glass preform for optical fiber
JPS6146414B2 (en)
JPH0210093B2 (en)
JPS596265B2 (en) Optical fiber manufacturing method
JPS5951502B2 (en) Optical fiber manufacturing method
JPH10231135A (en) Production of optical fiber base material
JPH0431085B2 (en)
JPS60200839A (en) Production of optical fiber retaining plane of polarization